1
|
Mazur E, Czopowicz M, Iller M, Gajda A. A large-scale epidemiological study on the prevalence and risk factors of losses of honey bee colonies during winter seasons in Poland. Prev Vet Med 2025; 235:106403. [PMID: 39675126 DOI: 10.1016/j.prevetmed.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
We conducted a citizen science survey on winter honey bee colony losses in Poland. A total of 2169 beekeepers, possessing 77 867 colonies, reported valid loss rates from all regions of the country between 2017 and 2022. We identified five beekeeping management-related factors and three types of apiaries (small-scale apiaries, medium-scale apiaries, and large-scale apiaries) and analysed their impact on winter bee colony losses. In large-scale apiaries, migration, replacement of queens, and replacement of brood combs were practiced more often than in others. Monitoring and treatment of varroosis were practiced with equal frequency in all apiary types. In total, beekeepers reported 9466 lost colonies, accounting for 12.2 % of the overall winter bee colony loss rate (95 % confidence interval (CI 95 %): 11.4 %-12.8 %). The highest overall winter bee colony losses were reported from the small-scale apiaries (14.8 %, CI 95 %: 13.2 %-16.7 %), followed by large-scale apiaries (11.6 %, CI 95 %: 10.4 %-12.8 %) and medium-scale apiaries (11.4 %, CI 95 %: 10.4 %-12.5 %). The primary category of losses was characterised by the presence of "dead colonies", with symptoms that could be linked to either colony depopulation syndrome or starvation. All management-related factors contributed to the lower winter bee colony loss rates, but the relationships were mainly mild, complex, and highly dependent on the type of apiary.
Collapse
Affiliation(s)
- Ewa Mazur
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159c, Warsaw 02-776, Poland.
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159c, Warsaw 02-776, Poland.
| | - Maria Iller
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski St. 13, Olsztyn 10-718, Poland.
| | - Anna Gajda
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159c, Warsaw 02-776, Poland.
| |
Collapse
|
2
|
Frunze O, Yun Y, Kim H, Garafutdinov RR, Na YE, Kwon HW. The effect of seasonal temperatures on the physiology of the overwintered honey bee. PLoS One 2024; 19:e0315062. [PMID: 39652534 PMCID: PMC11627422 DOI: 10.1371/journal.pone.0315062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Honey bee physiology follows an annual cycle, with winter bees living ten times longer than summer bees. Their transition can be disrupted by climate change. Several climate factors, mainly temperature, may contribute to the global losses of winter bees. We simulated global warming by maintaining constant temperatures of 25°C (Group 25) and 35°C (Group 35) in rooms around hives from June to October, while a Group control experienced natural conditions. Colony performance was assessed in August and September. In February, workers were examined for physiological traits (acinus size and lipid content in the fat body) and molecular markers (vg and JHAMT), along with potential markers (ilp1, ilp2, TOR1, and HSP70). Our findings suggest that temperature decreases around winter worker broods from Group 25 in the fall led to their different physiological states related to aging in winter compared to Group 35 workers. Changes in bees from Group 35 the end of diapause were detected with an upregulation of HSP70, ilp2, and TOR1 genes. These signs of winter bees in response to summer global warming could lead to the development of strategies to prevent bee losses and improve the identification of physiological states in insect models.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Yumi Yun
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| | - Ravil R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Bashkortostan, Russian Federation
| | - Young-Eun Na
- Agro-materials Industry Division, Rural Development Administration (RDA), Wanju, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors (CRCIV), Incheon National University R&D Complex, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
3
|
McGruddy R, Haywood J, Lester PJ. Beekeepers Support the Use of RNA Interference (RNAi) to Control Varroa destructor. INSECTS 2024; 15:539. [PMID: 39057271 PMCID: PMC11276693 DOI: 10.3390/insects15070539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Current Varroa mite management strategies rely heavily on the use of pesticides, adversely affecting honey bee health and leaving toxic residues in hive products. To explore the likelihood of RNAi technology being utilised as an alternative control method for pests like Varroa, the opinions of beekeepers on the use of this new biotechnology were obtained using a mixed-methodology approach. In-person surveys and focus groups using the Q method were conducted to discover the willingness of beekeepers to utilise Varroa-targeting RNAi treatments in their hives, and to gain feedback to inform decisions before the implementation of this new technology. Overall, the beekeepers saw potential in RNAi being used to control Varroa in their hives and were eager to have access to an alternative to pesticide treatments. Participants raised concerns about unknown long-term effects on bees and other non-target species, and the potential of an uninformed public preventing them from accessing a new Varroa treatment. While further research and discussion is needed before RNAi treatments for Varroa become commercially available, RNAi technology presents a promising, species-specific and non-toxic solution for Varroa management.
Collapse
Affiliation(s)
- Rose McGruddy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand;
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
| |
Collapse
|
4
|
Claing G, Dubreuil P, Bernier M, Ferland J, L'Homme Y, Rodriguez E, Arsenault J. Varroa destructor and deformed wing virus interaction increases incidence of winter mortality in honey bee colonies. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2024; 88:69-76. [PMID: 38988334 PMCID: PMC11232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 07/12/2024]
Abstract
Winter mortality of honey bee colonies represents a major source of economic loss for the beekeeping industry. The objectives of this prospective study were to estimate the incidence risk of winter colony mortality in southwestern Quebec, Canada and to evaluate and quantify the impact of the associated risk factors. A total of 242 colonies from 31 apiaries was selected for sampling in August 2017. The presence of Varroa destructor, Vairimorpha (Nosema) spp., Melissococcus plutonius, deformed wing virus (DWV), and viruses of the acute-Kashmir-Israeli complex (AKI complex) was investigated in each colony. Management practices of the various colonies were obtained from a questionnaire. The incidence risk of colony mortality during the winter of 2017-2018 was estimated to be 26.5% [95% confidence interval (CI): 15.4 to 40.3]. In logistic regression modeling of winter mortality in colonies, an interaction was discovered between V. destructor and DWV; the detection of ≥ 1 V. destructor mites per 100 bees was associated with higher odds of mortality (3.46, 95% CI: 1.35 to 8.90) compared to colonies with < 1 mite per 100 bees, but only in DWV-positive colonies. There were more colony losses in apiaries from beekeepers owning 1 to 5 colonies than in apiaries from beekeepers owning over 100 colonies, which suggests that beekeeper experience and/or type of management are important contributors to winter colony mortality. Assuming a causal relationship, the results of this study suggest that up to 9% of all colony mortalities in the population could have been prevented by reducing the level of V. destructor to < 1 mite per 100 bees in all colonies.
Collapse
Affiliation(s)
- Gabrielle Claing
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Pascal Dubreuil
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Martine Bernier
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Julie Ferland
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Yvan L'Homme
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Edisleidy Rodriguez
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| |
Collapse
|
5
|
Guichard M, von Virag A, Droz B, Dainat B. Do Varroa destructor (Acari: Varroidae) mite flows between Apis mellifera (Hymenoptera: Apidae) colonies bias colony infestation evaluation for resistance selection? JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:3. [PMID: 38989845 PMCID: PMC11237995 DOI: 10.1093/jisesa/ieae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Since the global invasion of the ectoparasitic mite Varroa destructor (Anderson and Trueman), selection of mite-resistant honey bee (Apis mellifera L.) colonies appears challenging and has to date not broadly reduced colony mortality. The low published estimated heritability values for mite infestation levels could explain the limited genetic progresses obtained so far. We hypothesize that intercolonial horizontal mite transmission could differentially affect the single colonies located in a given apiary and therefore invisibly bias colony infestation phenotypes. This bias may be lower in regions with lower colony density, providing suitable conditions to set up evaluation apiaries. To verify these hypotheses, we monitored mite infestation and reinvasion in experimental colonies, as well as infestation in neighboring colonies belonging to beekeepers in three areas with variable colony densities in the canton of Bern, Switzerland during three consecutive beekeeping seasons. Mite immigration fluctuated between apiaries and years and significantly contributed to colony infestation level. Depending on apiary and year, 17-48% of the mites present in the experimental colonies at the time of the summer oxalic acid final treatment potentially derived from mite immigration that had occurred since mid-spring. Mite immigration was not linked to local colony density or the infestation levels of beekeepers' colonies located within 2 km. Our results do not prove that apiaries for colony evaluation should necessarily be established in areas with low colony density. However, they highlight the high impact of beekeeping management practices on mite colony infestation levels.
