1
|
Chen YL, You J, Guo Y, Zhang Y, Yao BR, Wang JJ, Chen SD, Ge YJ, Yang L, Wu XR, Wu BS, Zhang YR, Dong Q, Feng JF, Tian M, Cheng W, Yu JT. Identifying proteins and pathways associated with multimorbidity in 53,026 adults. Metabolism 2024; 164:156126. [PMID: 39740741 DOI: 10.1016/j.metabol.2024.156126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND AND AIMS Multimorbidity, the coexistence of multiple chronic diseases, is a rapidly expanding global health challenge, carrying profound implications for patients, caregivers, healthcare systems, and society. Investigating the determinants and drivers underlying multiple chronic diseases is a priority for disease management and prevention. METHOD This prospective cohort study analyzed data from the 53,026 participants in the UK Biobank from baseline (2006 to 2010) across 13.3 years of follow-up. Using Cox proportional hazards regression model, we characterized shared and unique associations across 38 incident outcomes (31 chronic diseases, 6 system mortality and all-cause mortality). Furthermore, ordinal regression models were used to assess the association between protein levels and multimorbidity (0-1, 2, 3-4, or ≥ 5 chronic diseases). Functional and tissue enrichment analysis were employed for multimorbidity-associated proteins. The upstream regulators of above proteins were identified. RESULTS We demonstrated 972 (33.3 %) proteins were shared across at least two incident chronic diseases after Bonferroni correction (P < 3.42 × 10-7, 93.3 % of those had consistent effects directions), while 345 (11.8 %) proteins were uniquely linked to a single chronic disease. Remarkably, GDF15, PLAUR, WFDC2 and AREG were positively associated with 20-24 incident chronic diseases (hazards ratios: 1.21-3.77) and showed strong associations with multimorbidity (odds ratios: 1.33-1.89). We further identified that protein levels are explained by common risk factors, especially renal function, liver function, inflammation, and obesity, providing potential intervention targets. Pathway analysis has underscored the pivotal role of the immune response, with the top three transcription factors associated with proteomics being NFKB1, JUN and RELA. CONCLUSIONS Our results enhance the understanding of the biological basis underlying multimorbidity, offering biomarkers for disease identification and novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bing-Ran Yao
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | | | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Mei Tian
- Huashan Hospital & Human Phenome Institute, Fudan University, Shanghai, China; Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Primaguna MR, Rasyid H, Aman M, Bakri S, Kasim H, Iskandar H, Dwiyanti R, Junita AR, Ridwan R, Noviyanthi RA, Purnamasar NI, Hatta M. The Strong Effect of Propolis in Suppressing NF-κB, CysC, and ACE2 on a High-fat Diet. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2024; 17:1539-1554. [DOI: 10.13005/bpj/2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Background: A high fat diet (HFD)is one of the main causes of obesity and is closely linked to metabolic disorders brought on by stress and malfunctioning tissues. Propolis (Trigona Honey) is considered to be helpful in treating inflammatory diseases because it has also been demonstrated to have anti-inflammatory and anti-free radical properties. This study to demonstrate how much propolis supplementation affects BW, NF-κB, CysC, and ACE2 levels in Wistar rats (Rattus norvegicus) fed a HFD. Methods: Post-test and control group designs in an experimental setup. A total of twenty-four rats were randomly assigned to four groups of six. Group I received a normal diet for sixteen weeks (ND), Group II received a high fat diet (HFD) for sixteen weeks (HFD), Group III received an HFD for sixteen weeks plus propolis for eight weeks (HFD-8), and Group IV received an HFD and propolis for sixteen weeks (HFD-16). Using the Enzyme-Linked Immunosorbent Assay (ELISA), body weight (BW), serum NF-κB, Cys C, and ACE2 levels were measured before treatment (week 0), after 8 weeks of HFD (HFD-8) (week 8), and after 16 weeks of HFD (HFD-16). Results: The mean starting weight in the ND, HFD, HFD-8, and HFD-16 groups did not differ significantly (p > 0.001). By week eight, the HFD group's body weight had increased considerably (254.83 grams vs. 202.0 grams) in comparison to the ND group (p<0.001). The HFD and HFD-8 groups' body weight increased significantly at week 16 in comparison to the ND group (334.83 grams and 269.50 grams vs. 208.67 grams) (p<0.001). At week 16, there was no discernible difference in mean BW between ND and HFD-16 (p > 0.001). There was no significant difference found in the mean initial NF-κB levels between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). At week 8, NF-κB levels in the HFD group were significantly higher (5,038 ng/ml vs. 3,655 ng/ml) (p<0.001) than in the ND group. At week 16, NF-κB levels in the HFD and HFD-8 groups were notably higher than those in the ND group (p<0.001), at 6,136 ng/ml and 4,378 ng/ml, respectively, compared to 3,775 ng/ml. Between ND and HFD-16, there was no significant distinction in the mean NF-κB levels at week 16 (p>0.001). There was no significant difference observed in the mean CysC and ACE2 between the ND, HFD, HFD-8, and HFD-16 groups (p > 0.001). CysC and ACE2 levels in the HFD group were significantly higher than those in the ND group at week 8, and in the HFD and HFD-8 groups, they were significantly higher than those in the ND group at week 16. When propolis is administered for eight weeks, the rise in BW, NF-κB, CysC, and ACE2 is suppressed until the eighth week, at which point it increases once more until the sixteenth week. Propolis administration, however, will halt the rise in BW, NF-κB, CysC, and ACE2 until the sixteenth week. Conclusion: Propolis administration for 16 weeks can suppress the increase in BW, LI, RI, NF-κB, CysC and ACE2 levels in rats given a high fat diet (HFD).
