1
|
Lok UW, Scott HM, Tang S, Santos J, Gong P, Huang C, Pone KA, Nienow MK, Ruka KL, Breutzman EN, Cheek-Norgan EH, Branda ME, Ruano R, Quintin RA, Schenone MH, Chen S, Enninga EAL. Ultrasound Microvessel Imaging of the Human Placenta Demonstrates Altered Vessel Densities in Fetal Growth Restriction With Vascular and Immune Pathologies: A Pilot Case-Control Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39422170 DOI: 10.1002/jum.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Fetal growth restriction (FGR) is commonly associated with placental dysfunction, increasing perinatal morbidity and mortality. Visualizing placental vessels in utero would be advantageous for identifying functional FGR cause and determining proper management strategies. We aimed to utilize high-sensitivity ultrasound microvessel imaging (HUMI) for quantifying placental vessel density (VD) in pregnancies diagnosed with FGR. METHODS This pilot case-control study enrolled subjects in the third trimester with a diagnosis of FGR (n = 40) and gestational age-matched controls with normal fetal growth (n = 20) at a 2:1 ratio, respectively. The Verasonics Vantage ultrasound system was used to perform HUMI on each participant at one timepoint. Scanning involved randomized singular value decomposition-based clutter filtering to identify the villous tree, followed by step-by-step scanning to acquire 3-dimensional-like data. Mean VD was calculated from three ultrasound measurements per subject. Additional clinical and pathology data were also collected and compared. RESULTS Sixteen participants were utilized to establish the scanning protocol and 2 met exclusion criteria at delivery. Thus, VD was successfully measured on 42 pregnancies scanned at 35 weeks 5 days on average. In FGR (n = 24), placental VD was significantly reduced compared to controls (P < .01). VD measures were as good at predicting FGR as systolic/diastolic (S/D) ratios (area under the curve 0.86 versus 0.80). In a smaller cohort, VD in placentas with a diagnosis of inflammatory villitis (n = 10) by histology showed an increase in VD compared to those without inflammation (P = .01). Low VD was correlated with increased S/D ratios (P = .03). CONCLUSIONS HUMI is useful for identifying altered placental vascularization in utero for FGR. VD may be a valuable indicator for placental health and could lead to improved risk stratification methods considering underlying biology.
Collapse
Affiliation(s)
- U-Wai Lok
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hannah M Scott
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karina A Pone
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael K Nienow
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Krystal L Ruka
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily N Breutzman
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - E Heidi Cheek-Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan E Branda
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Rodrigo Ruano
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Reade A Quintin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mauro H Schenone
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth Ann L Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Broad J, Robertson RC, Evans C, Perussolo J, Lum G, Piper JD, Loucaides E, Ziruma A, Chasekwa B, Ntozini R, Bourke CD, Prendergast AJ. Maternal inflammatory and microbial drivers of low birthweight in low- and middle-income countries. Paediatr Int Child Health 2024; 44:79-93. [PMID: 39066726 DOI: 10.1080/20469047.2024.2380974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Low birthweight (LBW) is when an infant is born too soon or too small, and it affects one in seven infants in low- and middle-income countries. LBW has a significant impact on short-term morbidity and mortality, and it impairs long-term health and human capital. Antenatal microbial and inflammatory exposure may contribute to LBW. METHODS Ovid-Medline, Embase and Cochrane databases were searched for English-language articles evaluating inflammatory, microbial or infective causes of LBW, small-for-gestational age, intra-uterine growth restriction or prematurity. Inclusion criteria were human studies including published data; conference abstracts and grey literature were excluded. A narrative synthesis of the literature was conducted. RESULTS Local infections may drive the underlying causes of LBW: for example, vaginitis and placental infection are associated with a greater risk of prematurity. Distal infection and inflammatory pathways are also associated with LBW, with an association between periodontitis and preterm delivery and environmental enteric dysfunction and reduced intra-uterine growth. Systemic maternal infections such as malaria and HIV are associated with LBW, even when infants are exposed to HIV but not infected. This latter association may be driven by chronic inflammation, co-infections and socio-economic confounders. Antimicrobial prophylaxis against other bacteria in pregnancy has shown minimal impact in most trials, though positive effects on birthweight have been found in some settings with a high infectious disease burden. CONCLUSION Maternal inflammatory and infective processes underlie LBW, and provide treatable pathways for interventions. However, an improved understanding of the mechanisms and pathways underlying LBW is needed, given the impact of LBW on life-course.
Collapse
Affiliation(s)
- Jonathan Broad
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Ruairi C Robertson
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Ceri Evans
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Jeniffer Perussolo
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Gina Lum
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, London, UK
| | - Joe D Piper
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Eva Loucaides
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Asaph Ziruma
- Blizard Institute, Queen Mary University of London, London, UK
| | - Bernard Chasekwa
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Robert Ntozini
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Claire D Bourke
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Andrew J Prendergast
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Cruz-Holguín VJ, González-García LD, Velázquez-Cervantes MA, Arévalo-Romero H, De Jesús-González LA, Helguera-Repetto AC, León-Reyes G, Salazar MI, Cedillo-Barrón L, León-Juárez M. Collateral Damage in the Placenta during Viral Infection in Pregnancy: A Possible Mechanism for Vertical Transmission and an Adverse Pregnancy Outcome. Diseases 2024; 12:59. [PMID: 38534983 PMCID: PMC10969698 DOI: 10.3390/diseases12030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
In mammals, the placenta is a connection between a mother and a new developing organism. This tissue has a protective function against some microorganisms, transports nutrients, and exchanges gases and excretory substances between the mother and the fetus. Placental tissue is mainly composed of chorionic villi functional units called trophoblasts (cytotrophoblasts, the syncytiotrophoblast, and extravillous trophoblasts). However, some viruses have developed mechanisms that help them invade the placenta, causing various conditions such as necrosis, poor perfusion, and membrane rupture which, in turn, can impact the development of the fetus and put the mother's health at risk. In this study, we collected the most relevant information about viral infection during pregnancy which can affect both the mother and the fetus, leading to an increase in the probability of vertical transmission. Knowing these mechanisms could be relevant for new research in the maternal-fetal context and may provide options for new therapeutic targets and biomarkers in fetal prognosis.
