1
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In Situ UNIversal Orthogonal Network (UNION) Bioink Deposition for Direct Delivery of Corneal Stromal Stem Cells to Corneal Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613997. [PMID: 39386574 PMCID: PMC11463654 DOI: 10.1101/2024.09.19.613997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ -forming, suture-free therapy for delivering CSSCs to corneal wounds. TEASER. Corneal stem cells are delivered within chemically crosslinked collagen as a transparent, regenerative biomaterial therapy.
Collapse
|
2
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612534. [PMID: 39345483 PMCID: PMC11429934 DOI: 10.1101/2024.09.11.612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. Statement of significance Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications. Graphical abstract
Collapse
|
3
|
De Santis E, Faruqui N, Russell CT, Noble JE, Kepiro IE, Hammond K, Tsalenchuk M, Ryadnov EM, Wolna M, Frogley MD, Price CJ, Barbaric I, Cinque G, Ryadnov MG. Hyperspectral Mapping of Human Primary and Stem Cells at Cell-Matrix Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2154-2165. [PMID: 38181419 DOI: 10.1021/acsami.3c17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.
Collapse
Affiliation(s)
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Craig T Russell
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K
| | - James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, U.K
| | - Eugeni M Ryadnov
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Magda Wolna
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Ivana Barbaric
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Gianfelice Cinque
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
4
|
Okoro PD, Frayssinet A, De Oliveira S, Rouquier L, Miklosic G, D'Este M, Potier E, Hélary C. Combining biomimetic collagen/hyaluronan hydrogels with discogenic growth factors promotes mesenchymal stroma cell differentiation into Nucleus Pulposus like cells. Biomater Sci 2023; 11:7768-7783. [PMID: 37870786 DOI: 10.1039/d3bm01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on stem cell injection into degenerated Nucleus Pulposus (NP), novel treatments for intervertebral disc (IVD) regeneration were disappointing because of cell leakage or inappropriate cell differentiation. In this study, we hypothesized that mesenchymal stromal cells encapsulated within injectable hydrogels possessing adequate physico-chemical properties would differentiate into NP like cells. Composite hydrogels consisting of type I collagen and tyramine-substituted hyaluronic acid (THA) were prepared to mimic the NP physico-chemical properties. Human bone marrow derived mesenchymal stromal cells (BM-MSCs) were encapsulated within hydrogels and cultivated in proliferation medium (supplemented with 10% fetal bovine serum) or differentiation medium (supplemented with GDF5 and TGFβ1) over 28 days. Unlike pure collagen, collagen/THA composite hydrogels were stable over 28 days in culture. In proliferation medium, the cell viability within pure collagen hydrogels was high, whereas that in composite and pure THA hydrogels was lower due to the weaker cell adhesion. Nonetheless, BM-MSCs proliferated in all hydrogels. In composite hydrogels, cells exhibited a rounded morphology similar to NP cells. The differentiation medium did not impact the hydrogel stability and cell morphology but negatively impacted the cell viability in pure collagen hydrogels. A high THA content within hydrogels promoted the gene expression of NP markers such as collagen II, aggrecan, SOX9 and cytokeratin 18 at day 28. The differentiation medium potentialized this effect with an earlier and higher expression of these NP markers. Taken together, these results show that the physico-chemical properties of collagen/THA composite hydrogels and GDF5/TGFβ1 act in synergy to promote the differentiation of BM-MSCs into NP like cells.
Collapse
Affiliation(s)
- Prince David Okoro
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Antoine Frayssinet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Stéphanie De Oliveira
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| | - Léa Rouquier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Gregor Miklosic
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Matteo D'Este
- AO Research Institute Davos (ARI), Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, ENVA, B3OA, F-75010 Paris, France
| | - Christophe Hélary
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, UMR 7574, F-75005, Paris, France.
| |
Collapse
|
5
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol 2023; 11:1301362. [PMID: 38033824 PMCID: PMC10682480 DOI: 10.3389/fbioe.2023.1301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Wound healing is a complex and prolonged process that remains a significant challenge in clinical practice. Exosomes, a type of nanoscale extracellular vesicles naturally secreted by cells, are endowed with numerous advantageous attributes, including superior biocompatibility, minimal toxicity, and non-specific immunogenicity. These properties render them an exceptionally promising candidate for bioengineering applications. Recent advances have illustrated the potential of exosome therapy in promoting tissue repair. To further augment their therapeutic efficacy, the concept of engineered exosomes has been proposed. These are designed and functionally modifiable exosomes that have been tailored on the attributes of natural exosomes. This comprehensive review delineates various strategies for exosome engineering, placing specific emphasis on studies exploring the application of engineered exosomes for precision therapy in wound healing. Furthermore, this review sheds light on strategies for integrating exosomes with biomaterials to enhance delivery effectiveness. The insights presented herein provide novel perspectives and lay a robust foundation for forthcoming research in the realm of cutaneous wound repair therapies.