Collapse
Affiliation(s)
- Muhammad Reza Primaguna
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Makbul Aman
- 3Endocrine and Metabolic Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hasyim Kasim
- 2Nephrology and Hypertension Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Harun Iskandar
- 1Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ressy Dwiyanti
- 4Department of Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ade Rifka Junita
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ridwan Ridwan
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Rizki Amelia Noviyanthi
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nur Indah Purnamasar
- 7Department of Obstetrics and Gynecology, Faculty of Medicine, Haluoleo University, Kendari, Indonesia
| | - Mochammad Hatta
- 5Department of Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
3
|
Li Y, Qi X, Wang Q, He Y, Li Z, Cen X, Wei L. Comprehensive analysis of key host gene-microbe networks in the cecum tissues of the obese rabbits induced by a high-fat diet. Front Cell Infect Microbiol 2024; 14:1407051. [PMID: 38947127 PMCID: PMC11211605 DOI: 10.3389/fcimb.2024.1407051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.
Collapse
Affiliation(s)
- Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhupeng Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Cen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Hjort L, Bredgaard SS, Manitta E, Marques I, Sørensen AE, Martino D, Grunnet LG, Kelstrup L, Houshmand-Oeregaard A, Clausen TD, Mathiesen ER, Olsen SF, Saffery R, Barrès R, Damm P, Vaag AA, Dalgaard LT. Epigenetics of the non-coding RNA nc886 across blood, adipose tissue and skeletal muscle in offspring exposed to diabetes in pregnancy. Clin Epigenetics 2024; 16:61. [PMID: 38715048 PMCID: PMC11077860 DOI: 10.1186/s13148-024-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.
Collapse
Affiliation(s)
- Line Hjort
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.
| | | | - Eleonora Manitta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Marques
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | | - David Martino
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Louise Groth Grunnet
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Louise Kelstrup
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Herlev Hospital, Herlev, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Tine Dalsgaard Clausen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Reinhardt Mathiesen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | | | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Allan Arthur Vaag
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | |
Collapse
|
5
|
Vujičić M, Broderick I, Salmantabar P, Perian C, Nilsson J, Sihlbom Wallem C, Wernstedt Asterholm I. A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. Proc Natl Acad Sci U S A 2024; 121:e2313185121. [PMID: 38300872 PMCID: PMC10861897 DOI: 10.1073/pnas.2313185121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Isabella Broderick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Pegah Salmantabar
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Charlène Perian
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| |
Collapse
|
6
|
Ma J, Wang PY, Zhuang J, Son AY, Karius AK, Syed AM, Nishi M, Wu Z, Mori MP, Kim YC, Hwang PM. CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise. Cell Rep 2024; 43:113626. [PMID: 38157298 PMCID: PMC10851177 DOI: 10.1016/j.celrep.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.
Collapse
Affiliation(s)
- Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jie Zhuang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; School of Medicine, Nankai University, Tianjin 300071, China
| | - Annie Y Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Zhichao Wu
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Mateus P Mori
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Demirdağ F, Yavuzer S, Cengiz M, Yavuzer H, Kara Z, Ayvacı A, Avcı S, Yürüyen M, Uzun H, Altıparmak MR, Döventaş A, Erdinçler DS. The Role of NF-κB, PPAR-α, and PPAR-γ in Older Adults with Metabolic Syndrome. Horm Metab Res 2023; 55:733-740. [PMID: 37308136 DOI: 10.1055/a-2109-1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The etiopathogenesis of metabolic syndrome (MetS) has not been fully understood yet, and chronic low-grade inflammation is thought to be associated with the development of complications related to MetS. We aimed to investigate the role of Nuclear factor Kappa B ( NF-κB ), Peroxisome Proliferator-Activated Receptor- α and γ (PPAR-α, and PPAR-γ) which are the main markers of inflammation in older adults with MetS. A total of 269 patients aged≥18, 188 patients with MetS who met the diagnostic criteria of the International Diabetes Federation, and 81 controls who applied to geriatrics and general internal medicine outpatient clinics for various reasons were included in the study. Patients were separated into four groups: young with MetS (< 60, n=76), elderly with MetS (≥60, n=96), young control (< 60, n=31), elderly controls (≥60, n=38). Carotid intima-media thickness (CIMT) and NF-κB , PPAR-α, and PPAR-γ plasma levels were measured in all of the participants. Age and sex distribution were similar between MetS and control groups. C-reactive protein (CRP), NF-κB levels (p=0.001) and CIMT (p<0,001) of MetS group were significantly higher than in the control groups. On the other hand, the PPAR-γ (p=0.008) and PPAR-α (p=0.003) levels were significantly lower in MetS. ROC analysis revealed that the NF-κB, PPAR-α, and PPAR-γ could be used to indicate MetS in younger adults (AUC: 0.735, p<0.000; AUC: 0.653, p=0.003), whereas it could not be an indicator in older adults (AUC: 0.617, p=0.079; AUC:0.530, p=0.613). It seems that these markers have important roles in MetS-related inflammation. In our results, suggest that the indicator feature of NF-κB , PPAR-α and PPAR-γ in recognizing MetS in young individuals is lost in older adults with Mets.
