1
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
2
|
Pérez-Rubio P, Lavado-García J, Bosch-Molist L, Romero EL, Cervera L, Gòdia F. Extracellular vesicle depletion and UGCG overexpression mitigate the cell density effect in HEK293 cell culture transfection. Mol Ther Methods Clin Dev 2024; 32:101190. [PMID: 38327808 PMCID: PMC10847930 DOI: 10.1016/j.omtm.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Lavado-García
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laia Bosch-Molist
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elianet Lorenzo Romero
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
4
|
Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M, Huang PH, Carragher NO, Munro AF, Murphy DJ, Veselkov K, Seckl MJ, Moffatt MF, Cookson WOC, Pardo OE. Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis 2023; 14:725. [PMID: 37938546 PMCID: PMC10632403 DOI: 10.1038/s41419-023-06240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.
Collapse
Affiliation(s)
| | - Rajat Roy
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guadalupe Gonzalez
- Department of Computing, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer Doig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lukas Krasny
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ella F Rimmer
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Anne E Willis
- MRC Toxicology Unit, Tennis Ct Rd, Cambridge, CB2 1QR, UK
| | | | - Paul H Huang
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alison F Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kirill Veselkov
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Michael J Seckl
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK.
| | - Olivier E Pardo
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
5
|
Gnatowski P, Piłat E, Kucińska-Lipka J, Saeb MR, Hamblin MR, Mozafari M. Recent advances in 3D bioprinted tumor models for personalized medicine. Transl Oncol 2023; 37:101750. [PMID: 37572498 PMCID: PMC10440569 DOI: 10.1016/j.tranon.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Cancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship. To address these limitations, hydrogel-based 3D bioprinting is emerging as a promising approach to mimic cancer development and behavior. It provides precise control over individual elements' size and distribution within the cancer microenvironment and enables the use of patient-derived tumor cells, rather than commercial lines. Consequently, hydrogel bioprinting is expected to become a state-of-the-art technique for cancer research. This manuscript presents an overview of cancer statistics, current modeling methods, and their limitations. Additionally, we highlight the significance of bioprinting, its applications in cancer modeling, and the importance of hydrogel selection. We further explore the current state of creating models for the five deadliest cancers using 3D bioprinting. Finally, we discuss current trends and future perspectives on the clinical use of cancer modeling using hydrogel bioprinting.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
6
|
Li Y, Wang C, Huang T, Yu X, Tian B. The role of cancer-associated fibroblasts in breast cancer metastasis. Front Oncol 2023; 13:1194835. [PMID: 37496657 PMCID: PMC10367093 DOI: 10.3389/fonc.2023.1194835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Breast cancer deaths are primarily caused by metastasis. There are several treatment options that can be used to treat breast cancer. There are, however, a limited number of treatments that can either prevent or inhibit the spread of breast tumor metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly focused on the importance of the tumor microenvironment (TME) in metastasis of breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts (CAFs) play important roles in cancer pathogenesis. They can remodel the structure of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other stroma cells by secreting growth factors, cytokines, and chemokines, as well as components of the ECM, which assist the tumor cells to invade through the TME and cause distant metastasis. Clinically, CAFs not only foster the initiation, growth, angiogenesis, invasion, and metastasis of breast cancer but also serve as biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we summarize the biological characteristics and subtypes of CAFs and their functions in breast cancer metastasis, focusing on their important roles in the diagnosis, prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are vital partners of breast cancer cells that assist metastasis and may represent ideal targets for prevention and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Yi Li
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyuan Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Hepatobiliary Surgery Department II, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ting Huang
