1
|
Zhu Y, Ma S, Wen Y, Zhao W, Jiang Y, Li M, Zou K. Deciphering assembly processes, network complexity and stability of potential pathogenic communities in two anthropogenic coastal regions of a highly urbanized estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124444. [PMID: 38936795 DOI: 10.1016/j.envpol.2024.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The existence of potential pathogens may lead to severe water pollution, disease transmission, and the risk of infectious diseases, posing threats to the stability of aquatic ecosystems and human health. In-depth research on the dynamic of potential pathogenic communities is of significant importance, it can provide crucial support for assessing the health status of aquatic ecosystems, maintaining ecological balance, promoting sustainable economic development, and safeguarding human health. Nevertheless, the current understanding of the distribution and geographic patterns of potential pathogens in coastal ecosystems remains rather limited. Here, we investigated the diversity, assembly, and co-occurrence network of potential pathogenic communities in two anthropogenic coastal regions, i.e., the eight mouths (EPR) and nearshore region (NSE), of the Pearl River Estuary (PRE) and a total of 11 potential pathogenic types were detected. The composition and diversity of potential pathogenic communities exhibited noteworthy distinctions between the EPR and NSE, with 6 shared potential pathogenic families. Additionally, in the NSE, a significant pattern of geographic decay was observed, whereas in the EPR, the pattern of geographic decay was not significant. Based on the Stegen null model, it was noted that undominant processes (53.36%/69.24%) and heterogeneous selection (27.35%/25.19%) dominated the assembly of potential pathogenic communities in EPR and NSE. Co-occurrence network analysis showed higher number of nodes, a lower average path length and graph diameter, as well as higher level of negative co-occurrences and modularity in EPR than those in NSE, indicating more complex and stable correlations between potential pathogens in EPR. These findings lay the groundwork for the effective management of potential pathogens, offering essential information for ecosystem conservation and public health considerations in the anthropogenic coastal regions.
Collapse
Affiliation(s)
- Yiyi Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Shanshan Ma
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yongjing Wen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Wencheng Zhao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yun Jiang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Min Li
- Key Laboratory for Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Keshu Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
2
|
Park Y, Song B, Cha J, An S. Microbiome signature of different stages of hypoxia event in Wonmun Bay. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106673. [PMID: 39216437 DOI: 10.1016/j.marenvres.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
We investigated how microbial communities associated with different hypoxic stages respond to environmental changes across three water depths in Wonmun Bay, South Korea. Analysis of temperature, salinity, dissolved oxygen (DO), and nutrient concentrations revealed prominent seasonal shifts and strong stratification during summer hypoxia. Metabarcoding of prokaryotic 16 S rRNA genes and phototrophic eukaryotic chloroplasts along with quantitative PCR (qPCR) revealed variations in the abundance and composition of these communities. Chloroplast 16 S sequences in May were dominated by land plants (93% of Embryophyta), contrasting with the diverse phytoplankton taxa detected in other months. The water communities in May also had higher total microbial abundance than other months but significantly lower alpha diversity. These results suggest a major influence of freshwater discharge on water communities, pre-conditioning for hypoxia events by promoting organic matter decomposition coupled with DO consumption in bottom water. Subsequently, distinct microbial communities were observed across depths during hypoxia in June and July, while less variability was detected among different depths in September and later months when hypoxia events disappeared. Principal Coordinate analysis (PCoA) demonstrated the distinct patterns of microbial communities in May, June, and July from other months. Both sulfur-oxidizing and sulfate-reducing bacteria (SRB) were prevalent in June while the increase of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was observed in mid and bottom water in July. This data suggests the intricate interaction between sulfur and nitrogen-cycling microbes during the hypoxia events in Wonmun Bay. In conclusion, this study provides valuable insights into the microbial community responses to the varying environmental conditions at different stages of hypoxia events in eutrophic coastal ecosystems.
