1
|
Wu L, Wu C, Yang H, Yang J, Wang L, Zhou S. Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli. PLANTS (BASEL, SWITZERLAND) 2023; 12:696. [PMID: 36840044 PMCID: PMC9968053 DOI: 10.3390/plants12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and susceptible E. crus-galli using isobaric tags for relative and absolute quantification (iTRAQ). The results indicated that the quinclorac-resistant E. crus-galli had weaker photosynthesis and a weaker capacity to mitigate abiotic stress, which suggested its lower environmental adaptability. Quinclorac treatment significantly increased the number and expression of the photosynthesis-related proteins in the resistant E. crus-galli and elevated its photosynthetic parameters, indicating a higher photosynthetic rate compared to those of the susceptible E. crus-galli. The improved adaptability of the resistant E. crus-galli to quinclorac stress could be attributed to the observed up-regulated expression of eight herbicide resistance-related proteins and the down-regulation of two proteins associated with abscisic acid biosynthesis. In addition, high photosynthetic parameters and low glutathione thiotransferase (GST) activity were observed in the quinclorac-resistant E. crus-galli compared with the susceptible biotype, which was consistent with the proteomic sequencing results. Overall, this study demonstrated that the resistant E. crus-galli enhanced its adaptability to quinclorac by improving the photosynthetic efficiency and GST activity.
Collapse
Affiliation(s)
- Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Can Wu
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiangshan Yang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Bai H, Ni X, Han J, Luo D, Hu Y, Jin C, Li Z. Phytochemical profiling and allelopathic effect of garlic essential oil on barnyard grass (Echinochloa crusgalli L.). PLoS One 2023; 18:e0272842. [PMID: 37098009 PMCID: PMC10128991 DOI: 10.1371/journal.pone.0272842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/08/2022] [Indexed: 04/26/2023] Open
Abstract
In agriculture, barnyard grass (Echinochloa crusgalli L.) is one of the most harmful weeds in rice fields now. In order to identify active ingredients which had inhibiting effect on barnyard grass (Echinochloa crusgalli L.), we evaluated several possible natural plant essential oils. Essential oils from twelve plant species showed inhibitory activity against barnyard grass seedlings and root length. The garlic essential oil (GEO) had the most significant allelopathic effect (EC50 = 0.0126 g mL-1). Additionally, the enzyme activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) increased during the first 8 hours of treatment at a concentration of 0.1 g mL-1 and then declined. The activities of CAT, SOD and POD increased by 121%, 137% and 110% (0-8h, compared to control), and decreased (8-72h, compared to the maximum value) by 100%, 185% and 183%, respectively. The total chlorophyll content of barnyard grass seedlings decreased by 51% (0-72h) continuously with the same dosage treatment. Twenty constituents of GEO were identified by gas chromatography-mass spectrometry, and the herbicidal activity of two main components (diallyl sulfide and diallyl disulfide) was evaluated. Results showed that both components had herbicidal activity against barnyard grass. GEO had a strong inhibitory effect (~88.34% inhibition) on barnyard grass growth, but safety studies on rice showed it did not have much inhibitory effect on rice seed germination. Allelopathy of GEO provide ideas for the development of new plant-derived herbicides.
Collapse
Affiliation(s)
- Haodong Bai
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xianzhi Ni
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jincai Han
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
| | - Dingfeng Luo
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
| | - Yihong Hu
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Chenzhong Jin
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zuren Li
- Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities and Science, Loudi, Hunan, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
3
|
Khan A, Ali A, Ullah Z, Ali I, Kaushik P, Alyemeni MN, Rasheed A, Sher H. Exploiting the drought tolerance of wild Elymus species for bread wheat improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:982844. [PMID: 36275557 PMCID: PMC9583530 DOI: 10.3389/fpls.2022.982844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Crop wild resources are excellent sources of new genetic variation for resilience against climate extremes. However, detailed characterization of the desirable phenotypes is essential before using these crop wild resources in breeding programs. This current study was, therefore, conducted to investigate the water stress responses of eight wild Elymus species and two wheat cultivars. The experiment was carried out under varying levels of osmotic stress induced by polyethylene glycol and progressive water stress through different field capacities. Water stress significantly reduced both physiological and biochemical traits compared to control, ranging from 7.1% (protein content) to 34.5% (chlorophyll) under moderate stress and 9.1-45.8% under severe stress. The anatomical features were also affected under progressive water stress, including a reduction in xylem vessel diameter (7.92 and 16.50%), phloem length (4.36 and 7.18%), vascular bundle length (3.09 and 6.04%), and ground tissue thickness (2.36 and 5.52%), respectively. Conclusively, Elymus borianus (endemic to Swat, Pakistan), E. russelli, E. caninus, E. longioristatus, and E. dauhuricus outperformed the check wheat cultivar, Pirsabak 2005, which is a rainfed variety. The results revealed that Elymus species belonging to the tertiary gene pool of bread wheat could be an excellent drought tolerance source for use in a breeding program.