Collapse
Affiliation(s)
- Filiz Demirdağ
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medeniyet University, School of Medicine Istanbul, Turkey
| | - Serap Yavuzer
- Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Mahir Cengiz
- Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Hakan Yavuzer
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Zehra Kara
- Division of Endocrinology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Adnan Ayvacı
- Department of Radiology, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Suna Avcı
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Mehmet Yürüyen
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Hafize Uzun
- Department of Biochemistry, Istanbul Atlas University, School of Medicine, Istanbul, Turkey
| | - Mehmet Rıza Altıparmak
- Division of Nephrology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Alper Döventaş
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Deniz Suna Erdinçler
- Division of Geriatrics, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Shinawi T, Nasser KK, Moradi FA, Mujalli A, Albaqami WF, Almukadi HS, Elango R, Shaik NA, Banaganapalli B. A comparative mRNA- and miRNA transcriptomics reveals novel molecular signatures associated with metastatic prostate cancers. Front Genet 2022; 13:1066118. [DOI: 10.3389/fgene.2022.1066118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Prostate cancer (PC) is a fatally aggressive urogenital cancer killing millions of men, globally. Thus, this study aims to identify key miRNAs, target genes, and drug targets associated with prostate cancer metastasis.Methods: The miRNA and mRNA expression datasets of 148 prostate tissue biopsies (39 tumours and 109 normal tissues), were analysed by differential gene expression analysis, protein interactome mapping, biological pathway analysis, miRNA-mRNA networking, drug target analysis, and survival curve analysis.Results: The dysregulated expression of 53 miRNAs and their 250 target genes involved in Hedgehog, ErbB, and cAMP signalling pathways connected to cell growth, migration, and proliferation of prostate cancer cells was detected. The subsequent miRNA-mRNA network and expression status analysis have helped us in narrowing down their number to 3 hub miRNAs (hsa-miR-455-3p, hsa-miR-548c-3p, and hsa-miR-582-5p) and 9 hub genes (NFIB, DICER1, GSK3B, DCAF7, FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2). Further investigations with different systems biology methods have prioritized NR3C1, ABHD2, and GSK3B as potential genes involved in prostate cancer metastasis owing to their high mutation load and expression status. Interestingly, down regulation of NR3C1 seems to improve the prostate cancer patient survival rate beyond 150 months. The NR3C1, ABHD2, and GSK3B genes are predicted to be targeted by hsa-miR-582-5p, besides some antibodies, PROTACs and inhibitory molecules.Conclusion: This study identified key miRNAs (miR-548c-3p and miR-582-5p) and target genes (NR3C1, ABHD2, and GSK3B) as potential biomarkers for metastatic prostate cancers from large-scale gene expression data using systems biology approaches.
Collapse
|
9
|
Yuan Z, Wang J, Zhang H, Miao Y, Tang Q, Yuan Z, Nong C, Duan Z, Zhang L, Jiang Z, Yu Q. Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB. Front Nutr 2022; 9:1032722. [PMID: 36313114 PMCID: PMC9608656 DOI: 10.3389/fnut.2022.1032722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Cholestasis is a common, chronic liver disease that may cause fibrosis and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the Euonymus family that is commonly used as a source of medicine and food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene lactone of TWHF, as well as the main active ingredient in TWHF. Here, we used a mouse model of common bile duct ligation (BDL) cholestasis, along with cultured human intrahepatic biliary epithelial cells, to explore whether TP can relieve cholestasis. Compared with the control treatment, TP at a dose of 70 or 140 μg/kg reduced the serum levels of the liver enzymes alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in mice; hematoxylin and eosin staining also showed that TP reduced necrosis in tissues. Both in vitro and in vivo analyses revealed that TP inhibited cholangiocyte proliferation by reducing the expression of RelB. Immunohistochemical staining of CK19 and Ki67, as well as measurement of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-induced ductular reaction. Masson 3 and Sirius Red staining for hepatic hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis. Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In summary, TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jie Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoran Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qianhui Tang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Cheng Nong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhicheng Duan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China,*Correspondence: Zhenzhou Jiang,
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,Qinwei Yu,
| |
Collapse
|
10
|
Bima AI, Elsamanoudy AZ, Alamri AS, Felimban R, Felemban M, Alghamdi KS, Kaipa PR, Elango R, Shaik NA, Banaganapalli B. Integrative global co-expression analysis identifies Key MicroRNA-target gene networks as key blood biomarkers for obesity. Minerva Med 2022; 113:532-541. [PMID: 35266657 DOI: 10.23736/s0026-4806.21.07478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is associated with the quantitative changes in miRNAs and their target genes. However, the molecular basis of their dysregulation and expression status correlations is incompletely understood. Therefore, this study aims to examine the shared differentially expressed miRNAs and their target genes between blood and adipose tissues of obese individuals to identify potential blood-based biomarkers. In this study, 3 gene expression datasets (two mRNA and one miRNA), generated from blood and adipose tissues of 68 obese and 39 lean individuals, were analyzed by a series of robust computational concepts, like protein interactome mapping, functional enrichment of biological pathways and construction of miRNA-mRNA and transcription factor gene networks. The comparison of blood versus tissue datasets has revealed the shared differential expression of 210 genes (59.5% upregulated) involved in lipid metabolism and inflammatory reactions. The blood miRNA (GSE25470) analysis has identified 79 differentially expressed miRNAs (71% downregulated). The miRNA-target gene scan identified regulation of 30 shared genes by 22miRNAs. The gene network analysis has identified the inverse expression correlation between 8 target genes (TP53, DYSF, GAB2, GFRA2, NACC2, FAM53C, JNK and GAB2) and 3 key miRNAs (hsa-mir-940, hsa-mir-765, hsa-mir-612), which are further regulated by 24 key transcription factors. This study identifies potential obesity related blood biomarkers from largescale gene expression data by computational miRNA-target gene interactome and transcription factor network construction methods.