Collapse
Affiliation(s)
| | | | - Benoît Droz
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | | |
Collapse
|
6
|
Papp M, Tóth AG, Békési L, Farkas R, Makrai L, Maróti G, Solymosi N. Apis mellifera filamentous virus from a honey bee gut microbiome survey in Hungary. Sci Rep 2024; 14:5803. [PMID: 38461199 PMCID: PMC10924886 DOI: 10.1038/s41598-024-56320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
In Hungary, as part of a nationwide, climatically balanced survey for a next-generation sequencing-based study of the honey bee (Apis mellifera) gut microbiome, repeated sampling was carried out during the honey production season (March and May 2019). Among other findings, the presence of Apis mellifera filamentous virus (AmFV) was detected in all samples, some at very high levels. AmFV-derived reads were more abundant in the March samples than in the May samples. In March, a higher abundance of AmFV-originated reads was identified in samples collected from warmer areas compared to those collected from cooler areas. A lower proportion of AmFV-derived reads were identified in samples collected in March from the wetter areas than those collected from the drier areas. AmFV-read abundance in samples collected in May showed no significant differences between groups based on either environmental temperature or precipitation. The AmFV abundance correlated negatively with Bartonella apihabitans, Bartonella choladocola, and positively with Frischella perrara, Gilliamella apicola, Gilliamella sp. ESL0443, Lactobacillus apis, Lactobacillus kullabergensis, Lactobacillus sp. IBH004. De novo metagenome assembly of four samples resulted in almost the complete AmFV genome. According to phylogenetic analysis based on DNA polymerase, the Hungarian strains are closest to the strain CH-05 isolated in Switzerland.
Collapse
Affiliation(s)
- Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - Adrienn Gréta Tóth
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - László Békési
- Department of Parasitology and Zoology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary
| | | | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, HUN-REN, Szeged, 6726, Hungary
- Faculty of Water Sciences, University of Public Service, Baja, 6500, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary.
- Department of Phyisics of Complex Systems, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
7
|
Cilia G, Tafi E, Zavatta L, Dettori A, Bortolotti L, Nanetti A. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch Virol 2024; 169:43. [PMID: 38334819 DOI: 10.1007/s00705-024-05967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.
Collapse
Affiliation(s)
- Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Elena Tafi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Amanda Dettori
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
8
|
Na SJ, Kim YK, Park JM. Nectar Characteristics and Honey Production Potential of Five Rapeseed Cultivars and Two Wildflower Species in South Korea. PLANTS (BASEL, SWITZERLAND) 2024; 13:419. [PMID: 38337952 PMCID: PMC10856812 DOI: 10.3390/plants13030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The growing beekeeping industry in South Korea has led to the establishment of new honey plant complexes. However, studies on honey production from each species are limited. This study aimed to assess the honey production potential of various Brassica napus cultivars and two wildflower species. The nectar characteristics of B. napus varied significantly among the cultivars. Absolute sugar concentrations differed among the cultivars, but sugar composition ratios were similar. In contrast, the amino acid content remained relatively uniform regarding percentage values, irrespective of the absolute concentrations. Estimations of honey potential production per hectare (kg/ha) resulted in the following ranking among cultivars: 'JM7003' (107.1) > 'YS' (73.0) > 'JM7001' (63.7) > 'TL' (52.7) > 'TM' (42.4). The nectar volume of Pseudolysimachion rotundum var. subintegrum and Leonurus japonicus increased during the flowering stage. P. rotundum var. subintegrum was sucrose-rich and L. japonicus was sucrose-dominant. Both species predominantly contained phenylalanine, P. rotundum var. subintegrum had glutamine as the second most abundant amino acid, and L. japonicus had tyrosine. The honey production potential was 152.4 kg/ha for P. rotundum var. subintegrum and 151.3 kg/ha for L. japonicus. These findings provide a basis for identifying food resources for pollinators and selecting plant species to establish honey plant complexes.
Collapse
Affiliation(s)
- Sung-Joon Na
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (Y.-K.K.); (J.-M.P.)
| | | | | |
Collapse
|
9
|
Robi DT, Temteme S, Aleme M, Bogale A, Bezabeh A, Mendesil E. Health status of honeybee colonies (Apis mellifera) and disease-associated risk factors in different agroecological zones of Southwest Ethiopia. Vet Parasitol Reg Stud Reports 2024; 47:100943. [PMID: 38199675 DOI: 10.1016/j.vprsr.2023.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024]
Abstract
A cross-sectional study design was conducted in different agroecological zones of southwest Ethiopia from October 2019 to October 2021. The study aimed to determine the prevalence and associated risk factors for honeybee diseases and pests, as well as the impact of these issues on honeybee colonies and their products. To identify potential risk factors for honeybee disease and pests, a multivariate random effects logistic regression analysis was used. Adult honeybee and brood samples from a total of 384 honeybee colonies were collected and tested using standard laboratory diagnostic methods. The highest prevalence (55.8%) of ants was recorded, followed by wax moths (22.5%) and hive beetles (23.3%). In the current study, the main honeybee diseases observed in the study areas were varroosis (36.5%), bee lice (5.2%), nosemosis (39.6%), amoeba (56%), and chalkbrood (4.5%). However, tracheal mites, sachbrood, and American and European foul brood, were not detected. The agroecological zone (OR = 5.2, 95% CI: 1.75-14.85), type of hive (OR = 2.9, 95% CI: 1.17-17.03), management system (OR = 4.3, 95% CI: 1.23-14.70), and the management of the colony (OR = 3.5, 95% CI: 1.31-9.14) were identified as risk factors for varroosis in these areas. The occurrence of nosemosis in colonies was also influenced by the agroecological zone (OR = 12.2, 95% CI: 3.06-48.54) and colony management (OR = 3.4, 95% CI: 1.59-7.23). The agroecological zone (OR = 10.5, 95% CI: 12.76-22.63) and hive type (OR = 3.0, 95% CI: 1.39-6.36) were the primary risk factors for the occurrence of amoeba in honeybee colonies. However, the occurrence of bee lice (OR = 34.7, 95% CI: 3.96-104.93) and chalkbrood (OR = 4.8, 95% CI: 1.44-13.16) in honeybee colonies was only influenced by the agroecological zone in the study areas. This study demonstrated that losses in honey production in the area are significantly attributed to honeybee disease and pests. Therefore, it is essential to increase public awareness of how honeybee diseases and pests affect honey production and to develop and implement appropriate control measures for these diseases and pests. Furthermore, more studies should be conducted to characterize and isolate other causes of honeybee diseases and pests in various locations.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia.
