1
|
Palomba S, Costanzi F, Caserta D, Vitagliano A. Pharmacological and non-pharmacological interventions for improving endometrial receptivity in infertile patients with polycystic ovary syndrome: a comprehensive review of the available evidence. Reprod Biomed Online 2024; 49:104381. [PMID: 39454320 DOI: 10.1016/j.rbmo.2024.104381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Direct and indirect evidence suggests that endometrial receptivity may play a crucial role in the reduced fertility rate of women with polycystic ovary syndrome (PCOS). Various pharmacological and non-pharmacological strategies with potential effects on endometrial receptivity in patients with PCOS have been proposed. The aim of this study was to summarize the rationale and the clinical and experimental evidence of interventions tested for improving endometrial receptivity in infertile patients with PCOS. A systematic review was conducted by consulting electronic databases. All interventions with a potential influence on endometrial receptivity in infertile patients with PCOS were evaluated, and their main biological mechanisms were analysed. In total, 24 interventions related to endometrial receptivity were identified. Notwithstanding a strong biological rationale, no intervention aimed at improving endometrial receptivity in women with PCOS is supported by an adequate body of evidence, limiting their use in clinical practice. Further high-quality research is needed in this field to limit potentially ineffective and unsafe add-on treatments in infertile patients with PCOS.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Flavia Costanzi
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy; University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Amerigo Vitagliano
- Unit of Obstetrics and Gynaecology, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
4
|
Zeng X, Zhong Q, Li M, Liu Y, long S, Xie Y, Mo Z. Androgen increases klotho expression via the androgen receptor-mediated pathway to induce GCs apoptosis. J Ovarian Res 2023; 16:10. [PMID: 36641458 PMCID: PMC9840339 DOI: 10.1186/s13048-022-01087-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Many epidemiological studies have shown that anovulatory polycystic ovary syndrome (PCOS) is accompanied by hyperandrogenism. However, the exact mechanism of hyperandrogen-induced anovulation remains to be elucidated. In this study, we aimed to investigate the potential mechanism of anovulation in PCOS. To investigate the role of klotho as a key factor in the androgen receptor (AR)-mediated development of PCOS, we investigated the effects of testosterone on ovarian klotho expression in vivo and in vitro. RESULTS Testosterone propionate (TP)-induced rats showed cycle irregularity, hyperandrogenism, polycystic ovarian changes, dyslipidemia. However, inhibition of AR expression could relieve PCOS traits. We also found that AR and klotho showed relatively high expression in PCOS rat ovarian tissue and in TP-induced granulosa cells (GCs), which was inhibited by the addition of flutamide. TP-induced GCs apoptosis was suppressed by AR antagonist, as well as silencing klotho expression in human GCs. Chromatin immunoprecipitation assay demonstrated that AR indirectly binds to the klotho promoter. CONCLUSIONS Our results demonstrated TP mediates the expression of klotho via androgen receptor and klotho alterations could be a reason for ovarian dysfunction in PCOS.