Collapse
Affiliation(s)
- Ajab Khan
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| | - Ahmad Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| | - Zahid Ullah
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politécnica de Valéncia, Valencia, Spain
| | | | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, Pakistan
| |
Collapse
|
4
|
Yang H, Zhou S, Wu L, Wang L. Interference of Dihydrocoumarin with Hormone Transduction and Phenylpropanoid Biosynthesis Inhibits Barnyardgrass (Echinochloa crus-galli) Root Growth. PLANTS 2022; 11:plants11192505. [PMID: 36235371 PMCID: PMC9572682 DOI: 10.3390/plants11192505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Botanical compounds with herbicidal activity exhibit safety, low toxicity, and low chances of herbicide resistance development in plants. They have widespread applications in green agricultural production and the development of organic agriculture. In the present study, dihydrocoumarin showed potential as a botanical herbicide, and its phenotypic characteristics and mechanism of action were studied in barnyardgrass [Echinochloa crus-galli (L.) P.Beauv.] seedlings. The results indicated that dihydrocoumarin inhibited the growth of barnyardgrass without causing significant inhibition of rice seedling growth at concentrations ranging between 0.5 and 1.0 g/L. Additionally, dihydrocoumarin treatment could cause oxidative stress in barnyardgrass, disrupt the cell membrane, and reduce the root cell activity, resulting in root cell death. Transcriptomic analyses revealed that dihydrocoumarin could inhibit barnyardgrass normal growth by affecting the signal transduction of plant hormones. The results showed significant differential expression of plant hormone signal transduction genes in barnyardgrass. Additionally, dihydrocoumarin interfered with the expression of numerous phenylpropanoid biosynthesis genes in barnyardgrass that affect the production of various vital metabolites. We speculate that the barnyardgrass growth was suppressed by the interaction among hormones and phenylpropanoid biosynthesis genes, indicating that dihydrocoumarin can be applied as a bioherbicide to control barnyardgrass growth in rice transplanting fields.
Collapse
Affiliation(s)
- Haona Yang
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shangfeng Zhou
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lifeng Wang
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence:
| |
Collapse
|
5
|
Ding Z, Jiang C. Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis). Front Genet 2022; 13:907026. [PMID: 36035143 PMCID: PMC9399340 DOI: 10.3389/fgene.2022.907026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.
Collapse
Affiliation(s)
- Zhou Ding
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Changjun Jiang
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Changjun Jiang,
| |
Collapse
|
6
|
Phytostimulating Potential of Endophytic Bacteria from Ethnomedicinal Plants of North-East Indian Himalayan Region. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
North-East Indian Himalayan Region has a humid subtropical climate having diverse ecosystems. The majority of the population of the region depends on agriculture for sustainable livelihood. However, it can produce only 1.5% of the country’s food grains, thereby importing from other parts of the country for consumption. To feed the increase in the population of the region, there is an urgent need to augment the agricultural and allied products to sustain the population and uplift the economic conditions. Plant beneficial endophytes isolated from ethnomedicinal plants of North-East India play an important role as a plant growth promoter by the production of phytohormones, solubilization and mobilization of mineral nutrients. It also indirectly promotes growth by protecting the plants from diseases through the production of antibiotics, enzymes and volatile compounds. The bacteria also have the potential to induce systemic resistance against various abiotic stresses. Since the region has various agro-climatic conditions, the plants are continuously affected by abiotic stress particularly, acidity, drought and waterlogging, there is a need to explore the indigenous endophytes that can mitigate the stress and enhance the sustainable development of agricultural products.