Collapse
Affiliation(s)
- Yunjung Park
- Research Institute for Basic Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongkeun Song
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, United States
| | - Jaeho Cha
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Soonmo An
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Xianbang W, Mingping L, Kunliang L, Qiang H, Dongkang P, Haibin M, Guihua H. Effects of intercropping teak with Alpinia katsumadai Hayata and Amomum longiligulare T.L. Wu on rhizosphere soil nutrients and bacterial community diversity, structure, and network. Front Microbiol 2024; 15:1328772. [PMID: 38440142 PMCID: PMC10910098 DOI: 10.3389/fmicb.2024.1328772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Teak is a precious hardwood species in tropical and subtropical regions with a long growth cycle and slow economic returns. Intercropping medicinal plants is an effective method for obtaining early returns during the growth period of teak. However, currently, we lack sufficient knowledge about the impact of intercropping on the soil microenvironment, especially on rhizosphere soil bacterial communities. We selected two medicinal plants Alpinia katsumadai Hayata and Amomum longiligulare T.L. Wu, for an intercropping experiment with teak, and the non-intercropping teak forest area was used for comparison. By collecting soil rhizosphere samples and conducting 16S rDNA sequencing and property analysis, we aimed to investigate the influence of teak intercropping on soil microbial communities. The results showed that intercropping significantly improved soil nutrients contents, such as soil organic matter, soil total potassium and soil available nitrogen, and significantly altered bacterial community structure. Co-occurrence network analysis revealed that intercropping tightened the connections of the soil bacterial network and increased its complexity (by increasing the number of nodes and the proportion of positive edges). Teak intercropping with Amomum longiligulare T.L. Wu resulted in tighter network connections than teak intercropping with A. katsumadai Hayata. Changes in the soil bacterial community structure may related to environmental factors such as total potassium content and pH. These results demonstrated that the introduction of medicinal plants exerts a significant impact on the soil bacterial community of teak, fostering the enrichment of specific bacterial taxa (such as Firmicutes and Methylomirabilota), and makes the rhizosphere bacterial network denser and more complex. This study provides valuable insights for the management of teak plantations.
Collapse
Affiliation(s)
| | | | | | | | | | - Ma Haibin
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Huang Guihua
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
4
|
Xian WD, Ding J, Chen J, Qu W, Cao P, Tang C, Liu X, Zhang Y, Li JL, Wang P, Li WJ, Wang J. Distinct Assembly Processes Structure Planktonic Bacterial Communities Among Near- and Offshore Ecosystems in the Yangtze River Estuary. MICROBIAL ECOLOGY 2024; 87:42. [PMID: 38356037 PMCID: PMC11385042 DOI: 10.1007/s00248-024-02350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.
Collapse
Affiliation(s)
- Wen-Dong Xian
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Junjie Ding
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jinhui Chen
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Pinglin Cao
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Chunyu Tang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Yiying Zhang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Crump BC, Bowen JL. The Microbial Ecology of Estuarine Ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:335-360. [PMID: 37418833 DOI: 10.1146/annurev-marine-022123-101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics.
