1
|
Yakdhane E, Tőzsér D, Haykir O, Yakdhane A, Labidi S, Kiskó G, Baranyai L. Recognition of environmental contaminant and pathogenic bacteria by means of redox potential methodology. MethodsX 2024; 13:102811. [PMID: 39022177 PMCID: PMC11253682 DOI: 10.1016/j.mex.2024.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The time-consuming nature of culturing methods has urged the exploration of rapid modern technologies. One promising alternative utilizes redox potential, which describes the oxidative changes within complex media, indicating oxygen and nutrient consumption, as well as the production of reduced substances in the investigated biological system. Redox potential measurement can detect microbial activity within 16 h, what is significantly faster than the minimum 24 h incubation time of the reference plate counting technique. The redox potential based method can be specific with selective media, but bacterial strains have unique kinetic pattern as well. The proposed method suggests evaluation of the curve shape for the differentiation of environmental contaminant and pathogenic microbial strains. Six bacterial species were used in validation (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Listeria innocua, Listeria monocytogenes, and Listeria ivanovii). Descriptive parameters reached 98.2 % accuracy and Gompertz model achieved 91.6 % accuracy in classification of the selected 6 bacteria species.•Mathematical model (Gompertz function) and first order descriptive parameters are suggested to describe the specific shape of redox potential curves, while Support Vector Machine (SVM) is recommended for classification.•Due to the concentration dependent time to detection (TTD), pre-processing applies standardization according to the inflection point time.
Collapse
Affiliation(s)
- Eya Yakdhane
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| | - Dóra Tőzsér
- Department of Food Hygiene, University of Veterinary Medicine, H-1078 Budapest, István u. 2., Hungary
| | - Oktay Haykir
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| | - Asma Yakdhane
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| | - Sabrine Labidi
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| | - Gabriella Kiskó
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| | - László Baranyai
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Budapest 1118, Hungary
| |
Collapse
|
2
|
Wei S, Tang Q, Hu X, Ouyang W, Shao H, Li J, Yan H, Chen Y, Liu L. Rapid, Ultrasensitive, and Visual Detection of Pathogens Based on Cation Dye-Triggered Gold Nanoparticle Electrokinetic Agglutination Analysis. ACS Sens 2024; 9:325-336. [PMID: 38214583 DOI: 10.1021/acssensors.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rapid prescribing of the right antibiotic is the key to treat infectious diseases and decelerate the challenge of bacterial antibiotic resistance. Herein, by targeting the 16S rRNA of bacteria, we developed a cation dye-triggered electrokinetic gold nanoparticle (AuNP) agglutination (CD-TEAA) method, which is rapid, visual, ultrasensitive, culture-independent, and low in cost. The limit of detection (LOD) is as low as 1 CFU mL-1 Escherichia coli. The infection identifications of aseptic fluid samples (n = 11) and urine samples with a clinically suspected urinary tract infection (UTI, n = 78) were accomplished within 50 and 30 min for each sample, respectively. The antimicrobial susceptibility testing (AST) of UTI urine samples was achieved within 2.5 h. In ROC analysis of urine, the sensitivity and specificity were 100 and 96% for infection identification, and 100 and 98% for AST, respectively. Moreover, the overall cost of materials for each test is about US$0.69. Therefore, the CD-TEAA method is a superior approach to existing, time-consuming, and expensive methods, especially in less developed areas.
