1
|
Melrose J, Guilak F. Diverse and multifunctional roles for perlecan ( HSPG2) in repair of the intervertebral disc. JOR Spine 2024; 7:e1362. [PMID: 39081381 PMCID: PMC11286675 DOI: 10.1002/jsp2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Perlecan is a widely distributed, modular, and multifunctional heparan sulfate proteoglycan, which facilitates cellular communication with the extracellular environment to promote tissue development, tissue homeostasis, and optimization of biomechanical tissue functions. Perlecan-mediated osmotic mechanotransduction serves to regulate the metabolic activity of cells in tissues subjected to tension, compression, or shear. Perlecan interacts with a vast array of extracellular matrix (ECM) proteins through which it stabilizes tissues and regulates the proliferation or differentiation of resident cell populations. Here we examine the roles of the HS-proteoglycan perlecan in the normal and destabilized intervertebral disc. The intervertebral disc cell has evolved to survive in a hostile weight bearing, acidic, low oxygen tension, and low nutrition environment, and perlecan provides cytoprotection, shields disc cells from excessive compressive forces, and sequesters a range of growth factors in the disc cell environment where they aid in cellular survival, proliferation, and differentiation. The cells in mechanically destabilized connective tissues attempt to re-establish optimal tissue composition and tissue functional properties by changing the properties of their ECM, in the process of chondroid metaplasia. We explore the possibility that perlecan assists in these cell-mediated tissue remodeling responses by regulating disc cell anabolism. Perlecan's mechano-osmotic transductive property may be of potential therapeutic application.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling InstituteNorthern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington UniversitySt. LouisMissouriUSA
- Department of OrthopaedicsShriners Hospitals for ChildrenSt. LouisMissouriUSA
| |
Collapse
|
2
|
Dou Y, Zhai H, Li H, Xing H, Zhu C, Xuan Z. Endothelial cells-derived exosomes-based hydrogel improved tendinous repair via anti-inflammatory and tissue regeneration-promoting properties. J Nanobiotechnology 2024; 22:401. [PMID: 38982446 PMCID: PMC11232200 DOI: 10.1186/s12951-024-02607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.
Collapse
Affiliation(s)
- Yichen Dou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hong Zhai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Hanlin Xing
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Cheng Zhu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China
| | - Zhaopeng Xuan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, 130031, Changchun, P.R. China.
| |
Collapse
|
3
|
Konar S, Leung S, Tay ML, Coleman B, Dalbeth N, Cornish J, Naot D, Musson DS. Novel In Vitro Platform for Studying the Cell Response to Healthy and Diseased Tendon Matrices. ACS Biomater Sci Eng 2024; 10:3293-3305. [PMID: 38666422 DOI: 10.1021/acsbiomaterials.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Current in vitro models poorly represent the healthy or diseased tendon microenvironment, limiting the translation of the findings to clinics. The present work aims to establish a physiologically relevant in vitro tendon platform that mimics biophysical aspects of a healthy and tendinopathic tendon matrix using a decellularized bovine tendon and to characterize tendon cells cultured using this platform. Bovine tendons were subjected to various decellularization techniques, with the efficacy of decellularization determined histologically. The biomechanical and architectural properties of the decellularized tendons were characterized using an atomic force microscope. Tendinopathy-mimicking matrices were prepared by treating the decellularized tendons with collagenase for 3 h or collagenase-chondroitinase (CC) for 1 h. The tendon tissue collected from healthy and tendinopathic patients was characterized using an atomic force microscope and compared to that of decellularized matrices. Healthy human tendon-derived cells (hTDCs) from the hamstring tendon were cultured on the decellularized matrices for 24 or 48 h, with cell morphology characterized using f-actin staining and gene expression characterized using real-time PCR. Tendon matrices prepared by freeze-thawing and 48 h nuclease treatment were fully decellularized, and the aligned structure and tendon stiffness (1.46 MPa) were maintained. Collagenase treatment prepared matrices with a disorganized architecture and reduced stiffness (0.75 MPa), mimicking chronic tendinopathy. Treatment with CC prepared matrices with a disorganized architecture without altering stiffness, mimicking early tendinopathy (1.52 MPa). hTDCs on a healthy tendon matrix were elongated, and the scleraxis (SCX) expression was maintained. On tendinopathic matrices, hTDCs had altered morphological characteristics and lower SCX expression. The expression of genes related to actin polymerization, matrix degradation and remodeling, and immune cell invasion were higher in hTDCs on tendinopathic matrices. Overall, the present study developed a physiological in vitro system to mimic healthy tendons and early and late tendinopathy, and it can be used to better understand tendon cell characteristics in healthy and diseased states.