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Amsalu Bezabeh
- Holeta National Bee Research Center, P.O. Box 22, Holeta, Ethiopia
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture & Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
10
|
Robi DT, Temteme S, Aleme M, Bogale A, Getachew A, Mendesil E. Epidemiology, factors influencing prevalence and level of varroosis infestation ( Varroa destructor) in honeybee ( Apis mellifera) colonies in different agroecologies of Southwest Ethiopia. Parasite Epidemiol Control 2023; 23:e00325. [PMID: 37711152 PMCID: PMC10498395 DOI: 10.1016/j.parepi.2023.e00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
Little information is available on the epidemiology of varroosis caused by Varroa mite, Varroa destructor infestation in Ethiopia, although it is a devastating honeybee disease that results in significant economic losses in beekeeping. Therefore, between October 2021 and October 2022, a cross-sectional study was carried out in different agroecology zones in Southwest Ethiopia to determine the prevalence and associated risk factors for varroosis, as well as the effects of this disease on honeybee colonies and honey production. A multivariate logistic regression analysis was performed to identify possible risk factors for the prevalence of V. destructor. A total of 384 adult honeybee and worker or drone brood samples were collected from honeybee colonies and examined using standard diagnostic techniques in the laboratory. The result shows that the prevalence of V. destructor was found to be 39.3% (95% CI 34.44-44.21) and 43.2% (38.27-48.18) in adult honeybees and brood, respectively. The major risk factors for the prevalence of V. destructor in the study areas included agroecology (OR = 5.2, 95% CI 1.75-14.85), type of hive (OR = 2.9, 95% CI 1.17-17.03), management system (OR = 4.3, 95% CI 1.23-14.70), and colony management (OR = 3.5, 95% CI 1.31-9.14). The lower level of colony infestation in adult bees and brood was measured as 1.97 ± 0.14 and 3.19 ± 0.25, respectively. Season, colony status, colony management, and agroecology were among the determinant factors of the level of varroa mite infestation in adult bees and brood. The results of the study demonstrated that honey production losses are largely attributable to V. destructor infestation. Therefore, it is critical to inform the community about the effects of V. destructor on honey production and develop and implement effective management strategies for this disease. In addition, further research should be done to identify and isolate additional factors that contribute to varroosis in honeybees in different regions.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Awraris Getachew
- Department of Animal Sciences, College of Agriculture and Environmental Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University College of Agriculture & Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
11
|
Willcox BK, Potts SG, Brown MJF, Alix A, Al Naggar Y, Chauzat MP, Costa C, Gekière A, Hartfield C, Hatjina F, Knapp JL, Martínez-López V, Maus C, Metodiev T, Nazzi F, Osterman J, Raimets R, Strobl V, Van Oystaeyen A, Wintermantel D, Yovcheva N, Senapathi D. Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Sci Rep 2023; 13:18099. [PMID: 37872212 PMCID: PMC10593766 DOI: 10.1038/s41598-023-45279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes-Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.
Collapse
Affiliation(s)
- Bryony K Willcox
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK.
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Anne Alix
- Corteva Agriscience, Regulatory and Stewardship Europe, Middle East and Africa, Abingdon, UK
| | - Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Marie-Pierre Chauzat
- ANSES, Sophia Antipolis Laboratory, Unit of Honey Bee Pathology, 06902, Sophia Antipolis, France
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| | - Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Chris Hartfield
- National Farmers' Union, Agriculture House, Stoneleigh Park, Stoneleigh, Warwickshire, CV8 2TZ, UK
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, ELGO 'DIMITRA', 63200, Nea Moudania, Greece
| | - Jessica L Knapp
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department of Biology, Lund University, Lund, Sweden
| | - Vicente Martínez-López
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | | | | | - Francesco Nazzi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Julia Osterman
- Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Risto Raimets
- Department of Plant Protection, Estonian University of Life Sciences, 51014, Tartu, Estonia
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Dimitry Wintermantel
- Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| |
Collapse
|
12
|
Tang J, Ji C, Shi W, Su S, Xue Y, Xu J, Chen X, Zhao Y, Chen C. Survey Results of Honey Bee Colony Losses in Winter in China (2009-2021). INSECTS 2023; 14:554. [PMID: 37367370 DOI: 10.3390/insects14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
There is growing concern that massive loss of honey bees can cause serious negative effects on biodiversity and ecosystems. Surveys of colony losses have been performed worldwide to monitor the dynamic changes and health status of honey bee colonies. Here, we present the results of surveys regarding winter colony losses from 21 provinces in China from 2009 to 2021, with a total of 1,744,324 colonies managed by 13,704 beekeepers. The total colony losses were low (9.84%; 95% Confidence Interval (CI): 9.60-10.08%) but varied among years, provinces, and scales of apiaries. As little is known about the overwintering mortality of Apis cerana, in this study, we surveyed and compared the loss rates between Apis mellifera and A. cerana in China. We found colonies of A. mellifera suffered significantly lower losses than A. cerana in China. Larger apiaries resulted in higher losses in A. mellifera, whereas the opposite was observed in A. cerana. Furthermore, we used generalized linear mixed-effects models (GLMMs) to evaluate the effects of potential risk factors on winter colony losses and found that the operation size, species, migration, migration×species interaction, and queen problems were significantly related to the loss rates. New queens can increase their colony overwintering survival. Migratory beekeepers and large operations reported lower loss rates.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Congcong Ji
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Xue
- Jilin Province Institute of Apicultural Science, Jilin 132000, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
13
|
Arias-Calluari K, Colin T, Latty T, Myerscough M, Altmann EG. Modelling daily weight variation in honey bee hives. PLoS Comput Biol 2023; 19:e1010880. [PMID: 36857336 PMCID: PMC9977058 DOI: 10.1371/journal.pcbi.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/17/2023] [Indexed: 03/02/2023] Open
Abstract
A quantitative understanding of the dynamics of bee colonies is important to support global efforts to improve bee health and enhance pollination services. Traditional approaches focus either on theoretical models or data-centred statistical analyses. Here we argue that the combination of these two approaches is essential to obtain interpretable information on the state of bee colonies and show how this can be achieved in the case of time series of intra-day weight variation. We model how the foraging and food processing activities of bees affect global hive weight through a set of ordinary differential equations and show how to estimate the parameters of this model from measurements on a single day. Our analysis of 10 hives at different times shows that the estimation of crucial indicators of the health of honey bee colonies are statistically reliable and fall in ranges compatible with previously reported results. The crucial indicators, which include the amount of food collected (foraging success) and the number of active foragers, may be used to develop early warning indicators of colony failure.
Collapse
Affiliation(s)
- Karina Arias-Calluari
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Theotime Colin
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tanya Latty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Mary Myerscough
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Eduardo G. Altmann
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Truong AT, Yoo MS, Seo SK, Hwang TJ, Yoon SS, Cho YS. Prevalence of honey bee pathogens and parasites in South Korea: A five-year surveillance study from 2017 to 2021. Heliyon 2023; 9:e13494. [PMID: 36816323 PMCID: PMC9929316 DOI: 10.1016/j.heliyon.2023.e13494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Honey bees play an important role in the pollination of crops and wild plants and provide important products to humans. Pathogens and parasites are the main factors that threaten beekeeping in South Korea. Therefore, a nationwide detection of 14 honey bee pathogens, including parasites (phorid flies, Nosema ceranae, and Acarapis woodi mites), viruses, bacteria, and fungal pathogens, was conducted from 2017 to 2021 in the country. The infection rate and the trend of detection of each pathogenic agent were determined. A total of 830 honey bee samples from Apis cerana (n = 357) and A. mellifera (n = 473) were examined. N. ceranae (35.53%), deformed wing virus (52.63%), sacbrood virus (SBV) (52.63%), and black queen cell virus (55.26%) were the most prevalent honey bee pathogens, and their prevalence rapidly increased from 2017 to 2021. The prevalence of Paenibacillus larvae, Israeli acute paralysis virus, Ascosphaera apis, A. woodi, Melissococcus plutonius, and chronic bee paralysis virus remained stable during the surveillance period, with infection rates ranging from 5.26% to 16.45% in 2021. Other pathogens, including acute bee paralysis virus, phorid flies, Kashmir bee virus, and Aspergillus flavus, had low infection rates that gradually declined during the detection period. The occurrence of honeybee pathogens peaked in July. SBV was the most common pathogen in A. cerana, whereas N. ceranae was predominant in A. mellifera. This study provides information regarding the current status of honey bee pathogens and presents the trend of the occurrence of each pathogen in South Korea. These data are important for predicting outbreaks of honey bee diseases in the country.