Collapse
Affiliation(s)
- Victor Javier Cruz-Holguín
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Luis Didier González-García
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
| | - Manuel Adrián Velázquez-Cervantes
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunologia y Microbiologia Molecular, Division Academica Multidisciplinaria de Jalpa de Méndez, Jalpa de Mendez 86205, Mexico;
| | | | | | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Ma. Isabel Salazar
- Posgrado de Inmunología, Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico;
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biologócas (ENCB), Instituto Politecnico Naciona, Mexico City 11350, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV), Mexico City 07360, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virologia Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (M.A.V.-C.)
| |
Collapse
|
5
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Moore SS, De Carvalho Nunes G, Villegas Martinez D, Dancea A, Wutthigate P, Simoneau J, Beltempo M, Sant'Anna G, Altit G. Association of Gestational Age at Birth With Left Cardiac Dimensions at Near-Term Corrected Age Among Extremely Preterm Infants. J Am Soc Echocardiogr 2023; 36:867-877. [PMID: 37044171 DOI: 10.1016/j.echo.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Remodeling and altered ventricular geometry have been described in adults born preterm. Although they seem to have an adverse cardiac phenotype, the impact of various degrees of prematurity on cardiac development has been scarcely reported. In this study, we evaluated the impact of gestational age (GA) at birth on cardiac dimensions and function at near-term age among extremely preterm infants. METHODS This is a retrospective single-center cohort study of infants born at <29 weeks of GA between 2015 and 2019. Infants with available clinically acquired echocardiography between 34 and 43 weeks were included. Two groups were investigated: those born <26 weeks and those born ≥26 weeks. All measurements were done by an expert masked to clinical data using the raw images. The primary outcome was measurements of cardiac dimensions and function based on GA group. Secondary outcomes were the association between cardiac dimensions and postnatal steroid exposure and with increments of GA at birth. RESULTS A total of 205 infants were included (<26 weeks, n = 102; ≥26 weeks, n = 103). At time of echocardiography, weight (2.4 ± 0.5 vs 2.5 ± 0.5 kg, P = .86) and age (37.2 ± 1.6 vs 37.1 ± 1.9 weeks, P = .74) were similar between groups. There was no difference in metrics of right-sided dimensions and function. However, left-sided dimensions were decreased in infants born <26 weeks, including systolic left ventricle (LV) diameter (1.06 ± 0.20 cm vs 1.12 ± 0.18 cm, P = .02), diastolic LV length (2.85 ± 0.37 vs 3.02 ± 0.57 cm, P = .02), and estimated LV end-diastolic volume (5.36 ± 1.69 vs 6.01 ± 1.79 mL, P = .02). CONCLUSIONS In our cohort of very immature infants, birth at the extreme of prematurity was associated with smaller left cardiac dimensions around 36 weeks of corrected age. Future longitudinal prospective studies should evaluate further the impact of prematurity on LV development and performance and their long-term clinical impact.
Collapse
Affiliation(s)
- Shiran Sara Moore
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gabriela De Carvalho Nunes
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Daniela Villegas Martinez
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Adrian Dancea
- Department of Pediatric Cardiology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Punnanee Wutthigate
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jessica Simoneau
- Department of Pediatric Cardiology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | - Marc Beltempo
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Guilherme Sant'Anna
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Gabriel Altit
- Department of Neonatology, McGill University Health Centre, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Goulioumis A, Angelopoulou M, Kourelis K, Mourtzouchos K, Tsiakou M, Asimakopoulos A. Hearing screening test in neonates born to COVID-19-positive mothers. Eur J Pediatr 2023; 182:1077-1081. [PMID: 36565323 PMCID: PMC9789365 DOI: 10.1007/s00431-022-04770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/17/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
SARS-CoV-2, the responsible virus for the COVID-19 pandemic, has demonstrated neurotropic properties indicated by cases presenting with auditory and vestibular system insults. The expression of ACE-2 receptors in the placenta and the detection of IgM antibodies against the virus in the fetuses of pregnant women suffering from COVID-19 render vertical transmission of the infection to the fetus possible. Thus, our study aims to examine whether, similar to other viruses like CMV, SARS-CoV-2 is responsible for congenital hearing loss. This is a retrospective study in a regional pediatric hospital. The medical records of newborns (n = 111) born by mothers positive for COVID-19 during pregnancy who underwent screening hearing tests with Transient Evoked Otoacoustic Emissions (TEOAE) and Automatic Auditory Brainstem Response (AABR) from February 2020 to June 2022 were reviewed. Neonates with additional aggravating factors for congenital hearing loss were excluded from the study. For the study period, nine mothers were found positive during the first trimester, twenty mothers in the second trimester, and eighty-three mothers in the third trimester. TEOAEs test and AABR test scored PASS bilaterally in all neonates tested. CONCLUSION Infection with COVID-19 during pregnancy was not a risk factor for hearing loss, similar to other studies. WHAT IS KNOWN • The pathogenetic mechanism of the viral-induced impairment of the organ of Corti includes direct damage to the hair cells and indirect damage due to the induction of the innate inflammatory response. • Early data suggested that the SARS-CoV-2 virus also has neurotropic properties with manifestations from the sensory epithelia. WHAT IS NEW • Although the intrauterine infection remains controversial, the expression of the ACE-2 receptor on the placenta and the detection of IgM antibodies, as well as the covid-19 genome in fetuses, make the vertical transmission tenable. • In our study, the newborn hearing screening results indicate that COVID-19 infection during pregnancy is not a risk factor for hearing loss.