Collapse
Affiliation(s)
- Subhajit Konar
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - Sophia Leung
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1142, New Zealand
| | - Mei Lin Tay
- Department of Surgery, University of Auckland, Auckland 1142, New Zealand
| | - Brendan Coleman
- Department of Orthopaedics, Middlemore Hospital, Auckland 1640, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| | - Dorit Naot
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| | - David S Musson
- Department of Nutrition and Dietetics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Li C, Wang J, Yang W, Yu K, Hong J, Ji X, Yao M, Li S, Lu J, Chen Y, Yan S, Wu H, Ma C, Yu X, Jiang G, Liu A. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J Nanobiotechnology 2023; 21:177. [PMID: 37268942 DOI: 10.1186/s12951-023-01892-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/11/2023] [Indexed: 06/04/2023] Open
Abstract
Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.
Collapse
Affiliation(s)
- Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jie Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Weinan Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Hangzhou, Zhejiang, PR China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - An Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
6
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Appunni S, Rubens M, Ramamoorthy V, Anand V, Khandelwal M, Sharma A. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol Cell Biochem 2021; 476:3935-3950. [PMID: 34181183 DOI: 10.1007/s11010-021-04216-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Extracellular matrix (ECM) plays an important role in the structural organization of tissue and delivery of external cues to the cell. Biglycan, a class I small leucine-rich proteoglycans (SLRP), is a key component of the ECM that participates in scaffolding the collagen fibrils and mediates cell signaling. Dysregulation of biglycan expression can result in wide range of clinical conditions such as metabolic disorder, inflammatory disorder, musculoskeletal defects and malignancies. In this review, we aim to update our current understanding regarding the link between altered expression of biglycan and different clinicopathological states. Biglycan interacts with toll like receptors (TLR)-2 and TLR-4 on the immune cells which initiates inflammation and aggravates inflammatory disorders. ECM unbound soluble biglycan acts as a DAMP (danger associated molecular pattern) resulting in sterile inflammation. Dysregulation of biglycan expression is also observed in inflammatory metabolic conditions such as atherosclerosis and obesity. In cancer, high-biglycan expression facilitates tumor growth, invasion and metastasis which is associated with poor clinical outcome. As a pivotal structural component of the ECM, biglycan strengthens the musculoskeletal system and its absence is associated with musculoskeletal defects. Thus, SLRP biglycan is a potential marker which is significantly altered in different clinicopathological states.
Collapse
Affiliation(s)
- Sandeep Appunni
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
- Government Medical College, Kozhikode, Kerala, India
| | | | | | | | - Madhuram Khandelwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| |
Collapse
|
8
|
Species variations in tenocytes' response to inflammation require careful selection of animal models for tendon research. Sci Rep 2021; 11:12451. [PMID: 34127759 PMCID: PMC8203623 DOI: 10.1038/s41598-021-91914-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
For research on tendon injury, many different animal models are utilized; however, the extent to which these species simulate the clinical condition and disease pathophysiology has not yet been critically evaluated. Considering the importance of inflammation in tendon disease, this study compared the cellular and molecular features of inflammation in tenocytes of humans and four common model species (mouse, rat, sheep, and horse). While mouse and rat tenocytes most closely equalled human tenocytes’ low proliferation capacity and the negligible effect of inflammation on proliferation, the wound closure speed of humans was best approximated by rats and horses. The overall gene expression of human tenocytes was most similar to mice under healthy, to horses under transient and to sheep under constant inflammatory conditions. Humans were best matched by mice and horses in their tendon marker and collagen expression, by horses in extracellular matrix remodelling genes, and by rats in inflammatory mediators. As no single animal model perfectly replicates the clinical condition and sufficiently emulates human tenocytes, fit-for-purpose selection of the model species for each specific research question and combination of data from multiple species will be essential to optimize translational predictive validity.