Collapse
Affiliation(s)
- Abdulhadi I Bima
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Z Elsamanoudy
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Raed Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalised Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed Felemban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kawthar S Alghamdi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prabhakar R Kaipa
- Department of Genetics, College of science, Osmania University, Hyderabad, India
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia - .,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Molecular profiling of melanocortin 4 receptor variants and agouti-related peptide interactions in morbid obese phenotype: a novel paradigm from molecular docking and dynamics simulations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Abstract
Two decades of research have established that Nuclear Factor-κB (NF-κB) signaling plays a critical role in reprogramming the fat cell transcriptome towards inflammation in response to overnutrition and metabolic stress. Several groups have suggested that inhibition of NF-κB signaling could have metabolic benefits for obesity-associated adipose tissue inflammation. However, two significant problems arise with this approach. The first is how to deliver general NF-κB inhibitors into adipocytes without allowing these compounds to disrupt normal functioning in cells of the immune system. The second issue is that general inhibition of canonical NF-κB signaling in adipocytes will likely lead to a massive increase in adipocyte apoptosis under conditions of metabolic stress, leading full circle into a secondary inflammation (However, this problem may not be true for non-canonical NF-κB signaling.). This review will focus on the research that has examined canonical and non-canonical NF-κB signaling in adipocytes, focusing on genetic studies that examine loss-of-function of NF-κB specifically in fat cells. Although the development of general inhibitors of canonical NF-κB signaling seems unlikely to succeed in alleviating adipose tissue inflammation in humans, the door remains open for more targeted therapeutics. In principle, these would include compounds that interrogate NF-κB DNA binding, protein-protein interactions, or post-translational modifications that partition NF-κB activity towards some genes and away from others in adipocytes. I also discuss the possibility for inhibitors of non-canonical NF-κB signaling to realize success in mitigating fat cell dysfunction in obesity. To plant the seeds for such approaches, much biochemical “digging” in adipocytes remains; this includes identifying—in an unbiased manner–NF-κB direct and indirect targets, genomic DNA binding sites for all five NF-κB subunits, NF-κB protein-protein interactions, and post-translational modifications of NF-κB in fat cells.
Collapse
|
13
|
Ismaiel M, Murphy B, Hayes C, O'Connell LV, Winter DC. Differential inflammatory profile of mesenteric and omental fat in patients with colorectal cancer. Br J Surg 2021; 109:160-161. [PMID: 34611713 DOI: 10.1093/bjs/znab300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022]
Abstract
Visceral obesity (mesenteric and omental adipose tissue) is a risk factor for colorectal cancer (CRC) and weight loss can reduce risk. This study examined mesenteric and omental fat activity in patients with CRC.
Collapse
Affiliation(s)
- M Ismaiel
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - B Murphy
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | - C Hayes
- Department of Surgery, University College Dublin, Dublin, Ireland
| | - L V O'Connell
- Department of Surgery, University College Dublin, Dublin, Ireland
| | - D C Winter
- Department of Surgery, University College Dublin, Dublin, Ireland
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
14
|
Wu J, Zhang M, Faruq O, Zacksenhaus E, Chen W, Liu A, Chang H. SMAD1 as a biomarker and potential therapeutic target in drug-resistant multiple myeloma. Biomark Res 2021; 9:48. [PMID: 34134766 PMCID: PMC8207655 DOI: 10.1186/s40364-021-00296-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND SMAD1, a central mediator in TGF-β signaling, is involved in a broad range of biological activities including cell growth, apoptosis, development and immune response, and is implicated in diverse type of malignancies. Whether SMAD1 plays an important role in multiple myeloma (MM) pathogenesis and can serve as a therapeutic target are largely unknown. METHODS Myeloma cell lines and primary MM samples were used. Cell culture, cytotoxicity and apoptosis assay, siRNA transfection, Western blot, RT-PCR, Soft-agar colony formation, and migration assay, Chromatin immunoprecipitation (Chip), animal xenograft model studies and statistical analysis were applied in this study. RESULTS We demonstrate that SMAD1 is highly expressed in myeloma cells of MM patients with advanced stages or relapsed disease, and is associated with significantly shorter progression-free and overall survivals. Mechanistically, we show that SMAD1 is required for TGFβ-mediated proliferation in MM via an ID1/p21/p27 pathway. TGF-β also enhanced TNFα-Induced protein 8 (TNFAIP8) expression and inhibited apoptosis through SMAD1-mediated induction of NF-κB1. Accordingly, depletion of SMAD1 led to downregulation of NF-κB1 and TNFAIP8, resulting in caspase-8-induced apoptosis. In turn, inhibition of NF-κB1 suppressed SMAD1 and ID1 expression uncovering an autoregulatory loop. Dorsomorphin (DM), a SMAD1 inhibitor, exerted a dose-dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells, and further synergized with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells in vitro and in a myeloma xenograft model. CONCLUSIONS This study identifies SMAD1 regulation of NF-κB1/TNFAIP8 and ID1-p21/p27 as critical axes of MM drug resistance and provides a potentially new therapeutic strategy to treat drug resistance MM through targeted inhibition of SMAD1.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Min Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Omar Faruq