Collapse
Affiliation(s)
- Siqi Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Marcos-Fernández R, Sánchez B, Ruiz L, Margolles A. Convergence of flow cytometry and bacteriology. Current and future applications: a focus on food and clinical microbiology. Crit Rev Microbiol 2023; 49:556-577. [PMID: 35749433 DOI: 10.1080/1040841x.2022.2086035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Since its development in the 1960s, flow cytometry (FCM) was quickly revealed a powerful tool to analyse cell populations in medical studies, yet, for many years, was almost exclusively used to analyse eukaryotic cells. Instrument and methodological limitations to distinguish genuine bacterial signals from the background, among other limitations, have hampered FCM applications in bacteriology. In recent years, thanks to the continuous development of FCM instruments and methods with a higher discriminatory capacity to detect low-size particles, FCM has emerged as an appealing technique to advance the study of microbes, with important applications in research, clinical and industrial settings. The capacity to rapidly enumerate and classify individual bacterial cells based on viability facilitates the monitoring of bacterial presence in foodstuffs or clinical samples, reducing the time needed to detect contamination or infectious processes. Besides, FCM has stood out as a valuable tool to advance the study of complex microbial communities, or microbiomes, that are very relevant in the context of human health, as well as to understand the interaction of bacterial and host cells. This review highlights current developments in, and future applications of, FCM in bacteriology, with a focus on those related to food and clinical microbiology.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
4
|
Oftedal TF, Diep DB. Flow cytometric detection of vancomycin-resistant Enterococcus faecium in urine using fluorescently labelled enterocin K1. Sci Rep 2023; 13:10930. [PMID: 37414859 PMCID: PMC10325980 DOI: 10.1038/s41598-023-38114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
A urinary tract infection (UTI) occurs when bacteria enter and multiply in the urinary system. The infection is most often caused by enteric bacteria that normally live in the gut, which include Enterococcus faecium. Without antibiotic treatment, UTIs can progress to life-threatening septic shock. Early diagnosis and identification of the pathogen will reduce antibiotic use and improve patient outcomes. In this work, we develop and optimize a cost-effective and rapid (< 40 min) method for detecting E. faecium in urine. The method uses a fluorescently labelled bacteriocin enterocin K1 (FITC-EntK1) that binds specifically to E. faecium and is then detected using a conventional flow cytometer. Using this detection assay, urine containing E. faecium was identified by an increase in the fluorescent signals by 25-73-fold (median fluorescence intensity) compared to control samples containing Escherichia coli or Staphylococcus aureus. The method presented in this work is a proof of concept showing the potential of bacteriocins to act as specific probes for the detection of specific bacteria, such as pathogens, in biological samples.
Collapse
Affiliation(s)
- Thomas F Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Siatkowski M, Dahyot S, Pestel-Caron M, Boyer S. Performance evaluation of UF-4000 body fluid mode for detection of bacteria in body fluids. Clin Chim Acta 2023; 538:9-14. [PMID: 36374847 DOI: 10.1016/j.cca.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Microbiological analysis of body fluids (BF) provides important information for diagnosis of infection. We evaluated the analytical performance of bacterial count by UF-4000 BF mode for ascitic, cerebrospinal, pleural, synovial and continuous ambulatory peritoneal dialysis fluids compared to classical microbiological procedure (direct Gram staining and culture). MATERIALS AND METHODS For the 1,734 BF analyzed, distribution of UF-4000 bacterial count was analyzed according to the level of growth culture and results were compared using Mann-Whitney test. ROC curves analysis allowed to define the best cut-off value to predict or exclude positive culture for each type of BF. RESULTS UF-4000 bacterial counts were significantly lower in sterile than in infected BFs (p < 0.00001) and correlated with the level of growth on culture. The ROC curves of bacteria/μL and culture positivity yielded area under the curve >0.80 for each type of BF. Optimal cut-offs were chosen with excellent statistical parameters (sensitivity ranging from 0.70 to 0.86, specificity from 0.78 to 0.98, negative predictive value >0.95 and Youden index >0.55). CONCLUSION For BF, UF-4000 bacterial count correlate with culture results and is a discriminative method enhancing detection of microbiological etiology. It could be used as a screening method based on the cut-off values proposed in this study.
Collapse
Affiliation(s)
| | - Sandrine Dahyot
- Normandie Univ, UNIROUEN, UNICAEN, Inserm U 1311, CHU Rouen, Department of Microbiology, F-76000 Rouen, France
| | - Martine Pestel-Caron
- Normandie Univ, UNIROUEN, UNICAEN, Inserm U 1311, CHU Rouen, Department of Microbiology, F-76000 Rouen, France
| | - Sophie Boyer
- CHU Rouen, Department of Microbiology, F-76000 Rouen, France.