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Li M, Li J, Chen H, Zhu M. VEGF-Expressing Mesenchymal Stem Cell Therapy for Safe and Effective Treatment of Pain in Parkinson's Disease. Cell Transplant 2023; 32:9636897221149130. [PMID: 36635947 PMCID: PMC9841873 DOI: 10.1177/09636897221149130] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a pro-angiogenic factor that mediates the differentiation and function of vascular endothelial cells. VEGF has been implicated in modulating various pains. However, the effects of VEGF in Parkinson's disease (PD)-related pain have not been studied. The goal of this study was to understand the effects of VEGF-expressing mesenchymal stem cells (MSCs) on PD-related pain and the involved mechanisms. We used two types of MSCs: hAMSC-Vector-GFP and hAMSC-VEGF189-GFP in PD mice. Then, the expression of VEGF and the viability have been compared between two types of MSCs. To demonstrate the therapeutic effect of hAMSC-VEGF189-GFP, we transplanted each cell line in a PD mouse model. Head mechanical withdrawal thresholds were examined. hAMSC-VEGF189-GFP was associated with significantly increased VEGF expression and slightly increased viability, compared with hAMSC-Vector-GFP. The transplanted hAMSC-VEGF189-GFP significantly improved mechanical allodynia and inhibited transient receptor potential vanilloid 1 (TRPV1) expression in site. And such pain relief effects could be partially blocked by TRPV1 agonist. However, we did not observe tumor generation or neuron degeneration in hAMSC-VEGF189-GFP-transplanted animals. Taken together, our data suggest that hAMSC-VEGF189-GFP is safely therapeutically appropriate for treating PD-related pain. VEGF inhibits TRPV1 expression, which may contribute to its analgesic properties.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ji Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hong Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Mingxin Zhu, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China.
| |
Collapse
|
8
|
Dukhanina EA, Portseva TN, Dukhanin AS, Georgieva SG. Triple-negative and triple-positive breast cancer cells reciprocally control their growth and migration via the S100A4 pathway. Cell Adh Migr 2022; 16:65-71. [PMID: 35546077 PMCID: PMC9116394 DOI: 10.1080/19336918.2022.2072554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The study's aim was to investigate the S100A4-mediated mechanisms of the regulation of tumor cell proliferation and migration in the human triple-positive breast carcinoma cell line MCF-7 (TPBC) and triple-negative breast carcinoma cell line MDA-MB-231 (TNBC). The proliferative activity of TNBC more than doubled during the incubation in the conditioned medium of TPBC. Extracellular S100A4 dose-dependently decreased the proliferative response of TPBC. TPBC negatively impacted the growth of TNBCs during their co-culturing. TPBC significantly decreased the migration activity of the TNBC cells while the S100A4 intracellular level in the TNBC was also decreasing. The decrease in the S100A4 intracellular level occurred due to the protein's monomeric form while the contribution of the dimeric form into the overall S100A4 concentration in TNBC cells increased 1.5-2-fold. The S100A4 pathway in the intercellular communication between TNBC and TPBCs also included the dexamethasone-sensitive mechanisms of S100A4 intra- and extracellular pools regulation.
Collapse
Affiliation(s)
- Elena A Dukhanina
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Portseva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Dukhanin
- Molecular Pharmacology and Radiology Department, Russian National Research Medical University, Moscow, Russia
| | - Sofia G Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Rogers MP, Kothari A, Read M, Kuo PC, Mi Z. Maintaining Myofibroblastic-Like Cancer-Associated Fibroblasts by Cancer Stemness Signal Transduction Feedback Loop. Cureus 2022; 14:e29354. [PMID: 36284815 PMCID: PMC9583706 DOI: 10.7759/cureus.29354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Myofibroblast-like cancer-associated fibroblasts (myCAF) in the tumor microenvironment (TME) promote cancer stemness, growth, and metastasis. Cancer cell-derived osteopontin (OPN) has been reported as a biomarker related to malignant cancer growth. In this study, we confirm that cancer cell stemness is required for the maintenance of an OPN-induced myCAF phenotype.
Methods: MDA-MB-231 or HepG2 cells and Sox2 knockout variants were co-cultured with human mesenchymal stem cells (MSC). In selected instances, the OPN bioactivity inhibitor OPN-R3 aptamer (APT), OPN-R3 mutant aptamer (MuAPT), or cancer cell stemness inhibitor BBI-608 were added separately. MDA-MB-231 cancer stemness and myCAF markers were quantified by real-time PCR. Stemness-lacking cancer cell mice models were created to confirm that stemness is required for the maintenance of the OPN-induced myCAF phenotype in vivo.