Collapse
Affiliation(s)
- Anastasios Goulioumis
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece.
| | - Maria Angelopoulou
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece
| | - Konstantinos Kourelis
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece
| | - Konstantinos Mourtzouchos
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece
| | - Magdalini Tsiakou
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece
| | - Athanasios Asimakopoulos
- Department of Otorhinolaryngology, Pediatric Hospital "Karamandanio", Erythrou Stavou 40, 26331, Patras, Greece
| |
Collapse
|
8
|
Kim YR, Na ED, Jung JE, Moon JH, Lee JY. Clinical features at the time of non-hysteroscopic myomectomy before pregnancy, which affect adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 2022; 22:896. [PMID: 36463110 PMCID: PMC9719619 DOI: 10.1186/s12884-022-05240-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND To investigate the association of clinical characteristics at the time of non-hysteroscopic myomectomy before pregnancy and adverse obstetric outcomes in the next pregnancy. METHODS In this retrospective cohort study, we identified 248 women who underwent abdominal or laparoscopic myomectomy for intramural (IM) and/or subserosal (SS) uterine myomas in Bundang CHA Medical Center before pregnancy and delivered at the same hospital between 2010 and 2020. The association between clinical characteristics at the time of myomectomy and subsequent obstetric outcomes was analyzed using the Chi-square test, the Student t-test or one-way ANOVA, and multivariable analysis. RESULTS There was one case of uterine rupture. The gestational age at delivery was 37.7 ± 2.4 weeks. There were 2 (0.8%) cases of fetal loss before 23 weeks, but there were no cases of perinatal death. The risk of transfusion during or after delivery was higher in the group in which multiple myomas were removed compared to the group in which only one was removed (aOR = 2.41, 95% CI [1.20-4.86], p = 0.014). The risk of neonatal composite morbidity was higher in the group in which myomas including the IM type were removed, than in the group in which only SS myomas were removed (aOR = 14.29, 95% CI [1.82-99.57], p = 0.012). Although not statistically significant, the group in which the sum of the diameters of the three largest myomas was greater than 15 cm showed a higher frequency of preterm birth (19.3% vs. 10.1%, p = 0.001) and lower birth weight (2901 ± 625 g vs. 3063 ± 576 g, p = 0.001) compared to the group with diameters less than 15 cm. Placenta accreta/increta (7.9% vs. 3.8%, p = 0.043) and lower placental weight (646 ± 170 g vs. 750 ± 232 g, p = 0.034) were more common in patients with an interval between myomectomy and pregnancy of less than 12 months compared to more than 12 months. CONCLUSIONS To our knowledge, this is the first study to investigate the association between clinical features at the time of myomectomy before pregnancy and various adverse obstetric and perinatal outcomes. If the removed myomas are multiple, IM, large, or the interval between myomectomy and pregnancy is short, the risk of obstetric and neonatal complications may increase.
Collapse
Affiliation(s)
- Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, South Korea
| | - Eun Duc Na
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, South Korea
| | - Jae Eun Jung
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, South Korea
| | - Ji Hyun Moon
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, South Korea
| | - Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, South Korea.
| |
Collapse
|
9
|
Chilukuri N, Bustamante-Helfrich B, Ji Y, Wang G, Hong X, Cheng TL, Wang X. Maternal folate status and placental vascular malperfusion: Findings from a high-risk US minority birth cohort. Placenta 2022; 129:87-93. [PMID: 36274480 DOI: 10.1016/j.placenta.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Maternal folate deficiency was associated with preeclampsia (PE) and PE was associated with placental maternal vascular malperfusion (MVM). However, no study has examined the association of maternal folate status with placental MVM. METHODS We examined the association of maternal folate status and placental MVM in the Boston Birth Cohort. Primary exposure variables were maternal self-reported multivitamin supplement (<2, 3-5, >5 times/week) per trimester; and plasma folate levels (nmol/L) after birth. Primary outcome was presence/absence of placental MVM defined by the Amsterdam Placental Workshop Group standard classification. Covariates included demographics, chronic hypertension, clinically diagnosed PE, eclampsia and HELLP syndrome, gestational and pre-gestational diabetes, overweight/obesity, maternal cigarette smoking and alcohol use. Associations between folate and placental MVM were evaluated using multivariate logistic regressions. RESULTS Of 3001 mothers in this study, 18.8% of mothers had PE, 37.5% had MVM. Mothers with the lowest self-reported frequency of folate intake had the highest risk of MVM (OR 1.45, 95% CI 1.03-2.05), after adjusting for the covariates. Consistently, among a subset of 939 mothers with plasma folate levels, folate insufficiency was associated with increased risk of MVM (OR 1.65, 95% CI 1.03-2.63), after adjusting for the covariables. As expected, mothers with low folate and placental MVM had highest rates of PE compared to those of high folate and no MVM (p < 0.001). DISCUSSION In this high-risk birth cohort, low maternal folate status was associated with increased risk of placental MVM. Further investigation should explore the association between folate status, placental findings and the great obstetrical syndrome.
Collapse
Affiliation(s)
- Nymisha Chilukuri
- Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Suite 2088, Baltimore, MD, 21287, United States.
| | - Blandine Bustamante-Helfrich
- University of the Incarnate Word School of Osteopathic Medicine, 7615 Kennedy Hill, San Antonio, TX, 78235, United States.
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Tina L Cheng
- University of Cincinnati, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 3016, Cincinnati, OH, 45229-3026, United States.
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| |
Collapse
|
10
|
Scher MS. Gene-Environment Interactions During the First Thousand Days Influence Childhood Neurological Diagnosis. Semin Pediatr Neurol 2022; 42:100970. [PMID: 35868730 DOI: 10.1016/j.spen.2022.100970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Gene-environment (G x E) interactions significantly influence neurologic outcomes. The maternal-placental-fetal (MPF) triad, neonate, or child less than 2 years may first exhibit significant brain disorders. Neuroplasticity during the first 1000 days will more likely result in life-long effects given critical periods of development. Developmental origins and life-course principles help recognize changing neurologic phenotypes across ages. Dual diagnostic approaches are discussed using representative case scenarios to highlight time-dependent G x E interactions that contribute to neurologic sequelae. Horizontal analyses identify clinically relevant phenotypic form and function at different ages. Vertical analyses integrate the approach using systems-biology from genetic through multi-organ system interactions during each developmental age to understand etiopathogenesis. The process of ontogenetic adaptation results in immediate or delayed positive and negative outcomes specific to the developmental niche, expressed either as a healthy child or one with neurologic sequelae. Maternal immune activation, ischemic placental disease, and fetal inflammatory response represent prenatal disease pathways that contribute to fetal brain injuries. These processes involve G x E interactions within the MPF triad, phenotypically expressed as fetal brain malformations or destructive injuries within the MPF triad. A neonatal minority express encephalopathy, seizures, stroke, and encephalopathy of prematurity as a continuum of trimester-specific G x E interactions. This group may later present with childhood sequelae. A healthy neonatal majority present at older ages with sequelae such as developmental disorders, epilepsy, mental health diseases, tumors, and neurodegenerative disease, often during the first 1000 days. Effective preventive, rescue, and reparative neuroprotective strategies require consideration of G x E interactions interplay over time. Addressing maternal and pediatric health disparities will maximize medical equity with positive global outcomes that reduce the burden of neurologic diseases across the lifespan.