Collapse
Affiliation(s)
- Xin Zeng
- grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University, Guilin, 541199 Guangxi China ,Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760 People’s Republic of China
| | - Qiaoqing Zhong
- grid.452223.00000 0004 1757 7615Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China ,grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care & Pain Med, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Ming Li
- grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University, Guilin, 541199 Guangxi China
| | - Yating Liu
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Shuanglian long
- grid.412017.10000 0001 0266 8918Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Yuanjie Xie
- grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University, Guilin, 541199 Guangxi China
| | - Zhongcheng Mo
- grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Diabetic Systems Medicine, Guangxi Province Postgraduate Co-Training Base for Cooperative Innovation in Basic Medicine, Guilin Medical University, Guilin, 541199 Guangxi China
| |
Collapse
|
5
|
Guo F, Huang Y, Fernando T, Shi Y. Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome. Reprod Sci 2022; 29:3335-3345. [PMID: 35006579 DOI: 10.1007/s43032-022-00845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
Anovulation is the most prominent cause of infertility in polycystic ovary syndrome (PCOS) patients. Although ovulation can be corrected pharmacologically, the number of pregnancies remains low. Even if excellent embryos are transferred by IVF, it does not change the high miscarriage rate of PCOS patients. These facts collectively indicate that there is a disorder of endometrial development and receptivity to the embryo in PCOS patients, including the decrease of receptive ability, inhibition of embryo adhesion, undersupply of energy, poor blood perfusion, and pro-inflammatory status in the endometrium. However, it has never received the same attention as ovulatory dysfunction. Here we list some alternations of endometrial receptivity in women with PCOS, discuss the underlying intricate mechanisms, and try to find out the possible therapeutic targets, which may bring new perspectives to those who are able to provide high-quality embryos.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yufan Huang
- Department of Pharmacy, Mindong Hospital, Fujian Medical University, Ningde, 355000, Fujian, China
| | - Taniya Fernando
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yingli Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
6
|
Stener-Victorin E. Update on Animal Models of Polycystic Ovary Syndrome. Endocrinology 2022; 163:bqac164. [PMID: 36201611 PMCID: PMC9631972 DOI: 10.1210/endocr/bqac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease affecting up to 15% of women of reproductive age. Women with PCOS suffer from reproductive dysfunctions with excessive androgen secretion and irregular ovulation, leading to reduced fertility and pregnancy complications. The syndrome is associated with a wide range of comorbidities including type 2 diabetes, obesity, and psychiatric disorders. Despite the high prevalence of PCOS, its etiology remains unclear. To understand the pathophysiology of PCOS, how it is inherited, and how to predict PCOS, and prevent and treat women with the syndrome, animal models provide an important approach to answering these fundamental questions. This minireview summarizes recent investigative efforts on PCOS-like rodent models aiming to define underlying mechanisms of the disease and provide guidance in model selection. The focus is on new genetic rodent models, on a naturally occurring rodent model, and provides an update on prenatal and peripubertal exposure models.
Collapse
|
7
|
Liu S, Hong L, Lian R, Xiao S, Li Y, Diao L, Zeng Y. Transcriptomic Analysis Reveals Endometrial Dynamics in Normoweight and Overweight/Obese Polycystic Ovary Syndrome Women. Front Genet 2022; 13:874487. [PMID: 35646061 PMCID: PMC9136323 DOI: 10.3389/fgene.2022.874487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/07/2022] [Indexed: 01/14/2023] Open
Abstract
The aim of this work was to identify the transcriptomic characteristics of the endometrium in normoweight and overweight/obese polycystic ovary syndrome (PCOS) potentially underlying the pathogenesis. This study included 38 patients undergoing in vitro fertilization: 22 women with PCOS and 16 matched controls. Each of the groups was subdivided into normoweight (body mass index (BMI) < 25 kg/m2) and overweight/obese (BMI ≥25 kg/m2) subgroups. Endometrium samples were collected in the secretory phase from controls or in a modeled secretory phase using daily administration of progesterone from women with PCOS before in vitro fertilization treatment. Transcriptome profiles were assessed by high-throughput RNA sequencing to investigate distinct endometrial gene expression patterns in PCOS. Bioinformatics analyses revealed that the endometrium from PCOS expresses significantly different transcripts encoding endometrial receptivity, inflammatory response, angiogenesis, and energy metabolism. Additionally, our study demonstrated that the differentially expressed genes between normoweight and overweight/obese PCOS are involved in fatty acid metabolism, endometrial decidualization, and immune response. For the first time, we have described the transcriptome characteristics of normoweight and overweight/obese PCOS endometria. Our results indicate different endometrial gene expressions between different subtypes of PCOS and non-PCOS women, which might affect endometrial functions in PCOS patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Lianghui Diao
- *Correspondence: Lianghui Diao, ; Yong Zeng, , orcid.org/0000-0002-6264-283X
| | - Yong Zeng
- *Correspondence: Lianghui Diao, ; Yong Zeng, , orcid.org/0000-0002-6264-283X
| |
Collapse
|
8
|
Insight on Polyunsaturated Fatty Acids in Endometrial Receptivity. Biomolecules 2021; 12:biom12010036. [PMID: 35053184 PMCID: PMC8773570 DOI: 10.3390/biom12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Endometrial receptivity plays a crucial role in fertilization as well as pregnancy outcome in patients faced with fertility challenges. The optimization of endometrial receptivity may help with normal implantation of the embryo, and endometrial receptivity may be affected by numerous factors. Recently, the role of lipids in pregnancy has been increasingly recognized. Fatty acids and their metabolites may be involved in all stages of pregnancy and play a role in supporting cell proliferation and development, participating in cell signaling and regulating cell function. Polyunsaturated fatty acids, in particular, are essential fatty acids for the human body that can affect the receptivity of the endometrium through in a variety of methods, such as producing prostaglandins, estrogen and progesterone, among others. Additionally, polyunsaturated fatty acids are also involved in immunity and the regulation of endometrial decidualization. Fatty acids are essential for fetal placental growth and development. The interrelationship of polyunsaturated fatty acids with these substances and how they may affect endometrial receptivity will be reviewed in this article.