Collapse
Affiliation(s)
- Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Jennifer L Bowen
- Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA;
| |
Collapse
|
6
|
Xiao Z, Lei H, Lian Y, Zhang Z, Pan H, Yin C, Dong Y. Impact of Aerated Drip Irrigation and Nitrogen Application on Soil Properties, Soil Bacterial Communities and Agronomic Traits of Cucumber in a Greenhouse System. PLANTS (BASEL, SWITZERLAND) 2023; 12:3834. [PMID: 38005731 PMCID: PMC10675765 DOI: 10.3390/plants12223834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Root hypoxia stress and soil nutrient turnover have been related to reduced crop productivity. Aerated drip irrigation (ADI) can effectively enhance crop productivity and yield. However, the response of the soil bacterial community to different irrigation water dissolved oxygen (DO) concentrations remains elusive due to the extreme sensitivity of microorganisms to environmental variations. We investigated the effects of aerated irrigation with different concentrations of DO on soil properties and agronomic performance of cucumber, as well as the contribution of the bacterial community. We performed experiments on cucumber cultivation in Shouguang, China, including different irrigation methods (ADI: O2-10 and O3-20 mg L-1, non-aerated groundwater: O1-5 mg L-1) and nitrogen (N) application rates: 240 and 360 kg N ha-1. ADI (particularly O2) significantly improved soil properties, root growth, cucumber yields, and irrigation water use efficiency (IWUE), and appropriate DO concentrations reduced N fertilizer application and increased crop yields. Furthermore, these changes were associated with bacterial community diversity, aerobic bacteria abundance, and consolidated bacterial population stability within the network module. Environmental factors such as soil respiration rate (Rs), DO, and NO3--N have significant effects on bacterial communities. The FAPROTAX results demonstrated enhanced nitrification (Nitrospira) and aerobic nitrite oxidation by soil bacteria under ADI, promoting the accumulation of effective soil N and improved soil fertility and crop yield. Appropriate DO concentration is conducive to the involvement of soil bacterial communities in regulating soil properties and cucumber growth performance, which are vital for the sustainable development of facility agriculture.
Collapse
Affiliation(s)
- Zheyuan Xiao
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Hongjun Lei
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yingji Lian
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Zhenhua Zhang
- School of Hydraulic Engineering, Ludong University, Yantai 264025, China;
| | - Hongwei Pan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Chen Yin
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| | - Yecheng Dong
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Z.X.); (Y.L.); (H.P.); (C.Y.); (Y.D.)
| |
Collapse
|
7
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
8
|
Zou D, Li H, Du P, Wang B, Lin H, Liu H, Chen J, Li M. Distinct Features of Sedimentary Archaeal Communities in Hypoxia and Non-Hypoxia Regions off the Changjiang River Estuary. Microbiol Spectr 2022; 10:e0194722. [PMID: 36066619 PMCID: PMC9602602 DOI: 10.1128/spectrum.01947-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
Water hypoxia (DO < 2 mg/L) is a growing global environmental concern that has the potential to significantly influence not only the aquatic ecosystem but also the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as one of the world's largest seasonal hypoxic water basins, has been reported to be expanding rapidly in recent decades. However, the microbial community dynamics and responses to this water hypoxia are still unclear. In this study, we examined the abundance, community composition, and distribution of sedimentary archaea, one important component of microbial communities in the Changjiang River Estuary and the East China Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predominant archaeal groups in these research areas, with their 16S rRNA gene abundance ranged from 8.55 × 106 to 7.51 × 108 and 3.18 × 105 to 1.11 × 108 copies/g, respectively. The sedimentary archaeal community was mainly influenced by DO, together with the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in the archaeal community's composition, abundance, and driving factors were discovered between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks suggest various microbes leading the different activities in hypoxic and normoxic environments. Bathyarchaeota and Thermoprofundales were "key stone" archaeal members of the low-DO network, whereas Thaumarchaeota constituted a significant component of the high-DO network. Our results provide a clear picture of the sedimentary archaeal community in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia and non-hypoxia environments, including ecological niches and metabolic functions. IMPORTANCE In this study, the sedimentary archaeal community composition and abundance were detailed revealed and quantified based on 16S rRNA genes off the Changjiang River Estuary. We found that the community composition was distinct between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas total organic carbon, total nitrogen, and sulfide were major influencing factors in non-hypoxia regions. The distinct microbial network may suggest the niche difference of archaeal community under various oxygen level.