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
15
|
Kim HA, Baek KJ, Yun HY. Integrative proteomic network analyses support depot-specific roles for leucine rich repeat LGI family member 3 in adipose tissues. Exp Ther Med 2021; 22:837. [PMID: 34149883 PMCID: PMC8200805 DOI: 10.3892/etm.2021.10269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
LGI family member 3 (LGI3) is a member of the LGI protein family. In our previous studies, LGI3 was determined to be expressed in adipose tissues, skin and the brain, where it served as a pleiotropic cytokine. The results indicated that LGI3 levels are increased in adipose tissues of obese individuals in comparison with control individuals and that LGI3 suppressed adipogenesis via its receptor, disintegrin and metalloproteinase domain-containing protein 23. Additionally, it was reported that LGI3 upregulates tumor necrosis factor-α and downregulated adiponectin and hypothesized that LGI3 may act as a proinflammatory adipokine involved in adipose tissue inflammation. In the present study, cytokine arrays were used to analyze cytokine levels in adipose tissues and plasma of LGI3-knockout mice and signaling protein arrays used to analyze the expression and phosphorylation of these proteins in LGI3-treated preadipocytes. The results suggested that expression levels of 129 gene products (24 cytokines and 105 signaling proteins) were altered in response to LGI3 deficiency or LGI3 treatment, respectively. Protein-protein interaction network analysis of LGI3-regulated gene products revealed that 94% of the gene products (21 cytokines and 100 signaling proteins) formed an interaction network cluster. Functional enrichment analysis for the LGI3-regulated gene products, including those from our previous studies, revealed an association with numerous biological processes, including inflammatory responses, cellular differentiation and development and metabolic regulation. Gene co-expression network analysis revealed that these LGI3-regulated gene products were involved in various biological processes in an overlapping and differential manner between subcutaneous and visceral adipose tissues. Notably, inflammatory responses were more strongly associated with the LGI3-regulated gene co-expression network in visceral adipose tissues than in subcutaneous adipose tissues. Analysis of expression quantitative trait loci identified four single nucleotide variants that affect expression of LGI3 in an adipose depot-specific manner. Taken together, the results suggested that LGI3 may serve depot-specific roles as an adipokine in adipose tissues.
Collapse
Affiliation(s)
- Hyun A Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Huang SL, Chang TC, Chao CCK, Sun NK. TLR4/IL-6/IRF1 signaling regulates androgen receptor expression: A potential therapeutic target to overcome taxol resistance in ovarian cancer. Biochem Pharmacol 2021; 186:114456. [PMID: 33556340 DOI: 10.1016/j.bcp.2021.114456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Ovarian cancer is poorly treatable due, at least in part, to induced drug resistance to taxol- and cisplatin-based chemotherapy. Recent studies showed that ectopic overexpression of toll-like receptor 4 (TLR4) in ovarian cancer cells leads to upregulation of the androgen receptor (AR) and transactivation of taxol resistance genes, thereby causing chemoresistance. In the present study, we examined the signaling pathways involving TLR4 and interleukin 6 (IL-6) that enhance AR expression. Based on transcriptomic analysis, we show that IL-6 functions as a hub gene among the upregulated genes in taxol-treated TLR4-overexpressing ovarian cancer cells. Both the TLR4 activator taxol and IL-6 can induce AKT phosphorylation, whereas TLR4 knockdown or inhibition of the IL-6 signal transducer GP130 abrogates AKT activation. Furthermore, expression of AR and IL-6 is downregulated in TLR4-knockdown, taxol-resistant cells. In addition, TLR4 knockdown inhibits GP130 and IL-6 receptor alpha (IL6Rα) activities, indicating that TLR4 plays a critical role in IL-6 signaling. On the other hand, nuclear translocation of AR is induced by IL-6 treatment, whereas knockdown of endogenous IL-6 reduces AR and TLR4 expression in taxol-resistant ovarian cancer cells. These results indicate that TLR4 and IL-6 play a crucial role in AR gene regulation and function. We also identify interferon regulatory factor 1 (IRF1) as a downstream target of IL-6 signaling and as a regulator of AR expression. Moreover, analysis of clinical samples indicates that high IL-6 expression correlates with poor progression-free survival in ovarian cancer patients treated with taxol. Overall, our findings indicate that the TLR4/IL-6/IRF1 signaling axis represents a potential therapeutic target to overcome AR-based taxol resistance in ovarian cancer.