Collapse
Affiliation(s)
- A-Tai Truong
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - Mi-Sun Yoo
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soo Kyoung Seo
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Tae Jun Hwang
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yun Sang Cho
- Parasitic and Honey Bee Disease Laboratory, Bacterial and Parasitic Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| |
Collapse
|
15
|
Mazur ED, Czopowicz M, Gajda AM. Two Faces of the Screened Bottom Boards-An Ambiguous Influence on the Honey Bee Winter Colony Loss Rate. INSECTS 2022; 13:1128. [PMID: 36555038 PMCID: PMC9784936 DOI: 10.3390/insects13121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We conducted a citizen science survey on the winter honey bee colony losses in Poland from 2017/18 to 2019/20 to determine the influence of the use of screened bottom boards on the winter colony losses due to various causes. A total of 1035 beekeepers with 40,003 colonies reported valid data. The overall winter colony loss rate ranged from 10.7% to 13.9%, and in every year, the overall winter colony loss rate was higher than 10% (which is considered as acceptable in Poland). The study reveals that the use of screened bottom boards was associated with reduced overall loss rate. However, the nature of this relationship was not the same in terms of all types of colony losses: while the use of screened bottom boards was associated with a reduced mortality rate (management-related colony loss rate due to dead colonies) in which the empty hives were observed (colony depopulation syndrome, CDS), it was associated with an increased mortality rate in which the lack of food was observed (starvation). Given that in our study the role of CDS in the overall colony loss rate was 2.5-fold higher than the role of starvation, the final influence of the use of screened bottom boards on the overall colony loss rate turned out to be beneficial. Given the well-known beneficial role of screened bottom boards in varroosis control, they are highly recommended in beekeeping practices in Poland.
Collapse
Affiliation(s)
- Ewa Danuta Mazur
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Anna Maria Gajda
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Insolia L, Molinari R, Rogers SR, Williams GR, Chiaromonte F, Calovi M. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci Rep 2022; 12:20787. [PMID: 36456591 PMCID: PMC9714769 DOI: 10.1038/s41598-022-24946-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Honey bee (Apis mellifera) colony loss is a widespread phenomenon with important economic and biological implications, whose drivers are still an open matter of investigation. We contribute to this line of research through a large-scale, multi-variable study combining multiple publicly accessible data sources. Specifically, we analyzed quarterly data covering the contiguous United States for the years 2015-2021, and combined open data on honey bee colony status and stressors, weather data, and land use. The different spatio-temporal resolutions of these data are addressed through an up-scaling approach that generates additional statistical features which capture more complex distributional characteristics and significantly improve modeling performance. Treating this expanded feature set with state-of-the-art feature selection methods, we obtained findings that, nation-wide, are in line with the current knowledge on the aggravating roles of Varroa destructor and pesticides in colony loss. Moreover, we found that extreme temperature and precipitation events, even when controlling for other factors, significantly impact colony loss. Overall, our results reveal the complexity of biotic and abiotic factors affecting managed honey bee colonies across the United States.
Collapse
Affiliation(s)
- Luca Insolia
- Institute of Economics & EMbeDS, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy.,Geneva School of Economics and Management, University of Geneva, Geneva, 1205, Switzerland
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, 36849, AL, USA
| | | | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, AL, USA
| | - Francesca Chiaromonte
- Institute of Economics & EMbeDS, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy.,Department of Statistics, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Martina Calovi
- Department of Geography, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| |
Collapse
|
17
|
Mutinelli F, Pinto A, Barzon L, Toson M. Some Considerations about Winter Colony Losses in Italy According to the Coloss Questionnaire. INSECTS 2022; 13:insects13111059. [PMID: 36421962 PMCID: PMC9693309 DOI: 10.3390/insects13111059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
The Italian beekeeping industry has grown steadily during the last decade, according to data from the national beekeeping registry, which came into existence in February 2015. Winter colony losses remain a matter of concern for beekeepers in Italy, and administration of the questionnaire defined by the Coloss Association could contribute to a better understanding of this phenomenon. To evaluate the percentage trends over time in honeybee colony losses arising from various causes, we used the quasi-binomial generalized linear modelling (GzLM) approach, taking the year as an independent variable. We set our level of significance at 5% and performed the data analysis only for the seven regions that sent data continuously from 2014 to 2020. We considered the percentage of losses due to queen-related problems, natural disasters, and dead or empty colonies, given that these questions remained unchanged over the years. The survey also revealed that the percentage trend for respondents using drone brood removal showed a significant increase. In general, the percentage of colony losses due to queen-related problems remained lower than 8%, and the percentage of colony losses associated with natural disasters was very low (<2%). The mean percentages of losses due to dead or empty colonies ranged from 6 to 17% in the considered period. In addition, we took account of the responses relating to treatments against Varroa mite infestation, given the importance attributed to this honeybee parasite. Unlike the other variables, we calculated the percentages related to the types of beekeeper treatments against Varroa destructor based on the respondents, not on the colonies. What emerged was that almost every beekeeper used at least one type of treatment against V. destructor. In general, the trend of respondents appeared stable at 0.3% during the last four years.
Collapse
Affiliation(s)
- Franco Mutinelli
- NRL for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Anna Pinto
- Communication Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Luciana Barzon
- NRL for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| | - Marica Toson
- Epidemiology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy
| |
Collapse
|
18
|
Toxic effects of detected pyrethroid pesticides on honeybee (Apis mellifera ligustica Spin and Apis cerana cerana Fabricius). Sci Rep 2022; 12:16695. [PMID: 36202897 PMCID: PMC9537169 DOI: 10.1038/s41598-022-20925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
To obtain the presence of environmental contaminants in honeybee and compare the toxicity of the detected pesticides to Apis mellifera ligustica Spin and Apis cerana cerana Fabricius. In this work, 214 honeybee samples were collected to simultaneous monitoring 66 pesticides between 2016 and 2017 in China. A modified QuEChERS extraction method coupled with multi-residue analytical methods by Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Gas chromatography-mass spectrum (GC–MS). Among, four pyrethroid pesticides were selected to test and compare the acute oral toxicities of two honeybees. And the survival risk of beta-cypermethrin was analyzed to them. Using this method, 21 compounds were detected, including 3 neonicotinoids, 5 pyrethroids, 5 organophosphorus and 8 others. Importantly, detected frequencies of pyrethroid pesticides were accounted for 53.3%. Among, acute toxicity values (LD50) of four pyrethroid pesticides to the A.m. ligustica were higher than of that the A.c. cerana. When they were exposed to the same concentration of beta-cypermethrin (0.2906 mg/L), the survival rate of the A.m. ligustica (40.0%) was higher than the A.c. cerana (18.9%). Our work is valuable to analyze multiple pesticide residues of honeybees and evaluate the survival risk of two honeybee species, which also provides a basis for the risk assessment.