Collapse
Affiliation(s)
- Mark S Scher
- Department of Pediatrics, Division of Pediatric Neurology, Fetal/Neonatal Neurology Program, Rainbow Babies and Children's Hospital/MacDonald Hospital for Women, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH.
| |
Collapse
|
11
|
Avci S, Kuscu N, Durkut B, Kilinc L, Ustunel I, Celik-Ozenci C. Altered expression of Notch signaling, Tlr receptors, and surfactant protein expression after prostaglandin inhibition may be associated with the delayed labor in LPS-induced mice. J Assist Reprod Genet 2022; 39:1531-1544. [PMID: 35538257 DOI: 10.1007/s10815-022-02515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study aims to investigate whether indomethacin (IND) delays preterm birth by regulating the Notch pathway, Tlr receptors, and Sp-A in the placenta in lipopolysaccharide (LPS)-induced preterm labor (PTL) model. METHODS CD-1 mice were distributed to the pregnant control (PC), Sham, PBS, IND (2 mg/kg; i.p.), LPS (25 μg/100 μl; intrauterine), and LPS + IND groups. The injections were performed on day 14.5 of pregnancy. Placentae were collected on day 15.5 of pregnancy, and immunohistochemical analyzes were performed. Differences in staining intensities between the Cox-1, Notch-1 (N1), Dll-1, Jagged-2 (Jag-2), Tlr-2, and Tlr-4 proteins were compared. RESULTS Preterm labor rates were 100% and 66% (preterm delivery delayed 5 h) in the LPS and LPS + IND groups, respectively. In LPS-treated mice, a general morphological deterioration was observed in the placenta. Total placental mid-sagittal measurement was significantly reduced in the LPS-treated group, while it was similar to the PC group in the LPS + IND group. Cox-1 expression in the LZ increased, and Sp-A expression decreased after LPS injection, and IND administration diminished this increase. N1 expression increased in the labyrinth zone (LZ) and the junctional zone (JZ). Dll-1 and Jag-2 expression increased in the JZ after LPS injection (p < 0.0001). IND administration diminished Tlr-2 expression in the LZ and Tlr-4 expression in the JZ after LPS injection. CONCLUSION In conclusion, PG (prostaglandin) inhibition may alter Notch signaling, Tlr, and Sp-A protein expression and may be associated with delayed labor in LPS-induced mice.
Collapse
Affiliation(s)
- Sema Avci
- Department of Histology and Embryology, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Nilay Kuscu
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Begum Durkut
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Leyla Kilinc
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University, Istanbul, Turkey. .,Koç University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.
| |
Collapse
|
12
|
Reiss JD, Peterson LS, Nesamoney SN, Chang AL, Pasca AM, Marić I, Shaw GM, Gaudilliere B, Wong RJ, Sylvester KG, Bonifacio SL, Aghaeepour N, Gibbs RS, Stevenson DK. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp Neurol 2022; 351:113988. [DOI: 10.1016/j.expneurol.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
13
|
Bao M, Hofsink N, Plösch T. LPS vs. Poly I:C Model: Comparison of Long-Term Effects of Bacterial and Viral Maternal Immune Activation (MIA) on the Offspring. Am J Physiol Regul Integr Comp Physiol 2021; 322:R99-R111. [PMID: 34874190 PMCID: PMC8782664 DOI: 10.1152/ajpregu.00087.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.
Collapse
Affiliation(s)
- Mian Bao
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Flowers AE, Gonzalez TL, Joshi NV, Eisman LE, Clark EL, Buttle RA, Sauro E, DiPentino R, Lin Y, Wu D, Wang Y, Santiskulvong C, Tang J, Lee B, Sun T, Chan JL, Wang ET, Jefferies C, Lawrenson K, Zhu Y, Afshar Y, Tseng HR, Williams J, Pisarska MD. Sex differences in microRNA expression in first and third trimester human placenta†. Biol Reprod 2021; 106:551-567. [PMID: 35040930 DOI: 10.1093/biolre/ioab221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura E Eisman
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica Sauro
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosemarie DiPentino
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yayu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Caroline Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Williams
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
15
|
Primary HSV-2 Infection in Early Pregnancy Results in Transplacental Viral Transmission and Dose-Dependent Adverse Pregnancy Outcomes in a Novel Mouse Model. Viruses 2021; 13:v13101929. [PMID: 34696359 PMCID: PMC8538385 DOI: 10.3390/v13101929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection affects 24 million births annually and is associated with adverse pregnancy outcomes, including neonatal herpes; however, the mechanisms underlying in utero transmission of HSV-2 are largely unknown. We examined the effects of primary HSV-2 infection during early pregnancy on gestational outcomes in a novel, clinically relevant mouse model. Pregnant C57BL/6 mice were infected intravaginally with 102–105 pfu/mL HSV-2 on gestation day (gd) 4.5. Controls were infected, nonpregnant, diestrus-staged mice and pregnant, uninfected mice. Compared to nonpregnant mice, pregnant mice were 100-fold more susceptible to HSV-2 infection. Three days post-inoculation (gd7.5), viral DNA was present in implantation sites, but pregnancy outcomes were largely unaffected by infection. Eight days post-inoculation (gd12.5), HSV-2 DNA persisted in placental tissues, resulting in inflammation and hemorrhage. Fetal and placental weights were reduced and fetal loss was observed with high viral doses. HSV-2 DNA and increased expression of pro-inflammatory mediators were detected in fetal tissues at gd12.5, signifying viral transmission and fetal infection, even with low viral doses. This mouse model shows a dose-dependent effect of primary HSV-2 infection on pregnancy outcomes and suggests that fetal loss may occur due to placental inflammation, thus providing valuable insight into in utero transmission of HSV-2.