| |
Collapse
|
6
|
Cunningham-Oakes E, Pointon T, Murphy B, Campbell-Lee S, Connor TR, Mahenthiralingam E. Novel application of metagenomics for the strain-level detection of bacterial contaminants within non-sterile industrial products - a retrospective, real-time analysis. Microb Genom 2022; 8:mgen000884. [PMID: 36748522 PMCID: PMC9836090 DOI: 10.1099/mgen.0.000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The home and personal care (HPC) industry generally relies on initial cultivation and subsequent biochemical testing for the identification of microorganisms in contaminated products. This process is slow (several days for growth), labour intensive, and misses organisms which fail to revive from the harsh environment of preserved consumer products. Since manufacturing within the HPC industry is high-throughput, the process of identification of microbial contamination could benefit from the multiple cultivation-independent methodologies that have developed for the detection and analysis of microbes. We describe a novel workflow starting with automated DNA extraction directly from a HPC product, and subsequently applying metagenomic methodologies for species and strain-level identification of bacteria. The workflow was validated by application to a historic microbial contamination of a general-purpose cleaner (GPC). A single strain of Pseudomonas oleovorans was detected metagenomically within the product. The metagenome mirrored that of a contaminant isolated in parallel by a traditional cultivation-based approach. Using a dilution series of the incident sample, we also provide evidence to show that the workflow enables detection of contaminant organisms down to 100 CFU/ml of product. To our knowledge, this is the first validated example of metagenomics analysis providing confirmatory evidence of a traditionally isolated contaminant organism, in a HPC product.
Collapse
Affiliation(s)
- Edward Cunningham-Oakes
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- *Correspondence: Edward Cunningham-Oakes,
| | - Tom Pointon
- Unilever Research and Development, Port Sunlight, Bebbington, CH63 3JW, UK
- Arxada, Crumpsall Vale, Blackley, Manchester, M9 8GQ, UK
| | - Barry Murphy
- Unilever Research and Development, Port Sunlight, Bebbington, CH63 3JW, UK
| | | | - Thomas R. Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
- *Correspondence: Eshwar Mahenthiralingam,
| |
Collapse
|
7
|
Chai Z, Soko WC, Xie J, Bi H. Microchip coupled with MALDI-TOF MS for the investigation of bacterial contamination of fish muscle products. Food Chem 2022; 396:133658. [PMID: 35841680 DOI: 10.1016/j.foodchem.2022.133658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Bacterial contamination is a significant concern in food safety. Traditional methods, though being a gold standard for bacterial detection, are time-consuming. In this work, we managed to establish a simple and versatile magnetic-assisted microfluidic method for rapid bacterial detection of fish muscle products, by manipulating anti-human IgG functionalized magnetic beads in a zig-zag shaped microfluidic channel, increasing the probability for bacteria capture. The captured bacteria were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method is capable of isolating Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae from 5 μL of sablefish sarcoplasmic protein sample, and detecting Escherichia coli in the range of 6.0 to 6.0×104 CFU/mL with a detection limit of 6 CFU/mL. Bacterial growth on salmon sashimi during its period of storage was successfully monitored. The current protocol holds great potential for pathogen detection and microbial control in the food industry.
Collapse
Affiliation(s)
- Zhaoliang Chai
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| | - Winnie C Soko
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China.
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China.
| |
Collapse
|
8
|
Performance evaluation of UF-4000 body fluid mode for automated body fluid cell counting. Clin Chim Acta 2022; 531:152-156. [DOI: 10.1016/j.cca.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
9
|
Medium throughput protocol for genome-based quantification of intracellular mycobacterial loads and macrophage survival during in vitro infection. STAR Protoc 2022; 3:101241. [PMID: 35310069 PMCID: PMC8931439 DOI: 10.1016/j.xpro.2022.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Here, we present a streamlined protocol for assessing intracellular Mycobacterium tuberculosis (Mtb) loads in macrophages. This protocol describes the simultaneous assessment of macrophage viability using automated microscopy. Further, we detail the quantification of mycobacterial loads using a rapid, inexpensive, and accurate approach for mycobacterial DNA isolation from paraformaldehyde-fixed macrophages. Simultaneous assessment of the bacterial loads using internal standard and macrophage viability allows for precise quantification of the effects of perturbations on Mtb and host cells while accounting for technical artifacts. For complete details on the use and execution of this protocol, please refer to Chatterjee et al. (2021).