Collapse
|
19
|
Johannesen J, Wöhl S, Berg S, Otten C. Annual Fluctuations in Winter Colony Losses of Apis mellifera L. Are Predicted by Honey Flow Dynamics of the Preceding Year. INSECTS 2022; 13:insects13090829. [PMID: 36135530 PMCID: PMC9501173 DOI: 10.3390/insects13090829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/02/2023]
Abstract
Winter loss rates of honey bee colonies may fluctuate highly between years in temperate climates. The present study combined survey data of autumn and winter loss rates in Germany (2012-2021) with estimates of honey flow-assessed with automated hive scales as the start of honey flow in spring and its magnitude in summer-with the aim of understanding annual fluctuations in loss rates. Autumn colony loss rates were positively and significantly correlated with winter loss rates, whereas winter loss rates were inversely related to loss rates in autumn of the following year. An early start of net honey flow in spring predicted high loss rates in both autumn and winter, whereas high cumulative honey flow led to lower loss rates. The start of net honey flow was related to temperature sums in March. Combined, the results implied that the winter loss rate in one year was influenced by the loss rate of the preceding winter and shaped by honey flow dynamics during the following year. Hence, the rate of colony loss in winter can be viewed as a cumulative death process affected by the preceding one and a half years.
Collapse
Affiliation(s)
- Jes Johannesen
- Fachzentrum Bienen und Imkerei, DLR-Westerwald-Osteifel, Im Bannen 38, 56727 Mayen, Germany
| | - Saskia Wöhl
- Fachzentrum Bienen und Imkerei, DLR-Westerwald-Osteifel, Im Bannen 38, 56727 Mayen, Germany
| | - Stefen Berg
- Institut für Bienenkunde und Imkerei, An der Steige 15, 97209 Veitshöchheim, Germany
| | - Christoph Otten
- Fachzentrum Bienen und Imkerei, DLR-Westerwald-Osteifel, Im Bannen 38, 56727 Mayen, Germany
| |
Collapse
|
20
|
Papp M, Békési L, Farkas R, Makrai L, Judge MF, Maróti G, Tőzsér D, Solymosi N. Natural diversity of the honey bee (Apis mellifera) gut bacteriome in various climatic and seasonal states. PLoS One 2022; 17:e0273844. [PMID: 36083885 PMCID: PMC9462563 DOI: 10.1371/journal.pone.0273844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
As pollinators and producers of numerous human-consumed products, honey bees have great ecological, economic and health importance. The composition of their bacteriota, for which the available knowledge is limited, is essential for their body's functioning. Based on our survey, we performed a metagenomic analysis of samples collected by repeated sampling. We used geolocations that represent the climatic types of the study area over two nutritionally extreme periods (March and May) of the collection season. Regarding bacteriome composition, a significant difference was found between the samples from March and May. The samples' bacteriome from March showed a significant composition difference between cooler and warmer regions. However, there were no significant bacteriome composition differences among the climatic classes of samples taken in May. Based on our results, one may conclude that the composition of healthy core bacteriomes in honey bees varies depending on the climatic and seasonal conditions. This is likely due to climatic factors and vegetation states determining the availability and nutrient content of flowering plants. The results of our study prove that in order to gain a thorough understanding of a microbiome's natural diversity, we need to obtain the necessary information from extreme ranges within the host's healthy state.
Collapse
Affiliation(s)
- Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - László Békési
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Róbert Farkas
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Maura Fiona Judge
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Gergely Maróti
- Plant Biology Institute of the Biological Research Center, Szeged, Hungary
- Faculty of Water Sciences, University of Public Service, Baja, Hungary
| | - Dóra Tőzsér
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
21
|
El-Seedi HR, Ahmed HR, El-Wahed AAA, Saeed A, Algethami AF, Attia NF, Guo Z, Musharraf SG, Khatib A, Alsharif SM, Naggar YA, Khalifa SAM, Wang K. Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Vet Sci 2022; 9:vetsci9050199. [PMID: 35622727 PMCID: PMC9146872 DOI: 10.3390/vetsci9050199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Honeybees are the most prevalent insect pollinator species; they pollinate a wide range of crops. Colony collapse disorder (CCD), which is caused by a variety of biotic and abiotic factors, incurs high economic/ecological loss. Despite extensive research to identify and study the various ecological stressors such as microbial infections, exposure to pesticides, loss of habitat, and improper beekeeping practices that are claimed to cause these declines, the deep understanding of the observed losses of these important insects is still missing. Honeybees have an innate immune system, which includes physical barriers and cellular and humeral responses to defend against pathogens and parasites. Exposure to various stressors may affect this system and the health of individual bees and colonies. This review summarizes and discusses the composition of the honeybee immune system and the consequences of exposure to stressors, individually or in combinations, on honeybee immune competence. In addition, we discuss the relationship between bee nutrition and immunity. Nutrition and phytochemicals were highlighted as the factors with a high impact on honeybee immunity.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| | - Hanan R. Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ahmed F. Algethami
- Al nahal al jwal Foundation Saudi Arabia, P.O. Box 617, Al Jumum, Makkah 21926, Saudi Arabia;
| | - Nour F. Attia
- Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic Univetsity Malaysia, Kuantan 25200, Malaysia;
- Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia;
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden;
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (H.R.E.-S.); (K.W.); Tel.: +46-700-43-43-43 (H.R.E.-S.); +86-10-62596625 (K.W.)
| |
Collapse
|
22
|
Presence of Known and Emerging Honey Bee Pathogens in Apiaries of Veneto Region (Northeast of Italy) during Spring 2020 and 2021. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A progressive honey bee population decline has been reported worldwide during the last decades, and it could be attributed to several causes, in particular to the presence of pathogens and parasites that can act individually or in synergy. The health status of nine apiaries located in different areas of the Veneto region (northeast of Italy) was assessed for two consecutive years (2020 and 2021) in spring, during the resumption of honey bee activity, for determining the presence of known (Nosema spp., Varroa mite and viruses) and less known or emerging pathogens (Lotmaria passim and Crithidia mellificae) in honey bees. After honey bees sampling from each of the nine apiaries, Nosema apis, Nosema ceranae, L. passim, C. mellificae, ABPV, CBPV, IAPV, KBV, BQCV, SBV, DWV-A, DWV-B and V. destructor were investigated either by microscopic observation or PCR protocols. The viruses BQCV, SBV, CBPV followed by N. ceranae and L. passim were the most prevalent pathogens, and many of the investigated hives, despite asymptomatic, had different degrees of co-infection. This study aimed to highlight, during the resumption of honey bee activity in spring, the prevalence and spreading in the regional territory of different honey bee pathogens, which could alone or synergistically alter the homeostasis of bees colonies. The information gathered would increase our knowledge about the presence of these microorganisms and parasites in the territory and could contribute to improve beekeepers practice.
Collapse
|
23
|
Smoliński S, Langowska A, Glazaczow A. Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies. Sci Rep 2021; 11:22256. [PMID: 34782664 PMCID: PMC8593171 DOI: 10.1038/s41598-021-01369-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Varroa destructor is the main pest of the honey bee Apis mellifera, causing colony losses. We investigated the effect of temperature on the autumn abundance of V. destructor in bee colonies over 1991-2020 in Central Europe. We tested the hypothesis that temperature can affect autumn mite populations with different time-lags modulating the bee abundance and brood availability. We showed that raised spring (March-May) and autumn (October) temperatures reinforce autumn V. destructor infestation in the bee colonies. The critical temperature signals embrace periods of bee activity, i.e., just after the first cleansing flights and just before the last observed bee flights, but no direct effects of phenological changes on V. destructor abundance were found. These effects were potentially associated with increased bee reproduction in the specific periods of the year and not with the extended period of activity or accelerated spring onset. We found significant effects of autumn bee abundance, autumn capped brood abundance, and the number of colonies merged on autumn mite infestation. We also observed differences in V. destructor abundance between bees derived from different subspecies. We indicated that climatic effects, through influence on the bee abundance and brood availability, are one of the main drivers regulating V. destructor abundance.