Collapse
|
16
|
Placental Macrophages Demonstrate Sex-Specific Response to Intrauterine Inflammation and May Serve as a Marker of Perinatal Neuroinflammation. J Reprod Immunol 2021; 147:103360. [PMID: 34390899 DOI: 10.1016/j.jri.2021.103360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Preterm birth (PTB) is considered to be one of the most frequent causes of neonatal death. Prompt and effective measures to predict adverse fetal outcome following PTB are urgently needed. Placenta macrophages are a critical immune cell population during pregnancy, phenotypically divided into M1 and M2 subsets. An established mouse model of intrauterine inflammation (IUI) was applied. Placenta (labyrinth) and corresponding fetal brain were harvested within 24 hours post injection (hpi). Flow cytometry, Western blot, real-time qPCR, and regular histology were utilized to examine the cytokines, macrophage polarization, and sex-specificity. Placental exposure to LPS led to significantly reduced labyrinth thickness compared to PBS-exposed controls as early as 3 hpi, accompanied by apoptosis and necrosis. Pro-inflammatory M1 markers, Il-1β, and iNOS, and anti-inflammatory M2 marker Il-10 increased significantly in placentas exposed to IUI. Analysis of flow cytometry revealed that fetal macrophages (Hofbauer cell, HBCs) were mostly M1-like and that maternal inter-labyrinth macrophages (MIM) were M2-like in their features in IUI. Male fetuses displayed significantly decreased M2-like features in HBCs at 3 and 6 hpi, while female fetuses showed significant increase in M2-like features in MIM at 3 and 6 hpi. Furthermore, there was a significant correlation between the frequency of HBCs and corresponding microglial marker expression at 3 and 6 hpi. Placental macrophages demonstrated sex-specific features in response to IUI. Specifically, HBCs may be a potential biomarker for fetal brain injury at preterm birth.
Collapse
|
17
|
Kim JM, Lee SY, Lee JY. Melatonin for the prevention of fetal injury associated with intrauterine inflammation. Am J Reprod Immunol 2021; 86:e13402. [PMID: 33583108 DOI: 10.1111/aji.13402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine inflammation is shown to be associated with preterm birth, fetal inflammatory response syndrome, and other pregnancy-related comorbidities such as central nervous system diseases including cerebral palsy and periventricular leukomalacia, pulmonary diseases such as bronchopulmonary dysplasia and respiratory distress syndrome, and necrotizing enterocolitis, to name a few. Many animal studies on intrauterine inflammation demonstrate that ascending infection of reproductive organs or the production of proinflammatory cytokines by some stimuli in utero results in such manifestations. Melatonin, known for its primary function in maintaining circadian rhythm, is now recognized as one of the most potent antioxidant and anti-inflammatory drugs. In some studies, melatonin injection in pregnant animals with intrauterine inflammation significantly reduced the number of preterm births, the severity of structural disintegration of the fetal lungs observed in bronchopulmonary dysplasia, and perinatal brain injuries with improvement in neuromotor function. These implicated benefits of melatonin in pregnant women with intrauterine inflammation seem promising in many research studies, strongly supporting the hypothesis that melatonin has antioxidative and anti-inflammatory properties that can potentially be taken by pregnant women who are at risk of having intrauterine inflammation. In this review, the potential of melatonin for improving outcomes of the pregnancies with intrauterine inflammation will be discussed.
Collapse
Affiliation(s)
- Jang Mee Kim
- Department of Medicine, CHA University School of Medicine, Pocheon, Korea
| | - Seung-Yun Lee
- Educational Competence Support Center, Hanshin University, Osan, Korea
| | - Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
18
|
Freedman AA, Keenan-Devlin LS, Borders A, Miller GE, Ernst LM. Formulating a Meaningful and Comprehensive Placental Phenotypic Classification. Pediatr Dev Pathol 2021; 24:337-350. [PMID: 33872108 PMCID: PMC8277726 DOI: 10.1177/10935266211008444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION While many placental lesions have been identified and defined, the significance of multiple overlapping lesions has not been addressed. The purpose of our analysis was to evaluate overlapping patterns of placental pathology and determine meaningful phenotypes associated with adverse birth outcomes. METHODS Placental pathology reports were obtained from a single hospital between 2009 and 2018. Placental lesions were grouped into four major categories: acute inflammation (AI), chronic inflammation (CI), maternal vascular malperfusion (MVM), and fetal vascular malperfusion (FVM). Within each category, lesions were classified as not present, low grade or high grade. Combinations of pathologies were evaluated in relation to preterm birth (<37 weeks) and small for gestational age (SGA) infant (birthweight <10th percentile). RESULTS During the study period, 19,027 placentas were reviewed by pathologists. Results from interaction models indicate that MVM and MVM in combination with CI and/or FVM are associated with the greatest odds of SGA infant and PTB. When incorporating grade, we identified 21 phenotype groups, each with characteristic associations with the SGA infant and patterns of PTB. DISCUSSION We have developed a comprehensive and meaningful placental phenotype that incorporates severity and multiplicity of placental lesions. We have also developed a web application to facilitate phenotype determination (https://placentaexpression.shinyapps.io/phenotype).