Collapse
|
10
|
Abstract
The analysis of biological fluids is crucial for the diagnosis and monitoring of diseases causing effusions and helps in the diagnosis of infectious diseases. The gold standard method for cell count in biological fluids is the manual method using counting chambers. The microbiological routine procedures consist of Direct Gram staining and culture on solid or liquid media. We evaluate the analytical performance of SYSMEX UF4000 (Sysmex, Kobe, Japan) and Sysmex XN10 (Sysmex, Kobe, Japan) in comparison with cytological and microbiological routine procedures. A total of 526 biological fluid samples were included in this study (42 ascitic, 31 pleural, 31 peritoneal, 125 cerebrospinal, 281 synovial, and 16 peritoneal dialysis fluids). All samples were analyzed by flow cytometry and subsequently processed following cytological and/or microbiological routine procedures. With regard to cell counts, UF4000 (Sysmex, Kobe, Japan) showed a performance that was at least equivalent to those of the reference methods and superior to those of XN10 (Sysmex, Kobe, Japan). Moreover, the bacterial count obtained with UF4000 (Sysmex, Kobe, Japan) was significantly higher among culture or Direct Gram stain positive samples. We established three optimal cutoff points to predict Direct Gram stain positive samples for peritoneal (465.0 bacteria/μL), synovial (1200.0 bacteria/μL), and cerebrospinal fluids (17.2 bacteria/μL) with maximum sensitivity and negative predictive values. Cell count and detection of bacteria by flow cytometry could be used upstream cytological and microbiological routine procedures to improve and accelerate the diagnosis of infection of biological fluid samples. IMPORTANCE The analysis of biological fluids is crucial for the diagnosis and monitoring of diseases causing effusions and helps in the diagnosis of infectious diseases. The possibility of carrying out cytological and microbiological analyses of biological fluid samples on the same automated machine would simplify the sample circuit (addressing the sample in a single laboratory, 24/7). It would also minimize the quantity of sample required. The performance of cytological and microbiological analysis by the flow cytometer UF 4000 (Sysmex, Kobe, Japan) has never been evaluated yet. This study has shown that bacterial count by flow cytometry using UF4000 (Sysmex, Kobe, Japan) could be used upstream of microbiological routine procedures to improve and to accelerate the diagnosis of infection of biological fluid samples.
Collapse
|
11
|
Ekelund O, Klokkhammer Hetland MA, Høyland Löhr I, Schön T, Somajo S. Rapid high-resolution detection of colistin resistance in Gram-negative bacteria using flow cytometry: a comparison with broth microdilution, a commercial screening test and WGS. J Antimicrob Chemother 2021; 76:3183-3191. [PMID: 34477846 PMCID: PMC8598304 DOI: 10.1093/jac/dkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Even though both EUCAST and CLSI consider broth microdilution (BMD) as the reference method for antimicrobial susceptibility testing (AST) of colistin, the method exhibits potential flaws related to properties of the colistin molecule. OBJECTIVES To develop a flow cytometry method (FCM) for colistin AST and to validate it against BMD, a commercial screening test and WGS. METHODS Colistin-mediated loss of membrane integrity in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. was detected with the fluorescent probe YoPro-1 by FCM. An international collection of 65 resistant and 109 susceptible isolates were analysed and the colistin concentration required to reach the EC50 was compared with the BMD MIC and the presence of genotypic resistance markers. RESULTS The overall FCM sensitivity and specificity for colistin resistance was 89% and 94%, with E. coli > K. pneumoniae > P. aeruginosa, whereas the performance for Acinetobacter spp. was poor. All tested E. coli were correctly categorized. Three K. pneumoniae isolates with genotypic findings consistent with colistin resistance were detected by FCM but not BMD. Compared with BMD, FCM delivered AST results with a 75% reduction of time. CONCLUSIONS Here, we present a rapid FCM-based AST assay for qualitative and quantitative testing of colistin resistance in E. coli and K. pneumoniae. The assay revealed probable chromosomal colistin resistance in K. pneumoniae that was not detected by BMD. If confirmed, these results question the reliability of BMD for colistin testing.
