1
|
Pirzada A, Cai J, Heiss G, Sotres-Alvarez D, Gallo LC, Youngblood ME, Avilés-Santa ML, González HM, Isasi CR, Kaplan R, Kunz J, Lash JP, Lee DJ, Llabre MM, Penedo FJ, Rodriguez CJ, Schneiderman N, Sofer T, Talavera GA, Thyagarajan B, Wassertheil-Smoller S, Daviglus ML. Evolving Science on Cardiovascular Disease Among Hispanic/Latino Adults: JACC International. J Am Coll Cardiol 2023; 81:1505-1520. [PMID: 37045521 DOI: 10.1016/j.jacc.2023.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 04/14/2023]
Abstract
The landmark, multicenter HCHS/SOL (Hispanic Community Health Study/Study of Latinos) is the largest, most comprehensive, longitudinal community-based cohort study to date of diverse Hispanic/Latino persons in the United States. The HCHS/SOL aimed to address the dearth of comprehensive data on risk factors for cardiovascular disease (CVD) and other chronic diseases in this population and has expanded considerably in scope since its inception. This paper describes the aims/objectives and data collection of the HCHS/SOL and its ancillary studies to date and highlights the critical and sizable contributions made by the study to understanding the prevalence of and changes in CVD risk/protective factors and the burden of CVD and related chronic conditions among adults of diverse Hispanic/Latino backgrounds. The continued follow-up of this cohort will allow in-depth investigations on cardiovascular and pulmonary outcomes in this population, and data from the ongoing ancillary studies will facilitate generation of new hypotheses and study questions.
Collapse
Affiliation(s)
- Amber Pirzada
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, Illinois, USA.
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Linda C Gallo
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Marston E Youngblood
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Larissa Avilés-Santa
- Division of Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA
| | - Hector M González
- Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John Kunz
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James P Lash
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - David J Lee
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria M Llabre
- Department of Psychology, University of Miami, Miami, Florida, USA
| | - Frank J Penedo
- Department of Psychology, University of Miami, Miami, Florida, USA
| | - Carlos J Rodriguez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gregory A Talavera
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Genetic pleiotropy underpinning adiposity and inflammation in self-identified Hispanic/Latino populations. BMC Med Genomics 2022; 15:192. [PMID: 36088317 PMCID: PMC9464371 DOI: 10.1186/s12920-022-01352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Concurrent variation in adiposity and inflammation suggests potential shared functional pathways and pleiotropic disease underpinning. Yet, exploration of pleiotropy in the context of adiposity-inflammation has been scarce, and none has included self-identified Hispanic/Latino populations. Given the high level of ancestral diversity in Hispanic American population, genetic studies may reveal variants that are infrequent/monomorphic in more homogeneous populations. METHODS Using multi-trait Adaptive Sum of Powered Score (aSPU) method, we examined individual and shared genetic effects underlying inflammatory (CRP) and adiposity-related traits (Body Mass Index [BMI]), and central adiposity (Waist to Hip Ratio [WHR]) in HLA participating in the Population Architecture Using Genomics and Epidemiology (PAGE) cohort (N = 35,871) with replication of effects in the Cameron County Hispanic Cohort (CCHC) which consists of Mexican American individuals. RESULTS Of the > 16 million SNPs tested, variants representing 7 independent loci were found to illustrate significant association with multiple traits. Two out of 7 variants were replicated at statistically significant level in multi-trait analyses in CCHC. The lead variant on APOE (rs439401) and rs11208712 were found to harbor multi-trait associations with adiposity and inflammation. CONCLUSIONS Results from this study demonstrate the importance of considering pleiotropy for improving our understanding of the etiology of the various metabolic pathways that regulate cardiovascular disease development.