Collapse
|
7
|
Peerzada AM, Williams A, O’Donnell C, Adkins S. Effect of Soil Moisture Regimes on the Glyphosate Sensitivity and Morpho-Physiological Traits of Windmill Grass (Chloris truncata R.Br.), Common Sowthistle (Sonchus oleraceus L.), and Flaxleaf Fleabane [Conyza bonariensis (L.) Cronq.]. PLANTS 2021; 10:plants10112345. [PMID: 34834708 PMCID: PMC8621532 DOI: 10.3390/plants10112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
The glasshouse study was conducted with the objectives of (i) investigating the effect of soil moisture variations on the control efficiency of glyphosate on windmill grass (Chloris truncata R.Br.), common sowthistle (Sonchus oleraceus L.), and flaxleaf fleabane [Conyza bonariensis (L.) Cronq.], (ii) evaluating the tolerance of tested weed species under soil moisture variations, and (iii) determining the morphological and physiological characteristics of these species to partially explain herbicide tolerance under periods of reduced soil moisture availability (RSM). The species’ tolerance to glyphosate increased significantly under reduced soil moisture availability (p < 0.001). The lethal dose to cause herbicide injury or biomass reduction by 50% (LD50) and 80% (LD80) in relation to untreated control for water-stressed plants [i.e., moderate soil moisture availability (MSM) and RSM] was significantly higher than that of plants grown under high soil moisture availability (HSM). The tolerance factor (TF) for C. truncata, S. oleraceus, and C. bonariensis, in terms of biomass reduction under RSM, was 2.6, 2.4, and 2.6, respectively, as compared to HSM. The results showed that the glyphosate sensitivity, especially at the sub-lethal rates, of the three weed species under study decreased as soil moisture availability reduced (p< 0.01). Overall glyphosate efficacy, in relation to the recommended rate, was unaffected, except for C. truncata; the weed survived the highest tested glyphosate rate [750 g active ingredient (a.i.) ha−1] under RSM. There was significant interaction between weed species and soil moisture regimes for weed morpho-physiological traits (p < 0.001), with reduced soil moisture having a more influential impact on the growth of C. bonariensis and S. oleraceus compared to C. truncata. Changes in the leaf characteristics, such as increased leaf thickness, higher leaf chlorophyll content, reduced leaf area, and limited stomatal activity for all the tested weed species under MSM and RSM in relation to HSM, partially explain the tolerance of species to glyphosate at sublethal rates.
Collapse
|
8
|
Dubey AK, Khatri K, Jha B, Rathore MS. The novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata maintains photosynthesis and enhances abiotic stress tolerance in transgenic tobacco. Gene 2021; 786:145597. [PMID: 33766708 DOI: 10.1016/j.gene.2021.145597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
We hereby report in planta function characterization of a novel galactosyl transferase-like (SbGalT) gene from Salicornia brachiata for enhanced abiotic stress tolerance. The SbGalT gene had an open reading frame of 1563 bp. The ectopic expression of SbGalT gene in tobacco improved the seed germination, seedling growth, biomass accumulation and potassium/sodium ratio under salt and osmotic stress. The SbGalT over-expression delayed stress-induced senescence, pigment break-down and ion induced cytotoxicity in tobacco. Higher contents of organic solutes and potassium under stress maintained the osmotic homeostasis and relative water content in tobacco. Higher activity of antioxidant enzymes under stress in transgenic tobacco curtailed the accumulation of reactive oxygen species (ROS) and maintained the membrane integrity. The chlorophyll a fluorescence transient indicated no effects of the imposed strengths of stress on basal state of photosystem (PS) I in transgenic tobacco over-expressing the SbGalT gene. Due to improved membrane integrity, the transgenic tobacco exhibited improved photosynthesis, stomatal conductance, intercellular CO2, transpiration, maximum quantum yield and operating efficiency of PSII, electron transport, photochemical and non-photochemical quenching. In agreement with photosynthesis, physiological health, tolerance index and growth parameters, transgenic tobacco accumulated higher contents of sugar, starch, amino acid, polyphenol and proline under stress conditions. The multivariate data analysis exhibited significant statistical distinctions among osmotic adjustment, physiological health and growth, and photosynthetic responses in control and SbGalT transgenic tobacco under stress conditions. The results strongly indicated novel SbGalT gene as a potential candidate for developing the smart agriculture.