Collapse
Affiliation(s)
- Shang-Lang Huang
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC.
| | - Ting-Chang Chang
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC.
| | - Chuck C K Chao
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
| | - Nian-Kang Sun
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC.
| |
Collapse
|
17
|
Liu Y, Zhang Z, Li W, Tian S. PECAM1 Combines With CXCR4 to Trigger Inflammatory Cell Infiltration and Pulpitis Progression Through Activating the NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 8:593653. [PMID: 33425898 PMCID: PMC7786183 DOI: 10.3389/fcell.2020.593653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Pulpitis is a frequent bacterially driven inflammation featured with the local accumulation of inflammatory products in human dental pulps. A GEO dataset GSE16134 comprising data of inflamed dental pulp tissues was used for bioinformatics analyses. A protein-protein interaction (PPI) analysis suggested that chemokine receptor 4 (CXCR4) owned a high correlation with platelet endothelial cell adhesion molecule-1 (PECAM1). A rat model with pulpitis was established, and lipopolysaccharide (LPS)-induced human dental pulp fibroblasts (HDPFs) were used for in vitro experiments. Then, high expression of PECAM1 and CXCR4 was validated in the inflamed dental pulp tissues in rats and in LPS-induced HDPFs. Either downregulation of PECAM1 or CXCR4 suppressed inflammatory cell infiltration in inflamed tissues as well as the inflammation and apoptosis of HDPFs. A transcription factor myocyte-enhancer factor 2 (MEF2C) was predicted and validated as a positive regulator of either PECAM1 or CXCR4, which activated the NF-κB signaling pathway and promoted pulpitis progression. To sum up, this study suggested that MEF2C transcriptionally activates PECAM1 and CXCR4 to activate the B-cell and NF-κB signaling pathways, leading to inflammatory cell infiltration and pulpitis progression.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjing Li
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songbo Tian
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Banaganapalli B, Mansour H, Mohammed A, Alharthi AM, Aljuaid NM, Nasser KK, Ahmad A, Saadah OI, Al-Aama JY, Elango R, Shaik NA. Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Sci Rep 2020; 10:16290. [PMID: 33004927 PMCID: PMC7529771 DOI: 10.1038/s41598-020-73288-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CeD) is a gastrointestinal autoimmune disorder, whose specific molecular basis is not yet fully interpreted. Therefore, in this study, we compared the global gene expression profile of duodenum tissues from CeD patients, both at the time of disease diagnosis and after two years of the gluten-free diet. A series of advanced systems biology approaches like differential gene expression, protein–protein interactions, gene network-cluster analysis were deployed to annotate the candidate pathways relevant to CeD pathogenesis. The duodenum tissues from CeD patients revealed the differential expression of 106 up- and 193 down-regulated genes. The pathway enrichment of differentially expressed genes (DEGs) highlights the involvement of biological pathways related to loss of cell division regulation (cell cycle, p53 signalling pathway), immune system processes (NOD-like receptor signalling pathway, Th1, and Th2 cell differentiation, IL-17 signalling pathway) and impaired metabolism and absorption (mineral and vitamin absorptions and drug metabolism) in celiac disease. The molecular dysfunctions of these 3 biological events tend to increase the number of intraepithelial lymphocytes (IELs) and villous atrophy of the duodenal mucosa promoting the development of CeD. For the first time, this study highlights the involvement of aberrant cell division, immune system, absorption, and metabolism pathways in CeD pathophysiology and presents potential novel therapeutic opportunities.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifa Mansour
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa Mastoor Alharthi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Mohammed Aljuaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Mujalli A, Banaganapalli B, Alrayes NM, Shaik NA, Elango R, Al-Aama JY. Myocardial infarction biomarker discovery with integrated gene expression, pathways and biological networks analysis. Genomics 2020; 112:5072-5085. [PMID: 32920122 DOI: 10.1016/j.ygeno.2020.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023]
Abstract
Myocardial infarction (MI) is the most prevalent coronary heart disease caused by the complex molecular interactions between multiple genes and environment. Here, we aim to identify potential biomarkers for the disease development and for prognosis of MI. We have used gene expression dataset (GSE66360) generated from 51 healthy controls and 49 patients experiencing acute MI and analyzed the differentially expressed genes (DEGs), protein-protein interactions (PPI), gene network-clusters to annotate the candidate pathways relevant to MI pathogenesis. Bioinformatic analysis revealed 810 DEGs. Their functional annotations have captured several MI targeting biological processes and pathways like immune response, inflammation and platelets degranulation. PPI network identify seventeen hub and bottleneck genes, whose involvement in MI was further confirmed by DisGeNET database. OpenTarget Platform reveal unique bottleneck genes as potential target for MI. Our findings identify several potential biomarkers associated with early stage MI providing a new insight into molecular mechanism underlying the disease.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Mohammad Alrayes