Collapse
Affiliation(s)
- Alexa A Freedman
- Institute for Policy Research, Northwestern University, Evanston, Illinois,Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Lauren S Keenan-Devlin
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Ann Borders
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gregory E Miller
- Institute for Policy Research, Northwestern University, Evanston, Illinois,Department of Psychology, Northwestern University, Evanston, Illinois
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| |
Collapse
|
19
|
Prochaska E, Jang M, Burd I. COVID-19 in pregnancy: Placental and neonatal involvement. Am J Reprod Immunol 2020; 84:e13306. [PMID: 32779810 PMCID: PMC7404599 DOI: 10.1111/aji.13306] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 12 million infections and more than 550 000 deaths.1 Morbidity and mortality appear partly due to host inflammatory response.2 Despite rapid, global research, the effect of SARS-CoV-2 on the developing fetus remains unclear. Case reports indicate that vertical transmission is uncommon; however, there is evidence that placental and fetal infection can occur.3-7 Placentas from infected patients show inflammatory, thrombotic, and vascular changes that have been found in other inflammatory conditions.8,9 This suggests that the inflammatory nature of SARS-CoV-2 infection during pregnancy could cause adverse obstetric and neonatal events. Exposure to intrauterine inflammation and placental changes could also potentially result in long-term, multisystemic defects in exposed infants. This review will summarize the known literature on the placenta in SARS-CoV-2 infection, evidence of vertical transmission, and possible outcomes of prenatal exposure to the virus.
Collapse
Affiliation(s)
- Erica Prochaska
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of Pediatric Infectious DiseasesDepartment of PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Minyoung Jang
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Irina Burd
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
20
|
Kelleher MA, Lee JY, Roberts VHJ, Novak CM, Baschat AA, Morgan TK, Novy MJ, Räsänen JP, Frias AE, Burd I. Maternal azithromycin therapy for Ureaplasma parvum intraamniotic infection improves fetal hemodynamics in a nonhuman primate model. Am J Obstet Gynecol 2020; 223:578.e1-578.e11. [PMID: 32343954 PMCID: PMC7591241 DOI: 10.1016/j.ajog.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ureaplasma parvum infection is a prevalent cause of intrauterine infection associated with preterm birth, preterm premature rupture of membranes, fetal inflammatory response syndrome, and adverse postnatal sequelae. Elucidation of diagnostic and treatment strategies for infection-associated preterm labor may improve perinatal and long-term outcomes for these cases. OBJECTIVE This study assessed the effect of intraamniotic Ureaplasma infection on fetal hemodynamic and cardiac function and the effect of maternal antibiotic treatment on these outcomes. STUDY DESIGN Chronically catheterized pregnant rhesus monkeys were assigned to control (n=6), intraamniotic inoculation with Ureaplasma parvum (107 colony-forming units/mL, n=15), and intraamniotic infection plus azithromycin treatment (12.5 mg/kg twice a day intravenously, n=8) groups. At approximately 135 days' gestation (term=165 days), pulsed and color Doppler ultrasonography was used to obtain measurements of fetal hemodynamics (pulsatility index of umbilical artery, ductus venosus, descending aorta, ductus arteriosus, aortic isthmus, right pulmonary artery, middle cerebral artery and cerebroplacental ratio, and left and right ventricular cardiac outputs) and cardiac function (ratio of peak early vs late transmitral flow velocity [marker of ventricular function], Tei index [myocardial performance index]). These indices were stratified by amniotic fluid proinflammatory mediator levels and cardiac histology. RESULTS Umbilical and fetal pulmonary artery vascular impedances were significantly increased in animals from the intraamniotic inoculation with Ureaplasma parvum group (P<.05). Azithromycin treatment restored values to control levels. Amniotic fluid prostaglandin F2 alpha levels were significantly higher in animals with abnormal umbilical artery pulsatility index (>1.1) than in those with normal blood flow (P<.05; Spearman ρ=0.6, P<.05). In the intraamniotic inoculation with Ureaplasma parvum group, left ventricular cardiac output was significantly decreased (P<.001), and more animals had abnormal right-to-left ventricular cardiac output ratios (defined as >1.6, P<.05). Amniotic fluid interleukin-6 concentrations were elevated in cases of abnormal right-to-left ventricular cardiac output ratios compared with those in normal cases (P<.05). CONCLUSION Fetal hemodynamic alterations were associated with intraamniotic Ureaplasma infection and ameliorated after maternal antibiotic treatment. Doppler ultrasonographic measurements merit continuing investigation as a diagnostic method to identify fetal cardiovascular and hemodynamic compromise associated with intrauterine infection or inflammation and in the evaluation of therapeutic interventions or clinical management of preterm labor.
Collapse
Affiliation(s)
- Meredith A Kelleher
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR.