Collapse
Affiliation(s)
- Ashish K Dubey
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Kusum Khatri
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Bhavanath Jha
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India
| | - Mangal S Rathore
- Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364001, India.
| |
Collapse
|
9
|
Aleem M, Raza MM, Haider MS, Atif RM, Ali Z, Bhat JA, Zhao T. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb. and Zucc.). PHYSIOLOGIA PLANTARUM 2021; 172:707-732. [PMID: 32984966 DOI: 10.1111/ppl.13219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Drought stress at the germination stage is an important environmental stress limiting crop yield. Hence, our study investigated comparative root transcriptome profiles of four contrasting soybean genotypes viz., drought-tolerant (PI342618B/DTP and A214/DTL) and drought-sensitive (NN86-4/DSP and A195/DSL) under drought stress using RNA-Seq approach. A total of 4850 and 6272 differentially expressed genes (DEGs) were identified in tolerant (DTP and DTL) and sensitive (DSP and DSL) genotypes, respectively. Principle component analysis (PCA) and correlation analysis revealed higher correlation between DTP and DTL. Both gene ontology (GO) and MapMan analyses showed that the drought response was enriched in DEGs associated with water and auxin transport, cell wall/membrane, antioxidant activity, catalytic activity, secondary metabolism, signaling and transcription factor (TF) activities. Out of 981 DEGs screened from above terms, only 547 showed consistent opposite expression between contrasting genotypes. Twenty-eight DEGs of 547 were located on Chr.08 rich in QTLs and "Hotspot regions" associated with drought stress, and eight of them showed non-synonymous single nucleotide polymorphism. Hence, 10 genes (including above eight genes plus two hub genes) were predicated as possible candidates regulating drought tolerance, which needs further functional validation. Overall, the transcriptome profiling provided in-depth understanding about the genetic mechanism and candidate genes underlying drought tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad M Raza
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad S Haider
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rana M Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Javaid A Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Lateef D, Mustafa K, Tahir N. Screening of Iraqi barley accessions under PEG-induced drought conditions. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1917456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Djshwar Lateef
- Biotechnology and Crop Sciences Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Kamil Mustafa
- Biotechnology and Crop Sciences Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Nawroz Tahir
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
11
|
Kintl A, Huňady I, Vymyslický T, Ondrisková V, Hammerschmiedt T, Brtnický M, Elbl J. Effect of Seed Coating and PEG-Induced Drought on the Germination Capacity of Five Clover Crops. PLANTS 2021; 10:plants10040724. [PMID: 33917847 PMCID: PMC8068302 DOI: 10.3390/plants10040724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022]
Abstract
The effect of coating the seed of clover crops by water absorbing seed process (WASP) technology pelletization on its germination capacity was studied in conditions of diverse drought intensities simulated by different concentrations of polyethylenglycol (PEG) 8000 solution. Drought resistance was monitored in the seed of five fodder clover species: Anthyllis vulneraria L., Medicago lupulina L., Trifolium repens L., Melilotus albus Medik. and Onobrychis viciifolia Scop. In the seed of given plant species, germination capacity was determined along with the share of dead and hard seeds. Although the coating significantly (p < 0.05) affected the drought resistance of seeds, the germination capacity increased only in conditions of milder drought (simulation with PEG: 0.1–0.3 mol). With the increasing intensity of drought induced by higher PEG concentrations (0.4–0.7 mol) the number of germinable seeds demonstrably decreased and the number of dead seeds increased in the coated seed as compared with the uncoated seed. The coated seed can be appropriate for use in M. lupulina, M. albus and T. repens, while the uncoated seed can be used in A. vulneraria and O. viciifolia.
Collapse
Affiliation(s)
- Antonín Kintl
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Igor Huňady
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Tomáš Vymyslický
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Vladěna Ondrisková
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (T.H.); (M.B.)
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (T.H.); (M.B.)
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, 62100 Brno, Czech Republic
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jakub Elbl
- Agricultural Research, Ltd., 66441 Troubsko, Czech Republic; (A.K.); (I.H.); (T.V.); (V.O.)