Results: In an MDA-MB-231 co-culture system, myCAF and stemness markers increased. Osteopontin and stemness blockade in this co-culture system decreased both myCAF and stemness marker expression, but OPN blockade after 72 hours had no effect. In contrast, when BBI608 was added at 72 hours, myCAF markers were abated after 36-hour treatment. Replacing wildtype with MDA-MB-231(-/-sox2) in co-cultures at 72 hours decreased myCAF marker expression to baseline despite the Western blot confirming the presence of OPN. Conversely, replacing MDA-MB-231(-/-sox2) cells with wildtype increased myCAF marker expression to a level equivalent to the MDA-MB-231+MSC co-culture system. In vivo osteopontin blockade diminished stemness and myCAF marker expression and stemness lacking cancer cell models, indicated by decreasing myCAF presence. Experiments were repeated in a HepG2 cell line with identical results.
Conclusions: Cancer and myCAF crosstalk increases myCAF maintenance and cancer cell stemness. In this study using human breast and liver cancer cell lines, maintenance of the OPN-induced myCAF phenotype also requires cancer stemness. This indicates that the myCAF phenotype requires two distinct signaling pathways: initiation and maintenance.
Collapse
|
10
|
Bober Z, Aebisher D, Olek M, Kawczyk-Krupka A, Bartusik-Aebisher D. Multiple Cell Cultures for MRI Analysis. Int J Mol Sci 2022; 23:10109. [PMID: 36077507 PMCID: PMC9456466 DOI: 10.3390/ijms231710109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an imaging method that enables diagnostics. In recent years, this technique has been widely used for research using cell cultures used in pharmaceutical science to understand the distribution of various drugs in a variety of biological samples, from cellular models to tissues. MRI's dynamic development in recent years, in addition to diagnostics, has allowed the method to be implemented to assess response to applied therapies. Conventional MRI imaging provides anatomical and pathological information. Due to advanced technology, MRI provides physiological information. The use of cell cultures is very important in the process of testing new synthesized drugs, cancer research, and stem cell research, among others. Two-dimensional (2D) cell cultures conducted under laboratory conditions, although they provide a lot of information, do not reflect the basic characteristics of the tumor. To replicate the tumor microenvironment in science, a three-dimensional (3D) culture of tumor cells was developed. This makes it possible to reproduce in vivo conditions where, in addition, there is a complex and dynamic process of cell-to-cell communication and cell-matrix interaction. In this work, we reviewed current research in 2D and 3D cultures and their use in MRI studies. Articles for each section were collected from PubMed, ScienceDirect, Web of Science, and Google Scholar.
Collapse
Affiliation(s)
- Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Marcin Olek
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
11
|
Franzén AS, Raftery MJ, Pecher G. Implications for Immunotherapy of Breast Cancer by Understanding the Microenvironment of a Solid Tumor. Cancers (Basel) 2022; 14:3178. [PMID: 35804950 PMCID: PMC9264853 DOI: 10.3390/cancers14133178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is poorly immunogenic due to immunosuppressive mechanisms produced in part by the tumor microenvironment (TME). The TME is a peritumoral area containing significant quantities of (1) cancer-associated fibroblasts (CAF), (2) tumor-infiltrating lymphocytes (TIL) and (3) tumor-associated macrophages (TAM). This combination protects the tumor from effective immune responses. How these protective cell types are generated and how the changes in the developing tumor relate to these subsets is only partially understood. Immunotherapies targeting solid tumors have proven ineffective largely due to this protective TME barrier. Therefore, a better understanding of the interplay between the tumor, the tumor microenvironment and immune cells would both advance immunotherapeutic research and lead to more effective immunotherapies. This review will summarize the current understanding of the microenvironment of breast cancer giving implications for future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Gabriele Pecher
- Competence Center of Immuno-Oncology and Translational Cell Therapy, Department of Hematology, Oncology and Tumorimmunology, CCM, Charité-Universitätsmedizin Berlin, Berlin Institute of Health @ Charité, 10117 Berlin, Germany; (A.S.F.); (M.J.R.)