Collapse
|
9
|
Palomba S. Is fertility reduced in ovulatory women with polycystic ovary syndrome? An opinion paper. Hum Reprod 2021; 36:2421-2428. [PMID: 34333641 DOI: 10.1093/humrep/deab181] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/22/2021] [Indexed: 01/13/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility; however, whether women with PCOS and spontaneous or drug-induced ovulatory cycles have the same reproductive potential as non-PCOS controls is a matter of debate. In the present opinion paper, the author takes the opportunity to summarize the collective evidence supporting the hypothesis of reduced fertility potential in women with PCOS, regardless of ovulatory status, and speculate that reduced reproductive potential may be caused by altered oocytes, embryo and endometrial competence, and infertility-related co-morbidities as well as an increased risk of pregnancy complications.
Collapse
Affiliation(s)
- Stefano Palomba
- Obstetrics and Gynecology, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
11
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|
12
|
Zhao J, Chen Q, Xue X. An Update on the Progress of Endometrial Receptivity in Women with Polycystic Ovary Syndrome. Reprod Sci 2021; 29:2136-2144. [PMID: 34076874 DOI: 10.1007/s43032-021-00641-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a significant public health issue with diverse presentations, including reproductive, metabolic, and psychological disorders. Although problems with ovulation, metabolism, and hormonal imbalance can be pharmacologically improved, even the excellent quality of transferred embryos does not necessarily increase the pregnancy rate. Poor endometrial receptivity in women with PCOS perturbs endometrial decidualization and blastocyst implantation, increasing adverse pregnancy outcomes, such as miscarriage and poor embryonic development. The etiological and pathophysiological mechanisms involved in defective endometrial receptivity in women with PCOS have not been fully elucidated to date. Various contributing factors have been reported as primary causes of defective endometrial receptivity in women with PCOS, including metabolic alterations, inflammatory events, and some abnormally expressed endometrial molecular markers. However, few studies to date have investigated in depth the complex mechanisms underlying the compromised endometrial receptivity in women with PCOS. This article reviews recent reports mainly on metabolic alterations and some new endometrial molecular markers in order to collate the existing data and improve our understanding in this field. The aim was to discuss current novel insights on defective endometrial receptivity in women with PCOS in order to provide a theoretical basis for reducing adverse pregnancy outcomes and improving the live birth rate in PCOS.
Collapse
Affiliation(s)
- Jinyan Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 of Xiwu Road, Xi'an, People's Republic of China
| | - Qing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 of Xiwu Road, Xi'an, People's Republic of China
| | - Xiang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 of Xiwu Road, Xi'an, People's Republic of China.