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Victoria H J Roberts
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Christopher M Novak
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ahmet A Baschat
- Johns Hopkins Center for Fetal Therapy, Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Terry K Morgan
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Miles J Novy
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Juha P Räsänen
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR; University of Helsinki, Helsinki, Finland
| | - Antonio E Frias
- Division of Reproductive and Development Sciences, Oregon National Primate Research Center, Beaverton, OR; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Lee JY, Na Q, Shin NE, Shin HE, Kang Y, Chudnovets A, Lei J, Song H, Burd I. Melatonin for prevention of fetal lung injury associated with intrauterine inflammation and for improvement of lung maturation. J Pineal Res 2020; 69:e12687. [PMID: 32737901 DOI: 10.1111/jpi.12687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is associated with injury to immature lungs, and melatonin administration to preterm newborns with acute respiratory distress improves pulmonary outcomes. We hypothesized that maternally administered melatonin may reduce inflammation, oxidative stress, and structural injury in fetal lung and help fetal lung maturation in a mouse model of intrauterine inflammation (IUI). Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). Pro-inflammatory cytokines, components of the Hippo pathway, and Yap1/Taz were analyzed in the fetal lung at E18 by real-time RT-qPCR. Confirmatory histochemistry and immunohistochemical analyses (surfactant protein B, vimentin, HIF-1β, and CXCR2) were performed. The gene expression of IL1β in the fetal lung was significantly increased in L compared to C, M, and ML. Taz expression was significantly decreased in L compared to C and M. Taz gene expression in L was significantly decreased compared with those in ML. Immunohistochemical analyses showed that the expression of HIF-1β and CXCR2 was significantly increased in L compared to C, M, and ML. The area of surfactant protein B and vimentin were significantly decreased in L than C, M, or ML in the fetal and neonatal lung. Antenatal maternally administered melatonin appears to prevent fetal lung injury induced by IUI and to help lung maturation. The results from this study results suggest that melatonin could serve as a novel safe preventive and/or therapeutic medicine for preventing fetal lung injury from IUI and for improving lung maturation in prematurity.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na E Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ha Eun Shin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Yeomin Kang
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Malherbe JAJ, Garas G, Khor TS, MacQuillan GC. Delayed Fulminant Hepatic Failure from Dydrogesterone-Related In Vitro Fertilization Therapy Requiring Liver Transplantation During Pregnancy. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e925690. [PMID: 32938902 PMCID: PMC7520868 DOI: 10.12659/ajcr.925690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patient: Female, 35-year-old Final Diagnosis: Fulminant liver failure Symptoms: Coagulopathy • hepatic encephalopathy • jaundice Medication:— Clinical Procedure: Liver transplantation Specialty: Gastroenterology and Hepatology
Collapse
Affiliation(s)
- Jacques A J Malherbe
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia
| | - George Garas
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Western Australia Liver Transplantation Service, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Tze S Khor
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Gerry C MacQuillan
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Western Australia Liver Transplantation Service, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
23
|
Salafia CM, Misra DP. Histopathology of the fetal inflammatory response to intra-amniotic pathogens. Semin Fetal Neonatal Med 2020; 25:101128. [PMID: 32928678 DOI: 10.1016/j.siny.2020.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Obstetric endorsement of the utility of placental histologic examination remains infrequent, especially from obstetricians who do not have a placental pathologist as part of their own local clinical care team. Placental pathologic examinations are viewed as useless if they do not provide answers to urgent clinical questions. Increasingly, however, it is appreciated that while placental analysis should be considered with regard to its longer term value; results can assess lifelong risks of a wide range of diseases that have been tied to prenatal exposures (e.g., [1]), including distinguishing sex-specific differences in those risks. (e.g., [2]) This review will focus solely on acute fetal (?) inflammation, more specifically, the fetal neutrophil responses in umbilical cord, chorionic plate vessels and to some degree, the fetal system as a whole. This histologic fetal inflammatory response is often the most readily accessible aspect of "FIR" piece of FIRS (the fetal inflammatory response syndrome). Some researchers have defined FIRS by a combination of both cytokine (especially IL-6) levels and the histopathologic FIR (Musilova et al., 2018) [3]. As we and others have noted, many histology based FIR cases, even those associated with neurodevelopmental outcomes such as cerebral palsy, are clinically silent.(e.g., [4]) Current clinical diagnostic criteria may have high specificity as they are very good at identifying non-FIR cases. However, that high specificity is coupled with very low specificity, identifying only 10% of FIR (Doty et al., 2018 Jul) [5]. Our aim is to provide a conceptual framework for the readers of the journal to better understand how to answer the following questions: What is a neutrophil and how is it important in FIR? What is the differential diagnosis for histologic FIR? How long has there been FIR? What secondary processes may have been recruited (and when) to contribute to the final pathology and pathophysiology of the given pregnancy?
Collapse
Affiliation(s)
- Carolyn M Salafia
- Placental Analytics LLC, New Rochelle, New York, USA; Institute for Basic Research, Staten Island, New York, USA; New York Presbyterian- Brooklyn Methodist Hospital, Brooklyn, New York, USA; Queens Hospital Center, Queens, New York, USA.
| | - Dawn P Misra
- Department of Epidemiology and Biostatistics, MSU College of Human Medicine, 909 Wilson Road Room B645, East Lansing, MI, 48824, USA.
| |
Collapse
|
24
|
Chudnovets A, Lei J, Na Q, Dong J, Narasimhan H, Klein SL, Burd I. Dose-dependent structural and immunological changes in the placenta and fetal brain in response to systemic inflammation during pregnancy. Am J Reprod Immunol 2020; 84:e13248. [PMID: 32306461 DOI: 10.1111/aji.13248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Systemic maternal inflammation is associated with adverse neonatal sequelae. We tested the hypothesis that IL-1β is a key inflammatory regulator of adverse pregnancy outcomes. METHOD OF STUDY Pregnant mice were treated with intraperitoneal injections of IL-1β (0, 0.1, 0.5, or 1 μg) from embryonic day (E)14 to E17. Placenta and fetal brains were harvested and analyzed for morphologic changes and IL-1β signaling markers. RESULTS As compared with non-treated dams, maternal injections with IL-1β resulted in increased p-NF-κB and caspase-1 in placentas and fetal brains, but not consistently in spleens, suggesting induction of intrinsic IL-1β production. These findings were confirmed by increased levels of IL-1β in the placentas of the IL-1β-treated dams. Systemic treatment of dams with IL-1β suppressed Stat1 signaling. Maternal inflammation caused by IL-1β treatment reduced fetal viability to 80.6% and 58.9%, in dams treated with either 0.5 or 1 μg of IL-1β, respectively. In the placentas, there was an IL-1β dose-dependent distortion of the labyrinth structure, decreased numbers of mononuclear trophoblast giant cells, and reduced proportions of endothelial cells as compared to placentas from control dams. In fetal brains collected at E17, there was an IL-1β dose-dependent reduction in cortical neuronal morphology. CONCLUSION This work demonstrates that systemic IL-1β injection causes dose-dependent structural and functional changes in the placenta and fetal brain.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Estrada SM, Thagard AS, Dehart MJ, Damicis JR, Dornisch EM, Ippolito DL, Burd I, Napolitano PG, Ieronimakis N. The orphan nuclear receptor Nr4a1 mediates perinatal neuroinflammation in a murine model of preterm labor. Cell Death Dis 2020; 11:11. [PMID: 31907354 PMCID: PMC6944691 DOI: 10.1038/s41419-019-2196-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Prematurity is associated with perinatal neuroinflammation and injury. Screening for genetic modulators in an LPS murine model of preterm birth revealed the upregulation of Nr4a1, an orphan nuclear transcription factor that is normally absent or limited in embryonic brains. Concurrently, Nr4a1 was downregulated with magnesium sulfate (MgSO4) and betamethasone (BMTZ) treatments administered to LPS exposed dams. To understand the role of Nr4a1 in perinatal brain injury, we compared the preterm neuroinflammatory response in Nr4a1 knockout (KO) versus wild type (wt) mice. Key inflammatory factors Il1b, Il6 and Tnf, and Iba1+ microglia were significantly lower in Nr4a1 KO versus wt brains exposed to LPS in utero. Treatment with MgSO4/BMTZ mitigated the neuroinflammatory process in wt but not Nr4a1 KO brains. These results correspond with a reduction in cerebral hemorrhage in wt but not mutant embryos from dams given MgSO4/BMTZ. Further analysis with Nr4a1-GFP-Cre × tdTomato loxP reporter mice revealed that the upregulation of Nr4a1 with perinatal neuroinflammation occurs in the cerebral vasculature. Altogether, this study implicates Nr4a1 in the developing vasculature as a potent mediator of neuroinflammatory brain injury that occurs with preterm birth. It is also possible that MgSO4/BMTZ mitigates this process by direct or indirect inhibition of Nr4a1.