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Zhang L, Li X, Kong X, Jin H, Han Y, Xie Y. Effects of the NF‑κB/p53 signaling pathway on intervertebral disc nucleus pulposus degeneration. Mol Med Rep 2020; 22:1821-1830. [PMID: 32705171 PMCID: PMC7411364 DOI: 10.3892/mmr.2020.11288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of intervertebral disc degeneration (IDD) is increasing, especially among elderly individuals. The present study aimed to investigate the effects of the NF-κB/p53 signaling pathway on IDD and its regulatory effect on associated cytokines. In the present study, human nucleus pulposus cells were isolated from patients with thoracic-lumbar fractures and patients with IDD to observe cellular morphology and detect phosphorylated (p)-p65/p53 expression levels. The locality and expression levels of p65 in interleukin (IL)-1β-stimulated nucleus pulposus cells, with or without the addition of ammonium pyrrolidinedithiocarbamate (PDTC; a NF-κB signaling pathway-specific blocker), were measured. Furthermore, the effects of IL-1β stimulation on the protein and gene expression levels of IDD-related cytokines were determined following p53 knockdown and inhibition of the NF-κB signaling pathway. The results suggested that p-p65 and p53 expression was significantly increased in IDD cells compared with normal nucleus pulposus cells. Moreover, nucleus pulposus cells isolated from patients with IDD contained less cytoplasm compared with normal nucleus pulposus cells, and p65 expression levels were higher in the cytoplasm than the nucleus of IL-1β-stimulated PDTC-treated healthy nucleus pulposus cells. Moreover, the p53 expression levels were significantly decreased following transfection with sip53. PDTC treatment and p53 knockdown significantly decreased matrix metallopeptidase (MMP)-3, MMP-13, metallopeptidases with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS-5 expression levels, and increased aggrecan and collagen type II expression levels in IL-1β-stimulated cells. The present study indicated that activation of the NF-κB/p53 signaling pathway might be related to the occurrence of IDD; therefore, the NF-κB/p53 signaling pathway may serve as a therapeutic target for IDD.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xiujuan Li
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xue Kong
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Hua Jin
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yaoqi Han
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yuanzhong Xie
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
21
|
Sabir JSM, El Omri A, Banaganapalli B, Aljuaid N, Omar AMS, Altaf A, Hajrah NH, Zrelli H, Arfaoui L, Elango R, Alharbi MG, Alhebshi AM, Jansen RK, Shaik NA, Khan M. Unraveling the role of salt-sensitivity genes in obesity with integrated network biology and co-expression analysis. PLoS One 2020; 15:e0228400. [PMID: 32027667 PMCID: PMC7004317 DOI: 10.1371/journal.pone.0228400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a multifactorial disease caused by complex interactions between genes and dietary factors. Salt-rich diet is related to the development and progression of several chronic diseases including obesity. However, the molecular basis of how salt sensitivity genes (SSG) contribute to adiposity in obesity patients remains unexplored. In this study, we used the microarray expression data of visceral adipose tissue samples and constructed a complex protein-interaction network of salt sensitivity genes and their co-expressed genes to trace the molecular pathways connected to obesity. The Salt Sensitivity Protein Interaction Network (SSPIN) of 2691 differentially expressed genes and their 15474 interactions has shown that adipose tissues are enriched with the expression of 23 SSGs, 16 hubs and 84 bottlenecks (p = 2.52 x 10-16) involved in diverse molecular pathways connected to adiposity. Fifteen of these 23 SSGs along with 8 other SSGs showed a co-expression with enriched obesity-related genes (r ≥ 0.8). These SSGs and their co-expression partners are involved in diverse metabolic pathways including adipogenesis, adipocytokine signaling pathway, renin-angiotensin system, etc. This study concludes that SSGs could act as molecular signatures for tracing the basis of adipogenesis among obese patients. Integrated network centered methods may accelerate the identification of new molecular targets from the complex obesity genomics data.
Collapse
Affiliation(s)
- Jamal Sabir M. Sabir
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelfatteh El Omri
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Aljuaid
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkader M. Shaikh Omar
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmalik Altaf
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nahid H. Hajrah
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Houda Zrelli
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leila Arfaoui
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G. Alharbi
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alawiah M. Alhebshi
- Biology, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert K. Jansen
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Noor A. Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhummadh Khan
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
22
|
Carpi S, Scoditti E, Massaro M, Polini B, Manera C, Digiacomo M, Esposito Salsano J, Poli G, Tuccinardi T, Doccini S, Santorelli FM, Carluccio MA, Macchia M, Wabitsch M, De Caterina R, Nieri P. The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-κB Activation. Nutrients 2019; 11:nu11122855. [PMID: 31766503 PMCID: PMC6950227 DOI: 10.3390/nu11122855] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation of the adipose tissue plays an important role in the development of several chronic diseases associated with obesity. Polyphenols of extra virgin olive oil (EVOO), such as the secoiridoids oleocanthal (OC) and oleacein (OA), have many nutraceutical proprieties. However, their roles in obesity-associated adipocyte inflammation, the NF-κB pathway and related sub-networks have not been fully elucidated. Here, we investigated impact of OC and OA on the activation of NF-κB and the expression of molecules associated with inflammatory and dysmetabolic responses. To this aim, fully differentiated Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were pre-treated with OC or OA before stimulation with TNF-α. EVOO polyphenols significantly reduced the expression of genes implicated in adipocyte inflammation (IL-1β, COX-2), angiogenesis (VEGF/KDR, MMP-2), oxidative stress (NADPH oxidase), antioxidant enzymes (SOD and GPX), leukocytes chemotaxis and infiltration (MCP-1, CXCL-10, MCS-F), and improved the expression of the anti-inflammatory/metabolic effector PPARγ. Accordingly, miR-155-5p, miR-34a-5p and let-7c-5p, tightly connected with the NF-κB pathway, were deregulated by TNF-α in both cells and exosomes. The miRNA modulation and NF-κB activation by TNF-α was significantly counteracted by EVOO polyphenols. Computational studies suggested a potential direct interaction between OC and NF-κB at the basis of its activity. This study demonstrates that OC and OA counteract adipocyte inflammation attenuating NF-κB activation. Therefore, these compounds could be novel dietary tools for the prevention of inflammatory diseases associated with obesity.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219597