Collapse
Affiliation(s)
- Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Ping Du
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Bin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hua Lin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Hongbin Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Da Silva RRP, White CA, Bowman JP, Ross DJ. Composition and functionality of bacterioplankton communities in marine coastal zones adjacent to finfish aquaculture. MARINE POLLUTION BULLETIN 2022; 182:113957. [PMID: 35872476 DOI: 10.1016/j.marpolbul.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Finfish aquaculture is a fast-growing primary industry and is increasingly common in coastal ecosystems. Bacterioplankton is ubiquitous in marine environment and respond rapidly to environmental changes. Changes in bacterioplankton community are not well understood in semi-enclosed stratified embayments. This study aims to examine aquaculture effects in the composition and functional profiles of the bacterioplankton community using amplicon sequencing along a distance gradient from two finfish leases in a marine embayment. Results revealed natural stratification in bacterioplankton associated to NOx, conductivity, salinity, temperature and PO4. Among the differentially abundant bacteria in leases, we found members associated with nutrient enrichment and aquaculture activities. Abundant predicted functions near leases were assigned to organic matter degradation, fermentation, and antibiotic resistance. This study provides a first effort to describe changes in the bacterioplankton community composition and function due to finfish aquaculture in a semi-enclosed and highly stratified embayment with a significant freshwater input.
Collapse
Affiliation(s)
- R R P Da Silva
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia.
| | - C A White
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| | - J P Bowman
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - D J Ross
- Institute for Marine and Antarctic Studies (IMAS), Nubeena Crescent, Taroona, Tasmania 7053, Australia
| |
Collapse
|
10
|
Bacterial and Protistan Community Variation across the Changjiang Estuary to the Ocean with Multiple Environmental Gradients. Microorganisms 2022; 10:microorganisms10050991. [PMID: 35630434 PMCID: PMC9144284 DOI: 10.3390/microorganisms10050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Plankton microorganisms play central roles in the marine food web and global biogeochemical cycles, while their distribution and abundance are affected by environmental variables. The determinants of microbial community composition and diversity in estuaries and surrounding waters with multiple environmental gradients at a fine scale remain largely unclear. Here, we investigated bacterial and protistan community assembly in surface waters from 27 stations across the Changjiang Estuary to the ocean, with salinity ranging from 0 to 32.1, using 16S rRNA and 18S rRNA gene amplicon sequencing. Statistical analyses revealed that salinity is the major factor structuring both bacterial and protistan communities. Salinity also acted as a significant environmental determinant influencing alpha-diversity patterns. Alpha diversity indices for bacterial and protistan communities revealed a species minimum in higher-salinity waters (22.1–32.1). Contrary to the protistan community, the highest bacterial diversity was identified in medium-salinity waters (2.8–18.8), contrasting Remane’s Artenminimum concept. The distribution of major planktonic taxa followed the expected pattern, and the salinity boundary for Syndiniales was specifically identified. These findings revealed the significant effects of salinity on the microbial community across an estuary to ocean transect and the distinct response to salinity between bacterial and protistan communities.