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: ; Tel.: +420-725-295-999
| |
Collapse
|
12
|
Bernau VM, Jardón Barbolla L, McHale LK, Mercer KL. Germination response of diverse wild and landrace chile peppers (Capsicum spp.) under drought stress simulated with polyethylene glycol. PLoS One 2020; 15:e0236001. [PMID: 33196641 PMCID: PMC7668591 DOI: 10.1371/journal.pone.0236001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/10/2020] [Indexed: 11/19/2022] Open
Abstract
Responses to drought within a single species may vary based on plant developmental stage, drought severity, and the avoidance or tolerance mechanisms employed. Early drought stress can restrict emergence and seedling growth. Thus, in areas where water availability is limited, rapid germination leading to early plant establishment may be beneficial. Alternatively, germination without sufficient water to support the seedling may lead to early senescence, so reduced germination under low moisture conditions may be adaptive at the level of the population. We studied the germination response to osmotic stress of diverse chile pepper germplasm collected in southern Mexico from varied ecozones, cultivation systems, and of named landraces. Drought stress was simulated using polyethylene glycol solutions. Overall, survival time analysis revealed delayed germination at the 20% concentration of PEG across all ecozones. The effect was most pronounced in the genotypes from hotter, drier ecozones. Additionally, accessions from wetter and cooler ecozones had the fastest rate of germination. Moreover, accessions of the landraces Costeño Rojo and Tusta germinated more slowly and incompletely if sourced from a drier ecozone than a wetter one, indicating that slower, reduced germination under drought stress may be an adaptive avoidance mechanism. Significant differences were also observed between named landraces, with more domesticated types from intensive cultivation systems nearly always germinating faster than small-fruited backyard- or wild-types, perhaps due to the fact that the smaller-fruited accessions may have undergone less selection. Thus, we conclude that there is evidence of local adaptation to both ecozone of origin and source cultivation system in germination characteristics of diverse chile peppers.
Collapse
Affiliation(s)
- Vivian M. Bernau
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Lev Jardón Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leah K. McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
13
|
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int J Mol Sci 2020; 21:ijms21218258. [PMID: 33158156 PMCID: PMC7662356 DOI: 10.3390/ijms21218258] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.
Collapse
Affiliation(s)
- Vishvanathan Marthandan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Rathnavel Geetha
- Department of Seed Science and Technology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Karunanandham Kumutha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
| | - Jegadeesan Ramalingam
- Department of Biotechnology, Center of Excellence in Innovations, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India; (V.M.); (V.G.R.); (A.K.)
- Correspondence:
| |
Collapse
|
14
|
Li D, Batchelor WD, Zhang D, Miao H, Li H, Song S, Li R. Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS One 2020; 15:e0237536. [PMID: 32790719 PMCID: PMC7425870 DOI: 10.1371/journal.pone.0237536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22– drought sensitive and HG35– drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 μmol L-1. Results revealed that 300 μmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 μmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 μmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35—a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - William D. Batchelor
- Biosystems Engineering Department, Auburn University, Auburn, Alabama, United States of America
| | - Di Zhang
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Hanxiao Miao
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Hongye Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Shijia Song
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ruiqi Li
- College of Agronomy, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
15
|
Seed germination ecology of Ageratum houstonianum: A major invasive weed in Nepal. PLoS One 2019; 14:e0225430. [PMID: 31751412 PMCID: PMC6874205 DOI: 10.1371/journal.pone.0225430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 11/19/2022] Open
Abstract
In recent years, spread of invasive alien plant species (IAPS) has been a major concern in Nepal. One such IAPS is Ageratum houstonianum, an Asteraceae, that is a prolific seed producer and difficult-to-control in farmland and various ecological regions causing crop yield and biodiversity losses. However, very little information is available on the germination biology and ecology of this species. Therefore, experiments were conducted to assess the effect of water stress, pH level, and light requirement on seed germination, and the effect of seed burial depth on seedling emergence. Water stress was simulated by polyethylene glycol solutions ranging from 0–5.56 MPa and pH solutions ranging from 4 to 9 were prepared using hydrochloric acid and sodium hydroxide. Germination tests were conducted in petri dishes lined with filter paper and placed in a controlled environment chamber set at 20° C. Light requirement comparisons were made by having petri dishes wrapped with aluminum foil or left unwrapped. Seedling emergence was evaluated by placing seeds at depths ranging from 0 to 20 mm in the soil. Results indicated that this species was moderately drought-tolerant because germination ceased beyond 0.51 MPa. Greater germination occurred at neutral to acidic than at alkaline pH levels. The seeds were positively photoblastic because no germination occurred under dark condition. No seedlings emerged from seeds placed more than 2 mm deep in the soil, indicating that this is a primarily surface germinating species. These findings will help predict future invasions and in development of management strategies for this IAPS.
Collapse
|