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Maria Annunziata Carluccio
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (E.S.); (M.M.); (M.A.C.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany;
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (C.M.); (M.D.); (J.E.S.); (G.P.); (T.T.); (M.M.); (P.N.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health” University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
23
|
Sabir JSM, El Omri A, Banaganapalli B, Al-Shaeri MA, Alkenani NA, Sabir MJ, Hajrah NH, Zrelli H, Ciesla L, Nasser KK, Elango R, Shaik NA, Khan M. Dissecting the Role of NF-κb Protein Family and Its Regulators in Rheumatoid Arthritis Using Weighted Gene Co-Expression Network. Front Genet 2019; 10:1163. [PMID: 31824568 PMCID: PMC6879671 DOI: 10.3389/fgene.2019.01163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic synovial autoinflammatory disease that destructs the cartilage and bone, leading to disability. The functional regulation of major immunity-related pathways like nuclear factor kappa B (NF-κB), which is involved in the chronic inflammatory reactions underlying the development of RA, remains to be explored. Therefore, this study has adopted statistical and knowledge-based systemic investigations (like gene correlation, semantic similarity, and topological parameters based on graph theory) to study the gene expression status of NF-κB protein family (NKPF) and its regulators in synovial tissues to trace the molecular pathways through which these regulators contribute to RA. A complex protein–protein interaction map (PPIM) of 2,742 genes and 37,032 interactions was constructed from differentially expressed genes (p ≤ 0.05). PPIM was further decomposed into a Regulator Allied Protein Interaction Network (RAPIN) based on the interaction between genes (5 NKPF, 31 seeds, 131 hubs, and 652 bottlenecks). Pathway network analysis has shown the RA-specific disturbances in the functional connectivity between seed genes (RIPK1, ATG7, TLR4, TNFRSF1A, KPNA1, CFLAR, SNW1, FOSB, PARVA, CX3CL1, and TRPC6) and NKPF members (RELA, RELB, NFKB2, and REL). Interestingly, these genes are known for their involvement in inflammation and immune system (signaling by interleukins, cytokine signaling in immune system, NOD-like receptor signaling, MAPK signaling, Toll-like receptor signaling, and TNF signaling) pathways connected to RA. This study, for the first time, reports that SNW1, along with other NK regulatory genes, plays an important role in RA pathogenesis and might act as potential biomarker for RA. Additionally, these genes might play important roles in RA pathogenesis, as well as facilitate the development of effective targeted therapies. Our integrative data analysis and network-based methods could accelerate the identification of novel drug targets for RA from high-throughput genomic data.
Collapse
Affiliation(s)
- Jamal S M Sabir
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelfatteh El Omri
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed A Al-Shaeri
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naser A Alkenani
- Biology-Zoology Division, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mumdooh J Sabir
- Department of Computer Sciences, Faculty of Computers and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nahid H Hajrah
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Houda Zrelli
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lukasz Ciesla
- Department of Biological Sciences, Science and Engineering Complex, The University of Alabama, Tuscaloosa, AL, United States
| | - Khalidah K Nasser
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhummadh Khan
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Genomics and Biotechnology Section and Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Shaik NA, Bokhari HA, Masoodi TA, Shetty PJ, Ajabnoor GMA, Elango R, Banaganapalli B. Molecular modelling and dynamics of CA2 missense mutations causative to carbonic anhydrase 2 deficiency syndrome. J Biomol Struct Dyn 2019; 38:4067-4080. [PMID: 31542996 DOI: 10.1080/07391102.2019.1671899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carbonic anhydrase 2 (CA2) enzyme deficiency caused by CA2 gene mutations is an inherited disorder characterized by symptoms like osteopetrosis, renal tubular acidosis, and cerebral calcification. This study has collected the CA2 deficiency causal missense mutations and assessed their pathogenicity using diverse computational programs. The 3D protein models for all missense mutations were built, and analyzed for structural divergence, protein stability, and molecular dynamics properties. We found M-CAP as the most sensitive prediction method to measure the deleterious potential of CA2 missense mutations. Free energy dynamics of tertiary structure models of CA2 mutants with DUET, mCSM, and SDM based consensus methods predicted only 50% of the variants as destabilizing. Superimposition of native and mutant CA2 models revealed the minor structural fluctuations at the amino acid residue level but not at the whole protein structure level. Near native molecular dynamic simulation analysis indicated that CA2 causative missense variants result in residue level fluctuation pattern in the protein structure. This study expands the understanding of genotype-protein phenotype correlations underlying CA2 variant pathogenicity and presents a potential avenue for modifying the CA2 deficiency by targeting biophysical structural features of CA2 protein. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hifaa A Bokhari
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Ahmed Masoodi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Preetha J Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| | - Ghada M A Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|