Collapse
Affiliation(s)
- Szymon Smoliński
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Aleksandra Langowska
- Department of Zoology, Section of Apidology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-628, Poznan, Poland.
| | - Adam Glazaczow
- Department of Systematic Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
24
|
Wen X, Ma C, Sun M, Wang Y, Xue X, Chen J, Song W, Li-Byarlay H, Luo S. Pesticide residues in the pollen and nectar of oilseed rape (Brassica napus L.) and their potential risks to honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147443. [PMID: 33965824 DOI: 10.1016/j.scitotenv.2021.147443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Research evidence suggests that pesticide residues are one of the leading potential causes of the decline in pollinators, especially during vulnerable periods such as foraging in the early springtime. In China, no research quantifies pesticide residues in the nectar and pollen of honey bee colonies during this period or examines the potential risks and toxicity of pesticides to honey bees. Oilseed rape is one of the first and primary bee-attractive plants in most parts of China. Here, we investigated the pesticide residues in the oilseed rape of the years 2017 and 2018 in China. The hazard quotient (HQ) from pollen and nectar and the BeeREX risk assessment were used to evaluate the potential risks of the pesticide residues to honey bees. We detected 48 pesticides in pollen samples and 34 chemicals in nectar samples. The maximum pollen HQ (PHQ) values (contact or oral) ranged from 0.16 to 706,421, and the maximum nectar HQ (NHQ) values (contact or oral) ranged from 0.07 to 185,135. In particular, carbofuran, cyfluthrin, deltamethrin, and fenpropathrin have relatively high PHQ and NHQ values. Our results indicated that further investigation of nearly half of the tested compounds is needed because their PHQ or NHQ values are more than 50. Especially cyfluthrin and carbofuran need advanced tier assessment due to their maximum RQ (risk quotient) values exceeding the level of concern. These results provide valuable guidance for protecting bees and other pollinators in China.
Collapse
Affiliation(s)
- Xiaolin Wen
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Changsheng Ma
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minghui Sun
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ye Wang
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Wencheng Song
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH, USA.
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China.
| |
Collapse
|
25
|
Jack CJ, Ellis JD. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6. [PMID: 34536080 PMCID: PMC8449538 DOI: 10.1093/jisesa/ieab058] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 05/13/2023]
Abstract
Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.
Collapse
Affiliation(s)
- Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
Becsi B, Formayer H, Brodschneider R. A biophysical approach to assess weather impacts on honey bee colony winter mortality. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210618. [PMID: 34631120 PMCID: PMC8483266 DOI: 10.1098/rsos.210618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/02/2021] [Indexed: 06/02/2023]
Abstract
The western honey bee (Apis mellifera) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.
Collapse
Affiliation(s)
- Benedikt Becsi
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Herbert Formayer
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Robert Brodschneider
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Institute of Biology, University of Graz, Universitaetsplatz 2/I, 8010 Graz, Austria
| |
Collapse
|
27
|
Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression. STATS 2021. [DOI: 10.3390/stats4030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
High-dimensional classification studies have become widespread across various domains. The large dimensionality, coupled with the possible presence of data contamination, motivates the use of robust, sparse estimation methods to improve model interpretability and ensure the majority of observations agree with the underlying parametric model. In this study, we propose a robust and sparse estimator for logistic regression models, which simultaneously tackles the presence of outliers and/or irrelevant features. Specifically, we propose the use of L0-constraints and mixed-integer conic programming techniques to solve the underlying double combinatorial problem in a framework that allows one to pursue optimality guarantees. We use our proposal to investigate the main drivers of honey bee (Apis mellifera) loss through the annual winter loss survey data collected by the Pennsylvania State Beekeepers Association. Previous studies mainly focused on predictive performance, however our approach produces a more interpretable classification model and provides evidence for several outlying observations within the survey data. We compare our proposal with existing heuristic methods and non-robust procedures, demonstrating its effectiveness. In addition to the application to honey bee loss, we present a simulation study where our proposal outperforms other methods across most performance measures and settings.
Collapse
|
28
|
Paffhausen BH, Petrasch J, Greggers U, Duer A, Wang Z, Menzel S, Stieber P, Haink K, Geldenhuys M, Čavojská J, Stein TA, Wutke S, Voigt A, Coburn J, Menzel R. The Electronic Bee Spy: Eavesdropping on Honeybee Communication via Electrostatic Field Recordings. Front Behav Neurosci 2021; 15:647224. [PMID: 33994968 PMCID: PMC8115936 DOI: 10.3389/fnbeh.2021.647224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
As a canary in a coalmine warns of dwindling breathable air, the honeybee can indicate the health of an ecosystem. Honeybees are the most important pollinators of fruit-bearing flowers, and share similar ecological niches with many other pollinators; therefore, the health of a honeybee colony can reflect the conditions of a whole ecosystem. The health of a colony may be mirrored in social signals that bees exchange during their sophisticated body movements such as the waggle dance. To observe these changes, we developed an automatic system that records and quantifies social signals under normal beekeeping conditions. Here, we describe the system and report representative cases of normal social behavior in honeybees. Our approach utilizes the fact that honeybee bodies are electrically charged by friction during flight and inside the colony, and thus they emanate characteristic electrostatic fields when they move their bodies. These signals, together with physical measurements inside and outside the colony (temperature, humidity, weight of the hive, and activity at the hive entrance) will allow quantification of normal and detrimental conditions of the whole colony. The information provided instructs how to setup the recording device, how to install it in a normal bee colony, and how to interpret its data.
Collapse
Affiliation(s)
| | - Julian Petrasch
- Department Information Science, Freie Universität Berlin, Berlin, Germany
| | - Uwe Greggers
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Aron Duer
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Simon Menzel
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Peter Stieber
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Karén Haink
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | | | - Jana Čavojská
- Department Information Science, Freie Universität Berlin, Berlin, Germany
| | - Timo A Stein
- Complex and Distributed IT Systems, Technische Universtät Berlin, Berlin, Germany
| | - Sophia Wutke
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Anja Voigt
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Josephine Coburn
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Department Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
Calovi M, Grozinger CM, Miller DA, Goslee SC. Summer weather conditions influence winter survival of honey bees (Apis mellifera) in the northeastern United States. Sci Rep 2021; 11:1553. [PMID: 33452352 PMCID: PMC7811010 DOI: 10.1038/s41598-021-81051-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/01/2021] [Indexed: 01/29/2023] Open
Abstract
Honey bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy mortality in North America and Europe due to a complex suite of factors. Understanding the relative importance of each factor would enable beekeepers to make more informed decisions and improve assessment of local and regional habitat suitability. We used 3 years of Pennsylvania beekeepers' survey data to assess the importance of weather, topography, land use, and management factors on overwintering mortality at both apiary and colony levels, and to predict survival given current weather conditions and projected climate changes. Random Forest, a tree-based machine learning approach suited to describing complex nonlinear relationships among factors, was used. A Random Forest model predicted overwintering survival with 73.3% accuracy for colonies and 65.7% for apiaries where Varroa mite populations were managed. Growing degree days and precipitation of the warmest quarter of the preceding year were the most important predictors at both levels. A weather-only model was used to predict colony survival probability, and to create a composite map of survival for 1981-2019. Although 3 years data were likely not enough to adequately capture the range of possible climatic conditions, the model performed well within its constraints.