Collapse
|
11
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Pacheco A, Yebra-Montes C, Gradilla-Hernández MS, Senés-Guerrero C. Bacterial Dynamics and Their Influence on the Biogeochemical Cycles in a Subtropical Hypereutrophic Lake During the Rainy Season. Front Microbiol 2022; 13:832477. [PMID: 35479621 PMCID: PMC9037096 DOI: 10.3389/fmicb.2022.832477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Lakes in subtropical regions are highly susceptible to eutrophication due to the heavy rainfall, which causes significant runoff of pollutants (e.g., nutrients) to reach surface waters, altering the water quality and influencing the microbial communities that regulate the biogeochemical cycles within these ecosystems. Lake Cajititlán is a shallow, subtropical, and endorheic lake in western Mexico. Nutrient pollution from agricultural activity and wastewater discharge have affected the lake's water quality, leading the reservoir to a hypereutrophic state, resulting in episodes of fish mortality during the rainy season. This study investigated the temporal dynamics of bacterial communities within Lake Cajititlán and their genes associated with the nitrogen, phosphorus, sulfur, and carbon biogeochemical cycles during the rainy season, as well as the influences of physicochemical and environmental variables on such dynamics. Significant temporal variations were observed in the composition of bacterial communities, of which Flavobacterium and Pseudomonas were the dominant genera. The climatological parameters that were most correlated with the bacterial communities and their functional profiles were pH, DO, ORP, turbidity, TN, EC, NH4 +, and NO3 -. The bacterial communities displayed variations in their functional composition for nitrogen, phosphorus, and sulfur metabolisms during the sampling months. The bacterial communities within the lake are highly susceptible to nutrient loads and low DO levels during the rainy season. Bacterial communities had a higher relative abundance of genes associated with denitrification, nitrogen fixation, assimilatory sulfate reduction, cysteine, SOX system, and all phosphorus metabolic pathways. The results obtained here enrich our understanding of the bidirectional interactions between bacterial communities and major biogeochemical processes in eutrophic subtropical lakes.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - Ofelia Yadira Lugo-Melchor
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - José de Anda
- Departamento de Tecnologia Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | | | | | | |
Collapse
|
12
|
Mai Y, Peng S, Lai Z, Wang X. Seasonal and inter-annual variability of bacterioplankton communities in the subtropical Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21981-21997. [PMID: 34775557 DOI: 10.1007/s11356-021-17449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
It is widely recognized that environmental factors substantially influence on the seasonal and inter-annual variability of bacterioplankton communities, yet little is known about the seasonality of bacterioplankton communities in subtropical estuaries at longer-term time scales. Here, the bacterioplankton communities from the eight major outlets of the subtropical Pearl River Estuary were investigated across 3 years (2017-2019) using full-length 16S rRNA gene sequencing. Significant seasonal and inter-annual variation was observed in bacterioplankton community compositions across the 3 years (p < 0.05). In addition, the inferred functional composition of the communities varied with seasons, although not significantly, suggesting that functional redundancy existed among communities and across seasons that could help to cope with environmental changes. Five evaluated environmental parameters (temperature, salinity, pH, total dissolved solids (TDS), total phosphorus (TP)) were significantly correlated with community composition variation, while only three environmental parameters (temperature, pH, and TDS) were correlated with variation in inferred functional composition. Moreover, community composition tracked the seasonal temperature gradients, indicating that temperature was a key environmental factor that affected bacterioplankton community's variation along with seasonal succession patterns. Gammaproteobacteria and Alphaproteobacteria were the most dominant classes in the surface waters of Pearl River Estuary, and their members exhibited divergent responses to temperature changes, while several taxa within these group could be indicators of low and high temperatures that are associated with seasonal changes. These results strengthen our understanding of bacterioplankton community variation in association with temperature-dependent seasonal changes in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510070, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 100 Xianlie Middle Road, 510070, China.
| |
Collapse
|
13
|
Liu Y, Ma W, He H, Wang Z, Cao Y. Effects of Sugarcane and Soybean Intercropping on the Nitrogen-Fixing Bacterial Community in the Rhizosphere. Front Microbiol 2021; 12:713349. [PMID: 34659143 PMCID: PMC8515045 DOI: 10.3389/fmicb.2021.713349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Intercropping between sugarcane and soybean is widely used to increase crop yield and promote the sustainable development of the sugarcane industry. However, our understanding of the soil microenvironment in intercropping systems, especially the effect of crop varieties on rhizosphere soil bacterial communities, remains poor. We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9 (ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field interplanting experiments. These two cultivars of sugarcane have good drought resistance. Rhizosphere soil samples were collected from the two intercropping systems to measure physicochemical properties and soil enzyme activities and to extract total soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere bacterial community was significantly different between the two intercropping systems. Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria, increasing the available nitrogen content by 18% compared with that with ZZ1. In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere environment than ZZ1, thus providing favorable conditions for sugarcane growth. These results provide guidance for the sugarcane industry, especially for the management of sugarcane and soybean intercropping in Guangxi, China.