| |
Collapse
|
12
|
Wessels D, Lusche DF, Voss E, Soll DR. 3D and 4D Tumorigenesis Model for the Quantitative Analysis of Cancer Cell Behavior and Screening for Anticancer Drugs. Methods Mol Biol 2022; 2364:299-318. [PMID: 34542859 DOI: 10.1007/978-1-0716-1661-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer cells from cell lines and tumor biopsy tissue undergo aggregation and aggregate coalescence when dispersed in a 3D Matrigel™ matrix. Coalescence is a dynamic process mediated by a subset of cells within the population of cancer cells. In contrast, non-tumorigenic cells from normal cell lines and normal tissues do not aggregate or coalesce, nor do they possess the motile cell types that orchestrate coalescence of cancer cells. Therefore, coalescence is a cancer cell-specific phenotype that may drive tumor growth in vivo, especially in cases of field cancerization. Here, we describe a simple 3D tumorigenesis model that takes advantage of the coalescence capabilities of cancer cells and uses this feature as the basis for a screen for treatments that inhibit tumorigenesis. The screen is especially useful in testing monoclonal antibodies that target cell-cell interactions, cell-matrix interactions, cell adhesion molecules, cell surface receptors, and general cell surface markers. The model can also be used for 2D imaging in a 96-well plate for rapid screening and is adaptable for 3D high-resolution assessment. In the latter case, we show how the 3D model can be optically sectioned with differential interference contrast (DIC) optics, then reconstructed in 4D and quantitatively analyzed by computer-assisted methods, or, alternatively, imaged with confocal microscopy for 4D quantitative analysis of cancer cell interactions with normal cells within the tumor microenvironment. We demonstrate reconstructions and quantitative analyses using the advanced image analysis software J3D-DIAS 4.2, in order to illustrate the types of detailed phenotypic characterizations that have proven useful. Other software packages may be able to perform similar types of analyses.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Modulation of peritumoral fibroblasts with a membrane-tethered tissue inhibitor of metalloproteinase (TIMP) for the elimination of cancer cells. Invest New Drugs 2021; 40:198-208. [PMID: 34519970 DOI: 10.1007/s10637-021-01177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Peritumoral fibroblasts are key components of the tumor microenvironment. Through remodeling of the extracellular matrix (ECM) and secretion of pro-tumorigenic cytokines, peritumoral fibroblasts foster an immunosuppressive milieu conducive to tumor cell proliferation. In this study, we investigated if peritumoral fibroblasts could be therapeutically engineered to elicit an anti-cancer response by abolishing the proteolytic activities of membrane-bound metalloproteinases involved in ECM modulation. METHODS A high affinity, glycosylphosphatidylinositol (GPI)-anchored Tissue Inhibitor of Metalloproteinase (TIMP) named "T1PrαTACE" was created for dual inhibition of MT1-MMP and TACE. T1PrαTACE was expressed in fibroblasts and its effects on cancer cell proliferation investigated in 3D co-culture models. RESULTS T1PrαTACE abrogated the activities of MT1-MMP and TACE in host fibroblasts. As a GPI protein, T1PrαTACE could spontaneously detach from the plasma membrane of the fibroblast to co-localize with MT1-MMP and TACE on neighboring cancer cells. In a 3D co-culture model, T1PrαTACE promoted adherence between the cancer cells and surrounding fibroblasts, which led to an attenuation in tumor development. CONCLUSION Peritumoral fibroblasts can be modulated with the TIMP for the elimination of cancer cells. As a novel anti-tumor strategy, our approach could potentially be used in combination with conventional chemo- and immunotherapies for a more effective cancer therapy.
Collapse
|
14
|
Mei J, Böhland C, Geiger A, Baur I, Berner K, Heuer S, Liu X, Mataite L, Melo-Narváez MC, Özkaya E, Rupp A, Siebenwirth C, Thoma F, Kling MF, Friedl AA. Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiat Oncol 2021; 16:159. [PMID: 34412654 PMCID: PMC8375131 DOI: 10.1186/s13014-021-01883-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.