Collapse
Affiliation(s)
- Hailian Ye
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feihong Shu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunwu Fan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Koskinen Holm C, Qu C. Engineering a 3D In Vitro Model of Human Gingival Tissue Equivalent with Genipin/Cytochalasin D. Int J Mol Sci 2022; 23:ijms23137401. [PMID: 35806407 PMCID: PMC9266888 DOI: 10.3390/ijms23137401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Although three-dimensional (3D) co-culture of gingival keratinocytes and fibroblasts-populated collagen gel can mimic 3D structure of in vivo tissue, the uncontrolled contraction of collagen gel restricts its application in clinical and experimental practices. We here established a stable 3D gingival tissue equivalent (GTE) using hTERT-immortalized gingival fibroblasts (hGFBs)-populated collagen gel directly crosslinked with genipin/cytochalasin D and seeding hTERT-immortalized gingival keratinocytes (TIGKs) on the upper surface for a 2-week air–liquid interface co-culture. MTT assay was used to measure the cell viability of GTEs. GTE size was monitored following culture period, and the contraction was analyzed. Immunohistochemical assay was used to analyze GTE structure. qRT-PCR was conducted to examine the mRNA expression of keratinocyte-specific genes. Fifty µM genipin (G50) or combination (G + C) of G50 and 100 nM cytochalasin D significantly inhibited GTE contraction. Additionally, a higher cell viability appeared in GTEs crosslinked with G50 or G + C. GTEs crosslinked with genipin/cytochalasin D showed a distinct multilayered stratified epithelium that expressed keratinocyte-specific genes similar to native gingiva. Collagen directly crosslinked with G50 or G + C significantly reduced GTE contraction without damaging the epithelium. In summary, the TIGKs and hGFBs can successfully form organotypic multilayered cultures, which can be a valuable tool in the research regarding periodontal disease as well as oral mucosa disease. We conclude that genipin is a promising crosslinker with the ability to reduce collagen contraction while maintaining normal cell function in collagen-based oral tissue engineering.
Collapse
Affiliation(s)
- Cecilia Koskinen Holm
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence: (C.K.H.); (C.Q.)
| |
Collapse
|
8
|
Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14030651. [PMID: 35336024 PMCID: PMC8949428 DOI: 10.3390/pharmaceutics14030651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired wound healing can lead to local hypoxia or tissue necrosis and ultimately result in amputation or even death. Various factors can influence the wound healing environment, including bacterial or fungal infections, different disease states, desiccation, edema, and even systemic viral infections such as COVID-19. Silk fibroin, the fibrous structural-protein component in silk, has emerged as a promising treatment for these impaired processes by promoting functional tissue regeneration. Silk fibroin’s dynamic properties allow for customizable nanoarchitectures, which can be tailored for effectively treating several wound healing impairments. Different forms of silk fibroin include nanoparticles, biosensors, tissue scaffolds, wound dressings, and novel drug-delivery systems. Silk fibroin can be combined with other biomaterials, such as chitosan or microRNA-bound cerium oxide nanoparticles (CNP), to have a synergistic effect on improving impaired wound healing. This review focuses on the different applications of silk-fibroin-based nanotechnology in improving the wound healing process; here we discuss silk fibroin as a tissue scaffold, topical solution, biosensor, and nanoparticle.
Collapse
|
9
|
Zhu Y, Deng S, Zhao X, Xia G, Zhao R, Chan HF. Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomater 2021; 134:32-42. [PMID: 34325076 DOI: 10.1016/j.actbio.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The folding of tissues/organs into complex shapes is a common phenomenon that occurs in organisms such as animals and plants, and is both structurally and functionally important. Deciphering the process of tissue folding and applying this knowledge to engineer folded systems would significantly advance the field of tissue engineering. Although early studies focused on investigating the biochemical signaling events that occur during the folding process, the physical or mechanical aspects of the process have received increasing attention in recent years. In this review, we will summarize recent findings on the mechanical aspects of folding and introduce strategies by which folding can be controlled in vitro. Emphasis will be placed on the folding events triggered by mechanical effects at the cellular and tissue levels and on the different cell- and biomaterial-based approaches used to recapitulate folding. Finally, we will provide a perspective on the development of engineering tissue folding toward preclinical and clinical translation. STATEMENT OF SIGNIFICANCE: Tissue folding is a common phenomenon in a variety of organisms including human, and has been shown to serve important structural and functional roles. Understanding how folding forms and applying the concept in tissue engineering would represent an advance of the research field. Recently, the physical or mechanical aspect of tissue folding has gained increasing attention. In this review, we will cover recent findings of the mechanical aspect of folding mechanisms, and introduce strategies to control the folding process in vitro. We will also provide a perspective on the future development of the field towards preclinical and clinical translation of various bio fabrication technologies.
Collapse
Affiliation(s)
- Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai 200233, China
| | - Ruike Zhao
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China.
| |
Collapse
|
10
|
Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater 2021; 131:41-61. [PMID: 34192571 DOI: 10.1016/j.actbio.2021.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.
Collapse
|
11
|
Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tendon injuries still pose a challenge to reconstructive surgeons. Tendon tissue is a bradytrophic tissue and has a poor tendency to heal. Autologous tendon grafts are, therefore, still the gold standard in restorative operations but are associated with significant donor side morbidity. The experimental approach of the present study focused on the use of the biomaterial spider silk as a biocompatible and very stable carrier matrix in combination with a collagen type I hydrogel and adipose-derived stromal cells. The constructs were differentiated by axial strain to tendon-like tissue using a custom-made bioreactor. Macroscopically, tendon-like tissue could be detected which histologically showed high cell vitality even in long-term cultivation. In addition, cell morphology comparable to tenocytes could be detected in the bioreactor-stimulated tendon-like constructs compared to the controls. Immunohistochemically, tendon tissue-specific markers could be detected. Therefore, the developed tendon-like construct represents a promising approach towards patient specific tendon reconstruction, but further studies are needed.
Collapse
|