Collapse
Affiliation(s)
- Yue Liu
- College of Agronomy, Guangxi University, Nanning, China
| | - Wenqing Ma
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Hongliang He
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
| | - Yanhong Cao
- Guangxi Key Laboratory of Livestock Genetic Improvement, The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14
|
Parvathi A, Catena M, Jasna V, Phadke N, Gogate N. Influence of hydrological factors on bacterial community structure in a tropical monsoonal estuary in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50579-50592. [PMID: 33963997 DOI: 10.1007/s11356-021-14263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we analyzed variations in bacterial community structure along a salinity gradient in a tropical monsoonal estuary (Cochin estuary [CE]), on the southwest coast of India, using Illumina next-generation sequencing (NGS). Water samples were collected from eight different locations thrice a year to assess the variability in the bacterial community structure and to determine the physico-chemical factors influencing the bacterial diversity. Proteobacteria was the most dominant phyla in the estuary followed by Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. Statistical analysis indicated significant variations in bacterial communities between freshwater and mesohaline and euryhaline regions, as well as between the monsoon (wet) and nonmonsoon (dry) periods. The abundance of Betaproteobacteria was higher in the freshwater regions, while Alphaproteobacteria and Epsilonproteobactera were more abundant in mesohaline and euryhaline regions of the estuary. Gammaproteobacteria was more abundant in regions with high nutrient concentrations. Various bacterial genera indicating the presence of fecal contamination and eutrophication were detected. Corrplot based on Pearson correlation analysis demonstrated the important physico-chemical variables (temperature, salinity, dissolved oxygen, and inorganic nutrients) that influence the distribution of dominant phyla, class, and genera. The observed spatio-temporal variations in bacterial community structure in the CE were governed by regional variations in anthropogenic inputs and seasonal variations in monsoonal rainfall and tidal influx.
Collapse
Affiliation(s)
- Ammini Parvathi
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India.
| | - Michela Catena
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India
| | - Vijayan Jasna
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Nikhil Phadke
- GenePath Dx, Shivajinagar, Pune, Maharashtra, 411004, India
| | - Nikhita Gogate
- GenePath Dx, Shivajinagar, Pune, Maharashtra, 411004, India
| |
Collapse
|
15
|
Wang J, Wang L, Hu W, Pan Z, Zhang P, Wang C, Wang J, Wu S, Li YZ. Assembly processes and source tracking of planktonic and benthic bacterial communities in the Yellow River estuary. Environ Microbiol 2021; 23:2578-2591. [PMID: 33754415 DOI: 10.1111/1462-2920.15480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Estuaries connect rivers with the ocean and are considered transition regions due to the continuous inputs from rivers. Microbiota from different sources converge and undergo succession in these transition regions, but their assembly mechanisms along environmental gradients remain unclear. Here, we found that salinity had a stronger effect on planktonic than on benthic microbial communities, and the dominant planktonic bacteria changed more distinctly than the dominant benthic bacteria with changes in salinity. The planktonic bacteria in the brackish water came mainly from seawater, which was confirmed in the laboratory, whereas the benthic bacteria were weakly affected by salinity, which appeared to be a mixture of the bacteria from riverine and oceanic sediments. Benthic bacterial community assembly in the sediments was mainly controlled by homogeneous selection and almost unaffected by changes in salinity, the dominant assemblage processes for planktonic bacteria changed dramatically along the salinity gradient, from homogeneous selection in freshwater to drift in seawater. Our results highlight that salinity is the key driver of estuarine microbial succession and that salinity is more important in shaping planktonic than benthic bacterial communities in the Yellow River estuary.