Collapse
Affiliation(s)
- Sarah M Estrada
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Andrew S Thagard
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Mary J Dehart
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | | | - Irina Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter G Napolitano
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| |
Collapse
|
26
|
"Females Are Not Just 'Protected' Males": Sex-Specific Vulnerabilities in Placenta and Brain after Prenatal Immune Disruption. eNeuro 2019; 6:ENEURO.0358-19.2019. [PMID: 31611335 PMCID: PMC6838689 DOI: 10.1523/eneuro.0358-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Current perceptions of genetic and environmental vulnerabilities in the developing fetus are biased toward male outcomes. An argument is made that males are more vulnerable to gestational complications and neurodevelopmental disorders, the implication being that an understanding of disrupted development in males is sufficient to understand causal mechanisms that are assumed to be similar but attenuated in females. Here we examine this assumption in the context of immune-driven alterations in fetal brain development and related outcomes in female and male mice. Pregnant C57BL/6 mice were treated with low-dose lipopolysaccharide at embryonic day 12.5. Placental pathology, acute fetal brain inflammation and hypoxia, long-term changes in adult cortex cytoarchitecture, altered densities and ratio of excitatory (Satb2+) to inhibitory (parvalbumin+) neuronal subtypes, postnatal growth, and behavior outcomes were compared between male and female offspring. We find that while males experience more pronounced placental pathology, fetal brain hypoxia, depleted PV and Satb2+ densities, and social and learning-related behavioral abnormalities, females exhibit unique acute inflammatory signaling in fetal brain, postnatal growth delay, opposite alterations in cortical PV densities, changes in juvenile behavior, delayed postnatal body growth, and elevated anxiety-related behavior as adults. While males are more severely impacted by prenatal immune disruption by several measures, females exposed to the same insult exhibit a unique set of vulnerabilities and developmental consequences that is not present in males. Our results clearly outline disparate sex-specific features of prenatal vulnerability to inflammatory insults and warn against the casual extrapolation of male disease mechanisms to females.
Collapse
|
27
|
Lee JY, Li S, Shin NE, Na Q, Dong J, Jia B, Jones-Beatty K, McLane MW, Ozen M, Lei J, Burd I. Melatonin for prevention of placental malperfusion and fetal compromise associated with intrauterine inflammation-induced oxidative stress in a mouse model. J Pineal Res 2019; 67:e12591. [PMID: 31231832 DOI: 10.1111/jpi.12591] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
Abstract
Melatonin has been shown to reduce oxidative stress and mitigate hypercoagulability. We hypothesized that maternally administered melatonin may reduce placental oxidative stress and hypercoagulability associated with exposure to intrauterine inflammation (IUI) and consequently improve fetoplacental blood flow and fetal sequelae. Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. The systolic/diastolic ratio, resistance index, and pulsatility index in uterine artery (UtA) and umbilical artery (UA) were significantly increased in L compared with other groups when analyzed by Doppler ultrasonography. The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. Vascular endothelial damage and thrombi formation, as evidenced by fibrin deposits, were similarly increased in L compared to other groups. Maternal pretreatment with melatonin appears to modulate maternal placental malperfusion, fetal cardiovascular compromise, and fetal neuroinflammation induced by IUI through its antioxidant properties.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Su Li
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Na E Shin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly Jones-Beatty
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Exposure to systemic and intrauterine inflammation leads to decreased pup survival via different placental mechanisms. J Reprod Immunol 2019; 133:52-62. [PMID: 31280130 DOI: 10.1016/j.jri.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022]
Abstract
PROBLEM Exposure to systemic maternal inflammation (i.e., maternal sepsis, influenza, human immunodeficiency virus, or pyelonephritis) and intrauterine (IU) inflammation (i.e., chorioamnionitis or preterm labor) have been associated with adverse perinatal sequelae. Whether systemic and localized inflammation leading to adverse outcomes have similar placental mechanisms remain unclear. METHOD OF STUDY We conducted a study by murine modeling systemic and localized IU inflammation with injections of either intraperitoneal (IP) or IU interleukin-1β (IL-1β) and compared fetoplacental hemodynamic changes, cytokine/chemokine expression, and fetal loss. RESULTS IU IL-1β exposure reduced offspring survival by 31.1% and IP IL-1β exposure by 34.5% when compared with control pups. Despite this similar outcome in offspring survival, Doppler analysis revealed a stark difference: IU group displayed worsened fetoplacental hemodynamic changes while no differences were found between IP and control groups. While both IU and IP groups had increases in pro-inflammatory cytokines and chemokines, specific gene expression trends differed between the two groups, once again highlighting their mechanistic differences. CONCLUSION While both IP and IU IL-1β exposure similarly affected pup survival, only IU inflammation resulted in fetoplacental hemodynamic changes. We speculate that exposure to maternal systemic and IU inflammation plays a key role in fetal injury by utilizing different placental inflammatory pathways and mechanisms.
Collapse
|