| |
Collapse
|
13
|
Jiang NX, Li XL. The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms. Reprod Sci 2021; 29:2465-2476. [PMID: 34046867 DOI: 10.1007/s43032-021-00629-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a mysterious and complicated endocrine disease with the combination of metabolic, reproductive, psychological dysfunctions. Impaired endometrial receptivity and ovulation disorders/anovulation are both important causes of PCOS-related infertility. However, change in endometrium has never received the same attention as ovulatory dysfunction. Besides, putting emphasis on endometrial function may be more realistic for PCOS-related infertility, given the wide use of assisted reproductive technology. The present review focuses on the disorders of endometrial receptivity of patients with PCOS, summarizes the changes of the indicators of endometrial receptivity including leukemia inhibitory factor, homeobox genes A, pinopodes, αvβ3-integrin, and intercellular junctions and also analyzes the possible mechanisms of decreased endometrial receptivity and its relationship with the main endocrine and metabolic disorders of PCOS such as hyperandrogenism, inflammation, insulin resistance, and obesity. Despite several biomarkers have been found to be associated with decreased endometrial receptivity in PCOS, the clinical relevance of these findings still awaits future clarification.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
14
|
Sawant AS, Kamble SS, Pisal PM, Sawant SS, Hese SV, Bagul KT, Pinjari RV, Kamble VT, Meshram RJ, Gacche RN. Synthesis and evaluation of N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogous as anticancer, anti-angiogenic & antioxidant agents: In vitro and in silico analysis. Comput Biol Chem 2021; 92:107484. [PMID: 33865034 DOI: 10.1016/j.compbiolchem.2021.107484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022]
Abstract
N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFβ; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.
Collapse
Affiliation(s)
- Ajay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sonali S Kamble
- Gramin Science (Vocational) College, Vishnupuri, Nanded-431 606, MS, India
| | - Parshuram M Pisal
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sanjay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Shrikant V Hese
- DD Bhoyar College of Arts and Science Mouda, Nagpur, 441104, MS, India
| | - Kamini T Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rahul V Pinjari
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Vinod T Kamble
- Organic Chemistry Research Laboratory, Department of Chemistry, Institute of Science, Nagpur, MS, India.
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India.
| |
Collapse
|
15
|
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update 2020; 27:584-618. [PMID: 33302299 DOI: 10.1093/humupd/dmaa051] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. An endometrial component has been suggested to contribute to subfertility and poor reproductive outcomes in affected women. OBJECTIVE AND RATIONALE The aim of this review was to determine whether there is sufficient evidence to support that endometrial function is altered in women with PCOS, whether clinical features of PCOS affect the endometrium, and whether there are evidence-based interventions to improve endometrial dysfunction in PCOS women. SEARCH METHODS An extensive literature search was performed from 1970 up to July 2020 using PubMed and Web of Science without language restriction. The search included all titles and abstracts assessing a relationship between PCOS and endometrial function, the role played by clinical and biochemical/hormonal factors related to PCOS and endometrial function, and the potential interventions aimed to improve endometrial function in women with PCOS. All published papers were included if considered relevant. Studies having a specific topic/hypothesis regarding endometrial cancer/hyperplasia in women with PCOS were excluded from the analysis. OUTCOMES Experimental and clinical data suggest that the endometrium differs in women with PCOS when compared to healthy controls. Clinical characteristics related to the syndrome, alone and/or in combination, may contribute to dysregulation of endometrial expression of sex hormone receptors and co-receptors, increase endometrial insulin-resistance with impaired glucose transport and utilization, and result in chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities in women with PCOS. Among several interventions to improve endometrial function in women with PCOS, to date, only lifestyle modification, metformin and bariatric surgery have the highest scientific evidence for clinical benefit. WIDER IMPLICATIONS Endometrial dysfunction and abnormal trophoblast invasion and placentation in PCOS women can predispose to miscarriage and pregnancy complications. Thus, patients and their health care providers should advise about these risks. Although currently no intervention can be universally recommended to reverse endometrial dysfunction in PCOS women, lifestyle modifications and metformin may improve underlying endometrial dysfunction and pregnancy outcomes in obese and/or insulin resistant patients. Bariatric surgery has shown its efficacy in severely obese PCOS patients, but a careful evaluation of the benefit/risk ratio is warranted. Large scale randomized controlled clinical trials should address these possibilities.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, Reggio Calabria, Italy
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|