Collapse
Affiliation(s)
- Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lidong Wang
- National Nature Reserve Administration of Yellow River Delta, Dongying, 257091, China
| | - Weifeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shuge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
16
|
Díaz-Torres O, de Anda J, Lugo-Melchor OY, Pacheco A, Orozco-Nunnelly DA, Shear H, Senés-Guerrero C, Gradilla-Hernández MS. Rapid Changes in the Phytoplankton Community of a Subtropical, Shallow, Hypereutrophic Lake During the Rainy Season. Front Microbiol 2021; 12:617151. [PMID: 33767675 PMCID: PMC7986568 DOI: 10.3389/fmicb.2021.617151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
Lake Cajititlán is a small, shallow, subtropical lake located in an endorheic basin in western Mexico. It is characterized by a strong seasonality of climate with pronounced wet and dry seasons and has been classified as a hypereutrophic lake. This eutrophication was driven by improperly treated sewage discharges from four municipal wastewater treatment plants (WWTPs) and by excessive agricultural activities, including the overuse of fertilizers that reach the lake through surface runoff during the rainy season. This nutrient rich runoff has caused algal blooms, which have led to anoxic or hypoxic conditions, resulting in large-scale fish deaths that have occurred during or immediately after the rainy season. This study investigated the changes in the phytoplankton community in Lake Cajititlán during the rainy season and the association between these changes and the physicochemical water quality and environmental parameters measured in the lake’s basin. Planktothrix and Cylindrospermopsis were the dominant genera of the cyanobacterial community, while the Chlorophyceae, Chrysophyceae, and Trebouxiophyceae classes dominated the microalgae community. However, the results showed a significant temporal shift in the phytoplankton communities in Lake Cajititlán induced by the rainy season. The findings of this study suggest that significant climatic variations cause high seasonal surface runoff and rapid changes in the water quality (Chlorophyll-a, DO, NH4+, and NO3–) and in variations in the composition of the phytoplankton community. Finally, an alternation between phosphorus and nitrogen limitation was observed in Lake Cajititlán during the rainy season, clearly correlating to the presence of Planktothrix when the lake was limited by phosphorus and to the presence of Cylindrospermopsis when the lake was limited by nitrogen. The evidence presented in this study supports the idea that the death of fish in Lake Cajititlán could be mainly caused by anoxia, caused by rapid changes in water quality during the rainy season. Based on our review of the literature, this is the first study on the phytoplankton community in a subtropical lake during the rainy season using high throughput 16S rRNA and 18S rRNA amplicon sequencing.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - José de Anda
- Departamento de Tecnologia Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Ofelia Yadira Lugo-Melchor
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | | | - Harvey Shear
- Department of Geography, Geomatics and Environment, University of Toronto-Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
17
|
Ng JCY, Chiu JMY. Changes in biofilm bacterial communities in response to combined effects of hypoxia, ocean acidification and nutrients from aquaculture activity in Three Fathoms Cove. MARINE POLLUTION BULLETIN 2020; 156:111256. [PMID: 32510398 DOI: 10.1016/j.marpolbul.2020.111256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic nutrient enrichment results in hypoxia, ocean acidification and elevated nutrients (HOAN) in coastal environments throughout the world. Here, we examined the composition of biofilm bacterial communities from a nutrient-excessive fish farm with low dissolved oxygen (DO) and pH levels using 16S rRNA gene sequencing. HOAN was accompanied by higher bacterial diversity and richness, and resulted in an altered community composition than the control site. HOAN resulted in more Flavobacteriales, Rhizobiales, Epsilonproteobacteria and Vibrionales, but less Oceanospirillales and Alteromonadales. Photobacterium sp. and Vibrio sp. were mostly found to be exclusive to HOAN conditions, suggesting that HOAN could possibly proliferate the presence of these potential pathogens. Our study suggests the complexity of bacterial communities to hypoxia and acidification in response to increased nutrient loads, along with identities of nutrient, oxygen and pH-susceptible bacterial groups that are most likely affected under this ocean trend.
Collapse
Affiliation(s)
- Jenny C Y Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jill M Y Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|