Collapse
Affiliation(s)
- Martina Calovi
- grid.29857.310000 0001 2097 4281Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
| | - Christina M. Grozinger
- grid.29857.310000 0001 2097 4281Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania University, University Park, PA 16802 USA
| | - Douglas A. Miller
- grid.29857.310000 0001 2097 4281Department of Geography, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sarah C. Goslee
- grid.463419.d0000 0001 0946 3608USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA 16802 USA
| |
Collapse
|
30
|
Guichard M, Dietemann V, Neuditschko M, Dainat B. Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees. Genet Sel Evol 2020; 52:71. [PMID: 33246402 PMCID: PMC7694340 DOI: 10.1186/s12711-020-00591-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.
Collapse
Affiliation(s)
- Matthieu Guichard
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| | - Vincent Dietemann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.,Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, 1015, Lausanne, Switzerland
| | - Markus Neuditschko
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| |
Collapse
|
31
|
Evaluation of Suppressed Mite Reproduction (SMR) Reveals Potential for Varroa Resistance in European Honey Bees ( Apis mellifera L.). INSECTS 2020; 11:insects11090595. [PMID: 32899430 PMCID: PMC7565386 DOI: 10.3390/insects11090595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/05/2022]
Abstract
Simple Summary The mite Varroa destructor represents a great threat to honey bees and the beekeeping industry. The opportunity to select and breed honey bees that are naturally able to fight the mite stands a sustainable solution. This can be achieved by evaluation of the failure of mite reproduction (SMR, suppressed mite reproduction). We conducted a large European experiment to assess the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee populations. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Our results indicate that it is necessary to examine at least 35 brood cells infested by a single mite to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores, indicating that this trait is present within the European honey bee populations. No major differences could be identified between countries for a given population, or between populations in different countries. This study shows the potential to increase selection efforts to breed V. destructor honey bee resistant populations. Abstract In the fight against the Varroa destructor mite, selective breeding of honey bee (Apis mellifera L.) populations that are resistant to the parasitic mite stands as a sustainable solution. Selection initiatives indicate that using the suppressed mite reproduction (SMR) trait as a selection criterion is a suitable tool to breed such resistant bee populations. We conducted a large European experiment to evaluate the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee genotypes with their local mite parasites. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Simulation results indicate that it is necessary to examine at least 35 single-infested cells to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores indicating that this trait is present within the European honey bee populations. The trait is highly variable between colonies and some countries, but no major differences could be identified between countries for a given genotype, or between genotypes in different countries. This study shows the potential to increase selective breeding efforts of V. destructor resistant populations.
Collapse
|
32
|
Parejo M, Wragg D, Henriques D, Charrière JD, Estonba A. Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biol Evol 2020; 12:2535-2551. [PMID: 32877519 PMCID: PMC7720081 DOI: 10.1093/gbe/evaa188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Historical specimens in museum collections provide opportunities to gain insights into the genomic past. For the Western honey bee, Apis mellifera L., this is particularly important because its populations are currently under threat worldwide and have experienced many changes in management and environment over the last century. Using Swiss Apis mellifera mellifera as a case study, our research provides important insights into the genetic diversity of native honey bees prior to the industrial-scale introductions and trade of non-native stocks during the 20th century—the onset of intensive commercial breeding and the decline of wild honey bees following the arrival of Varroa destructor. We sequenced whole-genomes of 22 honey bees from the Natural History Museum in Bern collected in Switzerland, including the oldest A. mellifera sample ever sequenced. We identify both, a historic and a recent migrant, natural or human-mediated, which corroborates with the population history of honey bees in Switzerland. Contrary to what we expected, we find no evidence for a significant genetic bottleneck in Swiss honey bees, and find that genetic diversity is not only maintained, but even slightly increased, most probably due to modern apicultural practices. Finally, we identify signals of selection between historic and modern honey bee populations associated with genes enriched in functions linked to xenobiotics, suggesting a possible selective pressure from the increasing use and diversity of chemicals used in agriculture and apiculture over the last century.
Collapse
Affiliation(s)
- Melanie Parejo
- Agroscope, Swiss Bee Research Center, Bern, Switzerland.,Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - David Wragg
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dora Henriques
- Instituto Politécnico de Bragança, Centro de Investigação de Montanha (CIMO), Bragança, Portugal
| | | | - Andone Estonba
- Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
33
|
Phylogenetic analysis of sacbrood virus structural polyprotein and non-structural RNA dependent RNA polymerase gene: Differences in Turkish strains. J Invertebr Pathol 2020; 176:107459. [PMID: 32890615 DOI: 10.1016/j.jip.2020.107459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022]
Abstract
Sacbrood virus (SBV) is one of the most damaging viruses in honey bee colonies. Genetic differences among sacbrood viruses detected in honey bees in different locales have been reported in previous studies. The aim of this study was to construct phylogenetic trees based on the structural polyprotein and non-structural RNA dependent RNA polymerase gene regions and to make a molecular characterization of the Tur/Bur/Sac01 and Tur/Bur/Sac02 strains identified in Apis mellifera in Turkey. As a result of the study, the tree based on the structural polyprotein region separated into four lineages: Tur/Bur/Sac01 and Tur/Bur/Sac02 were in the same branch as the Turkish sacbrood virus strains identified in previous studies and formed the Turkish clade. Strains isolated from adjacent geographical areas were in the same clade in this tree. The phylogenetic tree based on the non-structural RNA dependent RNA polymerase gene region divides into two main branches, reflecting host affiliation: Apis cerana and A. mellifera. Strains formed clusters based on their geographic distribution and host affiliation. The Tur/Bur/Sac01 and Tur/Bur/Sac02 strains formed a separate cluster among the European strains. Sacbrood viruses from Turkey were genetically different from SBV strains detected in other countries and in A. cerana.
Collapse
|
34
|
A National Survey of Managed Honey Bee Colony Winter Losses (Apis mellifera) in China (2013–2017). DIVERSITY 2020. [DOI: 10.3390/d12090318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surveys of managed honey bee colony losses worldwide have become fundamental for engineering a sustainable and systematic approach to protect honey bees. Though China is a member of the world’s apiculture superpowers, the investigation of honey bee colony losses from Chinese government was not formally launched until recently. In this study, we investigated the colony winter losses of the western honey bee (Apis mellifera) of four consecutive years in 2013–2017 from 19 provinces in China, with a total of 2387 responding Chinese beekeepers (195 hobby beekeepers, 1789 side-line beekeepers, 403 commercial beekeepers) providing the records of overwintering mortality of honey bee colonies. The calculated colony losses were 8.7%, a relatively low mortality below the world average. There still exist considerable variations in total losses among provinces (ranging from 0.9% to 22.0%), years (ranging from 8.1% to 10.6%) and scales of apiaries (ranging from 7.5% to 10.0%). Furthermore, we deeply analyzed and estimated the effects of potential risk factors on the colonies’ winter losses, and speculated that the queen problems, the operation sizes and proportion of new queens are leading causes of the high honey bee colony mortality in China. More research and advanced technical methods are still required for correlation analysis and verification in future surveys of managed honey bee colony winter losses.