Collapse
Affiliation(s)
- Oskar Ekelund
- Department of Clinical Microbiology, Växjö Central Hospital, Växjö, Sweden.,Department of Clinical Microbiology, Blekinge County Hospital, Karlskrona, Sweden
| | - Marit Andrea Klokkhammer Hetland
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway.,Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Iren Høyland Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Schön
- Department of Biomedical and Clinical Sciences, Division of Infectious Diseases, Linköping University, Sweden.,Department of Infectious Diseases, Kalmar County Hospital, Sweden and Linköping University Hospital, Sweden
| | - Sofia Somajo
- Department of Clinical Microbiology, Blekinge County Hospital, Karlskrona, Sweden
| |
Collapse
|
12
|
Łuczykowski K, Warmuzińska N, Bojko B. Current approaches to the analysis of bile and the determination of bile acids in various biological matrices as supportive tools to traditional diagnostic testing for liver dysfunction and biliary diseases. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Alcaide Martín MJ, Altimira Queral L, Sahuquillo Frías L, Valiña Amado L, Merino A, García de Guadiana-Romualdo L. Automated cell count in body fluids: a review. ADVANCES IN LABORATORY MEDICINE 2021; 2:149-177. [PMID: 37363326 PMCID: PMC10197423 DOI: 10.1515/almed-2021-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/21/2020] [Indexed: 06/28/2023]
Abstract
Body fluid cell counting provides valuable information for the diagnosis and treatment of a variety of conditions. Chamber cell count and cellularity analysis by optical microscopy are considered the gold-standard method for cell counting. However, this method has a long turnaround time and limited reproducibility, and requires highly-trained personnel. In the recent decades, specific modes have been developed for the analysis of body fluids. These modes, which perform automated cell counting, are incorporated into hemocytometers and urine analyzers. These innovations have been rapidly incorporated into routine laboratory practice. At present, a variety of analyzers are available that enable automated cell counting for body fluids. Nevertheless, these analyzers have some limitations and can only be operated by highly-qualified laboratory professionals. In this review, we provide an overview of the most relevant automated cell counters currently available for body fluids, the interpretation of the parameters measured by these analyzers, their main analytical features, and the role of optical microscopy as automated cell counters gain ground.
Collapse
Affiliation(s)
- María José Alcaide Martín
- Committee of Laboratory Tests, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
- Hematologic Biology Committee, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
| | - Laura Altimira Queral
- Committee of Laboratory Tests, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
| | - Laura Sahuquillo Frías
- Committee of Laboratory Tests, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
| | - Laura Valiña Amado
- Committee of Laboratory Tests, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
| | - Anna Merino
- Hematologic Biology Committee, Spanish Society of Laboratory Medicine (SEQC-ML), Barcelona, Spain
| | | |
Collapse
|
14
|
Standards efforts and landscape for rapid microbial testing methodologies in regenerative medicine. Cytotherapy 2021; 23:390-398. [PMID: 33775524 DOI: 10.1016/j.jcyt.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
The Standards Coordinating Body for Gene, Cell, and Regenerative Medicines and Cell-Based Drug Discovery (SCB) supports the development and commercialization of regenerative medicine products by identifying and addressing industry-wide challenges through standards. Through extensive stakeholder engagement, the implementation of rapid microbial testing methods (RMTMs) was identified as a high-priority need that must be addressed to facilitate more timely release of products. Since 2017, SCB has coordinated efforts to develop standards for this area through surveys, weekly meetings, workshops, leadership in working groups and participation in standards development organizations. This article describes the results of these efforts and discusses the current landscape of RMTMs for regenerative medicine products. Based on discussions with stakeholders across the field, an overview of traditional culture-based methods and limitations, alternative microbial testing technologies and current challenges, fit-for-purpose rapid microbial testing and case studies, risk-based strategies for selection of novel rapid microbial test methods and ongoing standards efforts for rapid microbial testing are captured here. To this end, SCB is facilitating several initiatives to address challenges associated with rapid microbial testing for regenerative medicine products. Two documentary standards are under development: an International Organization for Standardization standard to provide the framework for a risk-based approach to selecting fit-for-purpose assays primarily intended for cell and gene therapy products and an ASTM standard guide focused on sampling methods for microbial testing methods in tissue-engineered medical products. Working with the National Institute of Standards and Technology, SCB expects to facilitate the process of developing publicly available microbial materials for inter-laboratory testing. These studies will help collect the data necessary to facilitate validation of novel rapid methods. Finally, SCB has been working to increase awareness of, dialog about and participation in efforts to develop standards in the regenerative medicine field.