Collapse
Affiliation(s)
- Jia Mei
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.,Department of Physics, LMU Munich, 85748, Garching, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anika Geiger
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Iris Baur
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Kristina Berner
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Steffen Heuer
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Xue Liu
- RG Adipocytes & Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Laura Mataite
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Erdem Özkaya
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anna Rupp
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Felix Thoma
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Matthias F Kling
- Department of Physics, LMU Munich, 85748, Garching, Germany.,Center for Advanced Laser Applications, 85748, Garching, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
15
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Camargo S, Gofrit ON, Assis A, Mitrani E. Paracrine Signaling from a Three-Dimensional Model of Bladder Carcinoma and from Normal Bladder Switch the Phenotype of Stromal Fibroblasts. Cancers (Basel) 2021; 13:2972. [PMID: 34198488 PMCID: PMC8231763 DOI: 10.3390/cancers13122972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
We present a three-dimensional model based on acellular scaffolds to recreate bladder carcinoma in vitro that closely describes the in vivo behavior of carcinoma cells. The integrity of the basement membrane and protein composition of the bladder scaffolds were examined by Laminin immunostaining and LC-MS/MS. Human primary bladder carcinoma cells were then grown on standard monolayer cultures and also seeded on the bladder scaffolds. Apparently, carcinoma cells adhered to the scaffold basement membrane and created a contiguous one-layer epithelium (engineered micro-carcinomas (EMCs)). Surprisingly, the gene expression pattern displayed by EMCs was similar to the profile expressed by the carcinoma cells cultured on plastic. However, the pattern of secreted growth factors was significantly different, as VEGF, FGF, and PIGF were secreted at higher levels by EMCs. We found that only the combination of factors secreted by EMCs, but not the carcinoma cells grown on plastic dishes, was able to induce either the pro-inflammatory phenotype or the myofibroblast phenotype depending on the concentration of the secreted factors. We found that the pro-inflammatory phenotype could be reversed. We propose a unique platform that allows one to decipher the paracrine signaling of bladder carcinoma and how this molecular signaling can switch the phenotypes of fibroblasts.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| |
Collapse
|
17
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
18
|
Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, Candiani G, Lombardi G, Moretti M. Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication 2021; 13. [PMID: 33735854 DOI: 10.1088/1758-5090/abefea] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment.
Collapse
Affiliation(s)
- Maria Vittoria Colombo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Mara Gilardi
- Institute of Pathology, University Hospital of Basel, Basel 4056, Switzerland
| | - Veronica Sansoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopedic Biotechnology Lab, 20161 Milano, Italy
| | - Gabriele Candiani
- Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań 61-871, Poland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milano, Italy.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
19
|
Lusche DF, Wessels DJ, Reis RJ, Forrest CC, Thumann AR, Soll DR. New monoclonal antibodies that recognize an unglycosylated, conserved, extracellular region of CD44 in vitro and in vivo, and can block tumorigenesis. PLoS One 2021; 16:e0250175. [PMID: 33891595 PMCID: PMC8064539 DOI: 10.1371/journal.pone.0250175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