Collapse
|
35
|
Jack CJ, Dai PL, van Santen E, Ellis JD. Comparing four methods of rearing Varroa destructor in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:463-476. [PMID: 32249394 DOI: 10.1007/s10493-020-00488-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The parasitic mite Varroa destructor Anderson and Trueman continues to devastate western honey bee (Apis mellifera L.) colonies throughout most of the world where they are managed. The development of a method to rear Varroa in vitro would allow for year-round Varroa research, rapidly advancing our progress towards controlling the mite. We created two separate experiments to address this objective. First, we determined which of four in vitro rearing methods yields the greatest number of Varroa offspring. Second, we attempted to improve the rearing rates achieved with that method. The four methods tested included (1) rearing Varroa on honey bee pupae in gelatin capsules, (2) rearing Varroa on in vitro-reared honey bees, (3) group rearing Varroa on honey bee pupae in Petri dishes, and (4) providing Varroa a bee-derived diet. The number of reproducing females and the number of fully mature offspring were significantly higher in the gelatin capsules maintained at 75% RH than in any other method. A 2 × 3 full factorial design was used to test combinations of gelatin capsule size (6 and 7 mm diameter) and relative humidity (65, 75, or 85%) on Varroa rearing success. Varroa reproduction and survival were significantly higher in 7-mm-diameter gelatin capsules maintained at 75% RH than in those maintained in 6-mm capsules and at the other humidities. By identifying factors that influence Varroa reproductive success in vitro, this work provides an important foundation for the development of future rearing protocols.
Collapse
Affiliation(s)
- Cameron J Jack
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA.
| | - Ping-Li Dai
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Edzard van Santen
- Statistical Consulting Unit and Agronomy Department, Institute for Food and Agricultural Sciences, University of Florida, McCarty Hall, P.O. Box 110500, Gainesville, FL, 32611-0500, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Steinmetz Hall, Natural Area Dr., P.O. Box 110620, Gainesville, FL, 32611-0620, USA.
| |
Collapse
|
36
|
Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a positive effect on colony survival and queen-related losses. Observed queen problems during the season increased the probability of losing colonies to unsolvable queen problems. A notable number of bees with crippled wings during the foraging season resulted in high losses and could serve as an alarm signal for beekeepers. Migratory beekeepers and large operations had lower loss rates than smaller ones. Additionally, we investigated the impact of several hive management practices. Most of them had no significant effect on winter mortality, but purchasing wax from outside the own operation was associated with higher loss rates. Colonies that reported foraging on maize and late catch crop fields or collecting melezitose exhibited higher loss rates. The most common Varroa destructor control methods were a combination of long-term formic acid treatment in summer and oxalic acid trickling in winter. Biotechnical methods in summer had a favourable effect on colony survival.
Collapse
|
37
|
Rinkevich FD. Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations. PLoS One 2020; 15:e0227264. [PMID: 31951619 PMCID: PMC6968863 DOI: 10.1371/journal.pone.0227264] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/14/2019] [Indexed: 01/17/2023] Open
Abstract
The parasitic mite Varroa destructor and the associated viruses it transmits are responsible for most instances of honey bee colony losses in the United States. As such, beekeepers utilize miticides to control Varroa populations. Widespread resistance has developed to the miticides fluvalinate and coumaphos. However, Varroa has largely maintained susceptibility to amitraz despite a long and extensive use history. Anecdotal reports of reduced amitraz effectiveness have been a widely discussed contemporary issue among commercial beekeepers. Amitraz resistance was measured by in vitro bioassays with technical amitraz as well as Apivar® efficacy tests. Amitraz resistance was evaluated in commercial beekeeping operations in Louisiana, New York, and South Dakota with a long history of amitraz use. This research shows that amitraz remains an effective Varroa control product in many operations. However, apiaries across operations displayed a wide range of amitraz resistance from no resistance to high resistance that resulted in Varroa control failure. The resistance ratios from in vitro amitraz bioassays were correlated with reduced Apivar® efficacy, demonstrating bona fide cases of Varroa control failures due to amitraz resistance. Therefore, amitraz resistance monitoring protocols need to be developed. A resistance monitoring network should be established to ensure the sustainability of miticide use for Varroa control.
Collapse
Affiliation(s)
- Frank D. Rinkevich
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
38
|
CASTAGNINO GLB, MATEOS A, MEANA A, MONTEJO L, ZAMORANO ITURRALDE LV, CUTULI DE SIMÓN MT. Etiology, symptoms and prevention of chalkbrood disease: a literature review. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2020. [DOI: 10.1590/s1519-9940210332020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT The fungus Ascosphaera apis, responsible for causing the chalkbrood disease of honey bees, is widely present in temperate regions of the northern hemisphere, but has also spread to other regions of the world such as Brazil. Although it is not usually lethal for the colony, it can reduce its population, hampering its development. This study is a review on the disease that presents a broad overview of its development, identification methods as well as ways to control it. Research shows that chalkbrood is associated with several factors and is most frequently found in colonies of Apis bees during the spring, when there is excess humidity and sudden temperature changes in the hive. Other factors such as viral or bacterial infection, the presence of the ectoparasite Varroa destructor, pesticide poisoning and poor nutrition of nurse bees can also affect its incidence and severity. Field diagnosis is made based on the presence of hardened mummified brood in the pupal stage, of white or black color, in the cells and entrance. Affected cells show dead pupae covered with white mycelia, resembling cotton, or hardened, dry and brittle, resembling chalk pieces, which originated the name. To date, there are no efficient methods to reduce the damage caused by chalkbrood. Genetic selection of bees with higher hygienic behavior and disease resistance is recommended.
Collapse
|
39
|
Brodschneider R, Gratzer K, Kalcher-Sommersguter E, Heigl H, Auer W, Moosbeckhofer R, Crailsheim K. A citizen science supported study on seasonal diversity and monoflorality of pollen collected by honey bees in Austria. Sci Rep 2019; 9:16633. [PMID: 31719621 PMCID: PMC6851371 DOI: 10.1038/s41598-019-53016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/26/2019] [Indexed: 11/29/2022] Open
Abstract
Austrian beekeepers participated in the “C.S.I. Pollen” study as citizen scientists and collected pollen from honey bee colonies in hive mounted traps every three weeks from April to September in 2014 and 2015 to uncover the seasonal availability of pollen sources for bees. 1622 pollen samples were collected and analysed using palynological light microscopy to the lowest taxonomic level possible. For 2014 and 2015 combined, 239 pollen types from more than 85 families were detected. ‘Various unknown’ species, Taraxacum-form and Plantago spp. were the pollen types collected by the majority of colonies (occurrence), whereas the most pollen grains collected were from Trifolium repens-form, Plantago spp. and Salix spp. (abundance). In spring, trees were found to be the most abundant pollen source, whereas in summer herbs dominated. On average, a colony collected pollen from 16.8 ± 4.7 (2014) and 15.0 ± 4.4 (2015) pollen types per sampling. Those numbers, however, vary between sampling dates and indicate a seasonal pattern. This is also supported by Simpson’s diversity index, which was on median 0.668. In both years, 50.0% of analysed pollen samples were partially (>50%) and 4.2% were highly monofloral (i.e. containing >90% of one pollen type). Prevalence of monofloral pollen samples peaked at the beginning and the end of the season, when pollen diversity was the lowest.
Collapse
Affiliation(s)
- Robert Brodschneider
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010, Graz, Austria.
| | - Kristina Gratzer
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010, Graz, Austria
| | | | - Helmut Heigl
- Austrian Agency for Health and Food Safety, Ltd., Institute for Seed and Propagating Material, Plant Protection Service and Apiculture, Department for Apiculture and Bee Protection, Vienna, Austria
| | - Waltraud Auer
- Austrian Agency for Health and Food Safety, Ltd., Institute for Seed and Propagating Material, Plant Protection Service and Apiculture, Department for Apiculture and Bee Protection, Vienna, Austria
| | - Rudolf Moosbeckhofer
- Austrian Agency for Health and Food Safety, Ltd., Institute for Seed and Propagating Material, Plant Protection Service and Apiculture, Department for Apiculture and Bee Protection, Vienna, Austria
| | - Karl Crailsheim
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010, Graz, Austria
| |
Collapse
|