Collapse
|
15
|
Mancini S, Bodendoerfer E, Kolensnik-Goldmann N, Herren S, Röthlin K, Courvalin P, Böttger EC. Evaluation of standardized automated rapid antimicrobial susceptibility testing of Enterobacterales-containing blood cultures: a proof-of-principle study. J Antimicrob Chemother 2020; 75:3218-3229. [DOI: 10.1093/jac/dkaa336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Rapid antimicrobial susceptibility testing (RAST) of bacteria causing bloodstream infections is critical for implementation of appropriate antibiotic regimens.
Objectives
We have established a procedure to prepare standardized bacterial inocula for Enterobacterales-containing clinical blood cultures and assessed antimicrobial susceptibility testing (AST) data generated with the WASPLabTM automated reading system.
Methods
A total of 258 blood cultures containing Enterobacterales were examined. Bacteria were enumerated by flow cytometry using the UF-4000 system and adjusted to an inoculum of 106 cfu/mL. Disc diffusion plates were automatically streaked, incubated for 6, 8 and 18 h and imaged using the fully automated WASPLabTM system. Growth inhibition zones were compared with those obtained with inocula prepared from primary subcultures following the EUCAST standard method. Due to time-dependent variations of the inhibition zone diameters, early AST readings were interpreted using time-adjusted tentative breakpoints and areas of technical uncertainty.
Results and conclusions
Inhibition zones obtained after 18 h incubation using an inoculum of 106 cfu/mL prepared directly from blood cultures were highly concordant with those of the EUCAST standard method based on primary subcultures, with categorical agreement (CA) of 95.8%. After 6 and 8 h incubation, 89.5% and 93.0% of the isolates produced interpretable results, respectively, with CA of >98.5% and very low numbers of clinical categorization errors for both the 6 h and 8 h readings. Overall, with the standardized and automated RAST method, consistent AST data from blood cultures containing Enterobacterales can be generated after 6–8 h of incubation and subsequently confirmed by standard reading of the same plate after 18 h.
Collapse
Affiliation(s)
- Stefano Mancini
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Schweiz
| | - Elias Bodendoerfer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Schweiz
| | | | - Sebastian Herren
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Schweiz
| | - Kim Röthlin
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Schweiz
| | | | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Schweiz
| |
Collapse
|
16
|
Parbhoo T, Sampson SL, Mouton JM. Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry A 2020; 97:683-693. [PMID: 32437069 PMCID: PMC7496436 DOI: 10.1002/cyto.a.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
The ability of the bacterial pathogen Mycobacterium tuberculosis to adapt and survive within human cells to disseminate to other individuals and cause active disease is poorly understood. Research supports that as M. tuberculosis adapts to stressors encountered in the host, it exhibits variable physiological and metabolic states that are time and niche-dependent. Challenges associated with effective treatment and eradication of tuberculosis (TB) are in part attributed to our lack of understanding of these different mycobacterial phenotypes. This is mainly due to a lack of suitable tools to effectively identify/detect heterogeneous bacterial populations, which may include small, difficult-to-culture subpopulations. Importantly, flow cytometry allows rapid and affordable multiparametric measurements of physical and chemical characteristics of single cells, without the need to preculture cells. Here, we summarize current knowledge of flow cytometry applications that have advanced our understanding of the physiology of M. tuberculosis during TB disease. Specifically, we review how host-associated stressors influence bacterial characteristics such as metabolic activity, membrane potential, redox status and the mycobacterial cell wall. Further, we highlight that flow cytometry offers unprecedented opportunities for insight into bacterial population heterogeneity, which is increasingly appreciated as an important determinant of disease outcome. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Trisha Parbhoo
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Samantha L. Sampson
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jacoba M. Mouton
- NRF‐DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|