CD44 is a transmembrane glycoprotein that binds to hyaluronic acid, plays roles in a number of cellular processes and is expressed in a variety of cell types. It is up-regulated in stem cells and cancer. Anti-CD44 monoclonal antibodies affect cell motility and aggregation, and repress tumorigenesis and metastasis. Here we describe four new anti-CD44 monoclonal antibodies originating from B cells of a mouse injected with a plasmid expressing CD44 isoform 12. The four monoclonal antibodies bind to the terminal, extracellular, conserved domain of CD44 isoforms. Based on differences in western blot patterns of cancer cell lysates, the four anti-CD44 mAbs separated into three distinct categories that include P4G9, P3D2, and P3A7, and P3G4. Spot assay analysis with peptides generated in Escherichia coli support the conclusion that the monoclonal antibodies recognize unglycosylated sequences in the N-terminal conserved region between amino acid 21-220, and analyses with a peptide generated in human embryonic kidney 293 cells, demonstrate that these monoclonal antibodies bind to these peptides only after deglycosylation. Western blots with lysates from three cancer cell lines demonstrate that several CD44 isoforms are unglycosylated in the anti-CD44 target regions. The potential utility of the monoclonal antibodies in blocking tumorigenesis was tested by co-injection of cells of the breast cancer-derived tumorigenic cell line MDA-MB-231 with the anti-CD44 monoclonal antibody P3D2 into the mammary fat pads of mice. All five control mice injected with MDA-MB-231 cells plus anti-IgG formed palpable tumors, while only one of the six test mice injected with MDA-MB-231 cells plus P3D2 formed a tiny tumor, while the remaining five were tumor-free, indicating that the four anti-CD44 mAbs may be useful therapeutically.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Reis
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Cristopher C. Forrest
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexis R. Thumann
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
20
|
Foxall R, Narang P, Glaysher B, Hub E, Teal E, Coles MC, Ashton-Key M, Beers SA, Cragg MS. Developing a 3D B Cell Lymphoma Culture System to Model Antibody Therapy. Front Immunol 2021; 11:605231. [PMID: 33628205 PMCID: PMC7897703 DOI: 10.3389/fimmu.2020.605231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large cell B cell lymphoma (DLBCL) accounts for approximately 30%-40% of all non-Hodgkin lymphoma (NHL) cases. Current first line DLBCL treatment results in long-term remission in more than 60% of cases. However, those patients with primary refractory disease or early relapse exhibit poor prognosis, highlighting a requirement for alternative therapies. Our aim was to develop a novel model of DLBCL that facilitates in vitro testing of current and novel therapies by replicating key components of the tumor microenvironment (TME) in a three-dimensional (3D) culture system that would enable primary DLBCL cell survival and study ex vivo. The TME is a complex ecosystem, comprising malignant and non-malignant cells, including cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) whose reciprocal crosstalk drives tumor initiation and growth while fostering an immunosuppressive milieu enabling its persistence. The requirement to recapitulate, at least to some degree, this complex, interactive network is exemplified by the rapid cell death of primary DLBCL cells removed from their TME and cultured alone in vitro. Building on previously described methodologies to generate lymphoid-like fibroblasts from adipocyte derived stem cells (ADSC), we confirmed lymphocytes, specifically B cells, interacted with this ADSC-derived stroma, in the presence or absence of monocyte-derived macrophages (MDM), in both two-dimensional (2D) cultures and a 3D collagen-based spheroid system. Furthermore, we demonstrated that DLBCL cells cultured in this system interact with its constituent components, resulting in their improved viability as compared to ex-vivo 2D monocultures. We then assessed the utility of this system as a platform to study therapeutics in the context of antibody-directed phagocytosis, using rituximab as a model immunotherapeutic antibody. Overall, we describe a novel 3D spheroid co-culture system comprising key components of the DLBCL TME with the potential to serve as a testbed for novel therapeutics, targeting key cellular constituents of the TME, such as CAF and/or TAM.
Collapse
Affiliation(s)
- Russell Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Priyanka Narang
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Bridget Glaysher
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Elin Hub
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Mark C Coles
- Centre for Immunology and Infection, University of York, York, United Kingdom.,Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Margaret Ashton-Key
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom.,Department of Cellular Pathology, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| |
Collapse
|
21
|
Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol 2021; 320:C577-C590. [PMID: 33439777 DOI: 10.1152/ajpcell.00264.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.