Collapse
|
9
|
Durgam S, Singh B, Cole SL, Brokken MT, Stewart M. Quantitative Assessment of Tendon Hierarchical Structure by Combined Second Harmonic Generation and Immunofluorescence Microscopy. Tissue Eng Part C Methods 2020; 26:253-262. [PMID: 32228165 DOI: 10.1089/ten.tec.2020.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histological evaluation of healing tendons is primarily focused on monitoring restoration of longitudinal collagen alignment, although the elastic property of energy-storing flexor tendons is largely attributed to interfascicular sliding facilitated by the interfascicular matrix (IFM). The objectives of this study were to explore the utility of second harmonic generation (SHG) imaging to objectively assess cross-sectional tendon fascicle architecture, to combine SHG microscopy with elastin immunofluorescence to assess the ultrastructure of collagen and elastin in longitudinal and transverse sections, and lastly, to quantify changes in IFM elastin and fascicle collagen alignment of normal and collagenase-injured flexor tendons. Paraffin-embedded transverse and longitudinal histological sections (10-μm thickness) derived from normal and collagenase-injured (6- and 16-week time-points) equine superficial digital flexor tendons were de-paraffinized, treated with Tris EDTA at 80°C for epitope retrieval, and incubated with mouse monoclonal anti-elastin antibody (1:100 dilution) overnight. Anti-mouse IgG Alexa Flour 546 secondary antibody was applied, and sections were mounted with ProLong Gold reagent with 4',6-diamidino-2-phenylindole (DAPI). Nuclei (DAPI) and elastin (Alexa Fluor 546) signals were captured by using standard confocal imaging with 405 and 543 nm excitation wavelengths, respectively. The SHG signal was captured by using a tunable Ti:Sapphire laser tuned to 950 nm to visualize type I collagen. Quantitative measurements of fascicle cross-sectional area (CSA), IFM thickness in transverse SHG-DAPI merged z-stacks, fascicle/IFM elastin area fraction (%), and elastin-collagen alignment in longitudinal SHG-elastin merged z-stacks were conducted by using ImageJ software. Using this methodology, fascicle CSA, IFM thickness, and IFM elastin area fraction (%) at 6 weeks (∼2.25-fold; ∼2.8-fold; 60% decrease; p < 0.001) and 16 weeks (∼2-fold; ∼1.5-fold; 70% decrease; p < 0.001) after collagenase injection, respectively, were found to be significantly different from normal tendon. IFM elastin and fascicle collagen alignment characterized via fast Fourier transform (FFT) frequency plots at 16 weeks demonstrated that collagen re-alignment was more advanced than that of elastin. The integration of SHG-derived quantitative measurements in transverse and longitudinal tendon sections supports comprehensive assessment of tendon structure. Our findings demonstrate the importance of including IFM and non-collagenous proteins in tendon histological evaluations, tasks that can be effectively carried out by using SHG and immunofluorescence microscopy. Impact statement This work demonstrated that second harmonic generation microscopy in conjunction with elastin immunofluorescence provided a comprehensive assessment of multiscale structural re-organization in healing tendon than when restricted to longitudinal collagen fiber alignment alone. Utilizing this approach for tendon histomorphometry is ideal not only to improve our understanding of hierarchical structural changes that occur after tendon injury and during remodeling but also to monitor the efficacy of therapeutic approaches.
Collapse
Affiliation(s)
- Sushmitha Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Singh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sara L Cole
- Campus Microscopy Imaging Facility, The Ohio State University, Columbus, Ohio, USA
| | - Matthew T Brokken
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Matthew Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
10
|
Shu CC, Zaki S, Ravi V, Schiavinato A, Smith MM, Little CB. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: differential effect of stem cell and hyaluronan treatment. Arthritis Res Ther 2020; 22:29. [PMID: 32059749 PMCID: PMC7023816 DOI: 10.1186/s13075-020-2117-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Synovitis is implicated in the severity and progression of pain and structural pathology of osteoarthritis (OA). Increases in inflammatory or immune cell subpopulations including macrophages and lymphocytes have been reported in OA synovium, but how the particular subpopulations influence symptomatic or structural OA disease progression is unclear. Two therapies, hyaluronan (HA) and mesenchymal stem cells (MSCs), have demonstrated efficacy in some clinical settings: HA acting as device to improve joint function and provide pain relief, while MSCs may have immunomodulatory and disease-modifying effects. We used these agents to investigate whether changes in pain sensitization or structural damage were linked to modulation of the synovial inflammatory response in post-traumatic OA. Methods Skeletally mature C57BL6 male mice underwent medial-meniscal destabilisation (DMM) surgery followed by intra-articular injection of saline, a hyaluronan hexadecylamide derivative (Hymovis), bone marrow-derived stem cells (MSCs), or MSC + Hymovis. We quantified the progression of OA-related cartilage, subchondral bone and synovial histopathology, and associated pain sensitization (tactile allodynia). Synovial lymphocytes, monocyte/macrophages and their subpopulations were quantified by fluorescent-activated cell sorting (FACS), and the expression of key inflammatory mediators and catabolic enzyme genes quantified by real-time polymerase chain reaction (PCR). Results MSC but not Hymovis significantly reduced late-stage (12-week post-DMM) cartilage proteoglycan loss and structural damage. Allodynia was initially reduced by both treatments but significantly better at 8 and 12 weeks by Hymovis. Chondroprotection by MSCs was not associated with specific changes in synovial inflammatory cell populations but rather regulation of post-injury synovial Adamts4, Adamts5, Mmp3, and Mmp9 expression. Reduced acute post-injury allodynia with all treatments coincided with decreased synovial macrophage and T cell numbers, while longer-term effect on pain sensitization with Hymovis was associated with increased M2c macrophages. Conclusions This therapeutic study in mice demonstrated a poor correlation between cartilage, bone or synovium (histo)pathology, and pain sensitization. Changes in the specific synovial inflammatory cell subpopulations may be associated with chronic OA pain sensitization, and a novel target for symptomatic treatment.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Varshini Ravi
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | | | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|