Collapse
|
3
|
Lopes-Marques M, Silva R, Serrano C, Gomes V, Cardoso A, Prata MJ, Amorim A, Azevedo L. Complex interactions between p.His558Arg and linked variants in the sodium voltage-gated channel alpha subunit 5 (Na V 1.5). PeerJ 2022; 10:e13913. [PMID: 35996667 PMCID: PMC9392453 DOI: 10.7717/peerj.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
Common genetic polymorphisms may modify the phenotypic outcome when co-occurring with a disease-causing variant, and therefore understanding their modulating role in health and disease is of great importance. The polymorphic p.His558Arg variant of the sodium voltage-gated channel alpha subunit 5 (Na V 1.5) encoded by the SCN5A gene is a case in point, as several studies have shown it can modify the clinical phenotype in a number of cardiac diseases. To evaluate the genetic backgrounds associated with this modulating effect, we reanalysed previous electrophysiological findings regarding the p.His558Arg variant and further assessed its patterns of genetic diversity in human populations. The Na V 1.5 p.His558Arg variant was found to be in linkage disequilibrium with six other polymorphic variants that previously were also associated with cardiac traits in GWAS analyses. On account of this, incongruent reports that Arg558 allele can compensate, aggravate or have no effect on Na V 1.5, likely might have arose due to a role of p.His558Arg depending on the additional linked variants. Altogether, these results indicate a major influence of the epistatic interactions between SCN5A variants, revealing also that phenotypic severity may depend on the polymorphic background associated to each individual genome.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Raquel Silva
- Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Viseu, Portugal
| | - Catarina Serrano
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Verónica Gomes
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Ana Cardoso
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Maria João Prata
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Antonio Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| | - Luisa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal,Faculty of Sciences, University of Porto, Porto, Portugal,Population Genetics and Evolution, Institute of Innovation and Investigation in Health (i3S), Porto, Portugal
| |
Collapse
|
4
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
5
|
A genome-wide association and polygenic risk score study on abnormal electrocardiogram in a Chinese population. Sci Rep 2021; 11:4669. [PMID: 33633301 PMCID: PMC7907205 DOI: 10.1038/s41598-021-84135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Electrocardiography is a common and widely-performed medical examination based on the measurement and evaluation of electrocardiogram (ECG) to assess the up-to-date cardiac rhythms and thus suggest the health conditions of cardiovascular system and on a larger level the individual’s wellness. Abnormal ECG assessment from the detection of abnormal heart rhythms may have clinical implications including blood clots in formation, ongoing heart attack, coronary artery blockage, etc. Past genetic-phenotypic research focused primarily on the physical parameters of ECG but not the medical evaluation. To unbiasedly uncover the underlying links of genetic variants with normal vs. abnormal ECG assessment, a genome-wide association study (GWAS) is carried out in a 1006-participant cohort of Chinese population effectively genotyped for 243487 single nucleotide polymorphisms (SNPs). Both age and sex are influential factors, and six novel SNPs are identified for potential association with abnormal ECG. With the selected SNPs, a polygenic risk score (PRS) differentiates the case–control subgroups, and correlates well with increased risk of abnormal ECG. The findings are reproduced in an independent validation cohort. The derived PRS may function as a potential biomarker for prospectively screening the high-risk subgroup of heart issues in the Chinese population.
Collapse
|
6
|
Keywan C, Poduri AH, Goldstein RD, Holm IA. Genetic Factors Underlying Sudden Infant Death Syndrome. APPLICATION OF CLINICAL GENETICS 2021; 14:61-76. [PMID: 33623412 PMCID: PMC7894824 DOI: 10.2147/tacg.s239478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/24/2021] [Indexed: 12/28/2022]
Abstract
Sudden Infant Death syndrome (SIDS) is a diagnosis of exclusion. Decades of research have made steady gains in understanding plausible mechanisms of terminal events. Current evidence suggests SIDS includes heterogeneous biological conditions, such as metabolic, cardiac, neurologic, respiratory, and infectious conditions. Here we review genetic studies that address each of these areas in SIDS cases and cohorts, providing a broad view of the genetic underpinnings of this devastating phenomenon. The current literature has established a role for monogenic genetic causes of SIDS mortality in a subset of cases. To expand upon our current knowledge of disease-causing genetic variants in SIDS cohorts and their mechanisms, future genetic studies may employ functional assessments of implicated variants, broader genetic tests, and the inclusion of parental genetic data and family history information.
Collapse
Affiliation(s)
- Christine Keywan
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna H Poduri
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Richard D Goldstein
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of General Pediatrics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ingrid A Holm
- Robert's Program for Sudden Unexpected Death in Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Genetics and Genomics, Department of Pediatrics, and Manton Center for Orphan Diseases Research, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Vincentz JW, Firulli BA, Toolan KP, Arking DE, Sotoodehnia N, Wan J, Chen PS, de Gier-de Vries C, Christoffels VM, Rubart-von der Lohe M, Firulli AB. Variation in a Left Ventricle-Specific Hand1 Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function. Circ Res 2019; 125:575-589. [PMID: 31366290 DOI: 10.1161/circresaha.119.315313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.
Collapse
Affiliation(s)
- Joshua W Vincentz
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Beth A Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Kevin P Toolan
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Nona Sotoodehnia
- Department of Epidemiology, Division of Cardiology, University of Washington, Seattle (N.S.)
| | - Juyi Wan
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.).,Department of Cardiothoracic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China (J.W.)
| | - Peng-Sheng Chen
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.)
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Michael Rubart-von der Lohe
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Anthony B Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| |
Collapse
|