Collapse
Affiliation(s)
- Hannah E Wilson
- MD/PhD Medical Scientist Program, West Virginia University School of Medicine, Morgantown, West Virginia.,Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David A Stanton
- Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie Rellick
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Emidio E Pistilli
- Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Human Performance, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,West Virginia Clinical and Translational Sciences Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
22
|
Jagiełło A, Lim M, Botvinick E. Dermal fibroblasts and triple-negative mammary epithelial cancer cells differentially stiffen their local matrix. APL Bioeng 2020; 4:046105. [PMID: 33305163 PMCID: PMC7719046 DOI: 10.1063/5.0021030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The bulk measurement of extracellular matrix (ECM) stiffness is commonly used in mechanobiology. However, past studies by our group show that peri-cellular stiffness is quite heterogeneous and divergent from the bulk. We use optical tweezers active microrheology (AMR) to quantify how two phenotypically distinct migratory cell lines establish dissimilar patterns of peri-cellular stiffness. Dermal fibroblasts (DFs) and triple-negative human breast cancer cells MDA-MB-231 (MDAs) were embedded within type 1 collagen (T1C) hydrogels polymerized at two concentrations: 1.0 mg/ml and 1.5 mg/ml. We found DFs increase the local stiffness of 1.0 mg/ml T1C hydrogels but, surprisingly, do not alter the stiffness of 1.5 mg/ml T1C hydrogels. In contrast, MDAs predominantly do not stiffen T1C hydrogels as compared to cell-free controls. The results suggest that MDAs adapt to the bulk ECM stiffness, while DFs regulate local stiffness to levels they intrinsically prefer. In other experiments, cells were treated with transforming growth factor-β1 (TGF-β1), glucose, or ROCK inhibitor Y27632, which have known effects on DFs and MDAs related to migration, proliferation, and contractility. The results show that TGF-β1 alters stiffness anisotropy, while glucose increases stiffness magnitude around DFs but not MDAs and Y27632 treatment inhibits cell-mediated stiffening. Both cell lines exhibit an elongated morphology and local stiffness anisotropy, where the stiffer axis depends on the cell line, T1C concentration, and treatment. In summary, our findings demonstrate that AMR reveals otherwise masked mechanical properties such as spatial gradients and anisotropy, which are known to affect cell behavior at the macro-scale. The same properties manifest with similar magnitude around single cells.
Collapse
Affiliation(s)
- Alicja Jagiełło
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Micah Lim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
23
|
Druzhkova I, Shirmanova M, Ignatova N, Dudenkova V, Lukina M, Zagaynova E, Safina D, Kostrov S, Didych D, Kuzmich A, Sharonov G, Rakitina O, Alekseenko I, Sverdlov E. Expression of EMT-Related Genes in Hybrid E/M Colorectal Cancer Cells Determines Fibroblast Activation and Collagen Remodeling. Int J Mol Sci 2020; 21:ijms21218119. [PMID: 33143259 PMCID: PMC7662237 DOI: 10.3390/ijms21218119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Varvara Dudenkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Maria Lukina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Elena Zagaynova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Dina Safina
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Sergey Kostrov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Dmitry Didych
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Alexey Kuzmich
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Correspondence:
| | - George Sharonov
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga Rakitina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Irina Alekseenko
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Laboratory of Epigenetics, FSBI «National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov» Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| | - Eugene Sverdlov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- National Research Center «Kurchatov Institute», 123182 Moscow, Russia
| |
Collapse
|
24
|
A Novel 3D Model for Visualization and Tracking of Fibroblast-Guided Directional Cancer Cell Migration. BIOLOGY 2020; 9:biology9100328. [PMID: 33049958 PMCID: PMC7600195 DOI: 10.3390/biology9100328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary Recent advances in 3D cell culture have provided new opportunities for investigating interactions between cancer cells and their surrounding stromal cells. The 3D culture platform described herein is both time efficient and economical in the study of direct cell–cell interactions. The unique design of our dumbbell model had allowed us to visualize and monitor the entire recruitment process of cancer cells by fibroblasts under an in vitro condition. Suitable for almost every cell type, our model has the potential for a wider application as it can be adapted for use in drug screening and the study of cellular factors involved in cell–cell attraction. Abstract Stromal fibroblasts surrounding cancer cells are a major and important constituent of the tumor microenvironment not least because they contain cancer-associated fibroblasts, a unique fibroblastic cell type that promotes tumorigenicity through extracellular matrix remodeling and secretion of soluble factors that stimulate cell differentiation and invasion. Despite much progress made in understanding the molecular mechanisms that underpin fibroblast–tumor cross-talk, relatively little is known about the way the two cell types interact from a physical contact perspective. In this study, we report a novel three-dimensional dumbbell model that would allow the physical interaction between the fibroblasts and cancer cells to be visualized and monitored by microscopy. To achieve the effect, the fibroblasts and cancer cells in 50% Matrigel suspension were seeded as independent droplets in separation from each other. To allow for cell migration and interaction, a narrow passage of Matrigel causeway was constructed in between the droplets, effectively molding the gel into the shape of a dumbbell. Under time-lapse microscopy, we were able to visualize and image the entire process of fibroblast-guided cancer cell migration event, from initial vessel-like structure formation by the fibroblasts to their subsequent invasion across the causeway, attracting and trapping the cancer cells in the process. Upon prolonged culture, the entire population of fibroblasts eventually infiltrated across the passage and condensed into a spheroid-like cell mass, encapsulating the bulk of the cancer cell population within. Suitable for almost every cell type, our model has the potential for a wider application as it can be adapted for use in drug screening and the study of cellular factors involved in cell–cell attraction.
Collapse
|
25
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
26
|
Breast Fibroblasts and ECM Components Modulate Breast Cancer Cell Migration Through the Secretion of MMPs in a 3D Microfluidic Co-Culture Model. Cancers (Basel) 2020; 12:cancers12051173. [PMID: 32384738 PMCID: PMC7281408 DOI: 10.3390/cancers12051173] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) composition greatly influences cancer progression, leading to differential invasion, migration, and metastatic potential. In breast cancer, ECM components, such as fibroblasts and ECM proteins, have the potential to alter cancer cell migration. However, the lack of in vitro migration models that can vary ECM composition limits our knowledge of how specific ECM components contribute to cancer progression. Here, a microfluidic model was used to study the effect of 3D heterogeneous ECMs (i.e., fibroblasts and different ECM protein compositions) on the migration distance of a highly invasive human breast cancer cell line, MDA-MB-231. Specifically, we show that in the presence of normal breast fibroblasts, a fibronectin-rich matrix induces more cancer cell migration. Analysis of the ECM revealed the presence of ECM tunnels. Likewise, cancer-stromal crosstalk induced an increase in the secretion of metalloproteinases (MMPs) in co-cultures. When MMPs were inhibited, migration distance decreased in all conditions except for the fibronectin-rich matrix in the co-culture with human mammary fibroblasts (HMFs). This model mimics the in vivo invasion microenvironment, allowing the examination of cancer cell migration in a relevant context. In general, this data demonstrates the capability of the model to pinpoint the contribution of different components of the tumor microenvironment (TME).
Collapse
|
27
|
Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci Rep 2019; 9:11882. [PMID: 31417174 PMCID: PMC6695420 DOI: 10.1038/s41598-019-48378-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
The literature suggests morphological alterations and molecular biological changes within the cellular milieu of human cells, exposed to microgravity (µg), as many cell types assemble to multicellular spheroids (MCS). In this study we investigated juvenile normal human dermal fibroblasts (NHDF) grown in simulated µg (s-µg) on a random positioning machine (RPM), aiming to study changes in cell morphology, cytoskeleton, extracellular matrix (ECM), focal adhesion and growth factors. On the RPM, NHDF formed an adherent monolayer and compact MCS. For the two cell populations we found a differential regulation of fibronectin, laminin, collagen-IV, aggrecan, osteopontin, TIMP-1, integrin-β1, caveolin-1, E-cadherin, talin-1, vimentin, α-SM actin, TGF-β1, IL-8, MCP-1, MMP-1, and MMP-14 both on the transcriptional and/or translational level. Immunofluorescence staining revealed only slight structural changes in cytoskeletal components. Flow cytometry showed various membrane-bound proteins with considerable variations. In silico analyses of the regulated proteins revealed an interaction network, contributing to MCS growth via signals mediated by integrin-β1, E-cadherin, caveolin-1 and talin-1. In conclusion, s-µg-conditions induced changes in the cytoskeleton, ECM, focal adhesion and growth behavior of NHDF and we identified for the first time factors involved in fibroblast 3D-assembly. This new knowledge might be of importance in tissue engineering, wound healing and cancer metastasis.
Collapse
|