1
|
Riccio A, Bouvette J, Pedersen L, Somai S, Dutcher R, Borgnia M, Copeland W. Structures of the mitochondrial single-stranded DNA binding protein with DNA and DNA polymerase γ. Nucleic Acids Res 2024; 52:10329-10340. [PMID: 39106165 PMCID: PMC11417365 DOI: 10.1093/nar/gkae670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
The mitochondrial single-stranded DNA (ssDNA) binding protein, mtSSB or SSBP1, binds to ssDNA to prevent secondary structures of DNA that could impede downstream replication or repair processes. Clinical mutations in the SSBP1 gene have been linked to a range of mitochondrial disorders affecting nearly all organs and systems. Yet, the molecular determinants governing the interaction between mtSSB and ssDNA have remained elusive. Similarly, the structural interaction between mtSSB and other replisome components, such as the mitochondrial DNA polymerase, Polγ, has been minimally explored. Here, we determined a 1.9-Å X-ray crystallography structure of the human mtSSB bound to ssDNA. This structure uncovered two distinct DNA binding sites, a low-affinity site and a high-affinity site, confirmed through site-directed mutagenesis. The high-affinity binding site encompasses a clinically relevant residue, R38, and a highly conserved DNA base stacking residue, W84. Employing cryo-electron microscopy, we confirmed the tetrameric assembly in solution and capture its interaction with Polγ. Finally, we derived a model depicting modes of ssDNA wrapping around mtSSB and a region within Polγ that mtSSB binds.
Collapse
Affiliation(s)
- Amanda A Riccio
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Structure Function Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shruti Somai
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert C Dutcher
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, Chae HB, Lee DH, Lee SJ, Jo DH, Kim JH, Song JJ, Chae JH, Lee JH, Park J, Kang JY, Bae S, Lee SY. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102257. [PMID: 39104869 PMCID: PMC11299580 DOI: 10.1016/j.omtn.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Mutations in nuclear genes regulating mitochondrial DNA (mtDNA) replication are associated with mtDNA depletion syndromes. Using whole-genome sequencing, we identified a heterozygous mutation (c.272G>A:p.Arg91Gln) in single-stranded DNA-binding protein 1 (SSBP1), a crucial protein involved in mtDNA replisome. The proband manifested symptoms including sensorineural deafness, congenital cataract, optic atrophy, macular dystrophy, and myopathy. This mutation impeded multimer formation and DNA-binding affinity, leading to reduced efficiency of mtDNA replication, altered mitochondria dynamics, and compromised mitochondrial function. To correct this mutation, we tested two adenine base editor (ABE) variants on patient-derived fibroblasts. One variant, NG-Cas9-based ABE8e (NG-ABE8e), showed higher editing efficacy (≤30%) and enhanced mitochondrial replication and function, despite off-target editing frequencies; however, risks from bystander editing were limited due to silent mutations and off-target sites in non-translated regions. The other variant, NG-Cas9-based ABE8eWQ (NG-ABE8eWQ), had a safer therapeutic profile with very few off-target effects, but this came at the cost of lower editing efficacy (≤10% editing). Despite this, NG-ABE8eWQ-edited cells still restored replication and improved mtDNA copy number, which in turn recovery of compromised mitochondrial function. Taken together, base editing-based gene therapies may be a promising treatment for mitochondrial diseases, including those associated with SSBP1 mutations.
Collapse
Affiliation(s)
- Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seok-Hoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hansol Koo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Jung
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Sazonova MA, Kirichenko TV, Ryzhkova AI, Sazonova MD, Doroschuk NA, Omelchenko AV, Nikiforov NG, Ragino YI, Postnov AY. Variability of Mitochondrial DNA Heteroplasmy: Association with Asymptomatic Carotid Atherosclerosis. Biomedicines 2024; 12:1868. [PMID: 39200332 PMCID: PMC11351276 DOI: 10.3390/biomedicines12081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Background and Objectives: Atherosclerosis is one of the main reasons for cardiovascular disease development. This study aimed to analyze the association of mtDNA mutations and atherosclerotic plaques in carotid arteries of patients with atherosclerosis and conditionally healthy study participants from the Novosibirsk region. Methods: PCR fragments of DNA containing the regions of 10 investigated mtDNA mutations were pyrosequenced. The heteroplasmy levels of mtDNA mutations were analyzed using a quantitative method based on pyrosequencing technology developed by M. A. Sazonova and colleagues. Results: In the analysis of samples of patients with atherosclerotic plaques of the carotid arteries and conditionally healthy study participants from the Novosibirsk region, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected. A west-east gradient was found in the distribution of the mtDNA mutations m.5178C>A, m.3256C>T, m.652insG, and m.13513G>A. Conclusions: Therefore, four proatherogenic mutations in the mitochondrial genome (m.5178C>A, m.652delG, m.12315G>A, and m.3256C>T) and three antiatherogenic mutations in mtDNA (m.13513G>A, m.652insG, and m.14846G>A) were detected in patients with atherosclerotic plaques in their carotid arteries from the Novosibirsk region.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Natalya A. Doroschuk
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Andrey V. Omelchenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (A.I.R.); (M.D.S.); (N.A.D.); (A.V.O.)
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| | - Yulia I. Ragino
- Research Institute of Internal and Preventive Medicine—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630089, Russia;
| | - Anton Yu. Postnov
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15a, 3rd Cherepkovskaya Str., Moscow 121552, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow 117418, Russia; (T.V.K.); (N.G.N.)
| |
Collapse
|
4
|
Yazdani M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol Neurobiol 2024; 61:5665-5679. [PMID: 38224444 DOI: 10.1007/s12035-024-03938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder. It is caused by mitochondrial DNA (mtDNA) rearrangements, mostly large-scale deletions of 1.1-10 kb. These deletions primarily affect energy supply through impaired oxidative phosphorylation and reduced ATP production. This impairment gives rise to dysfunction of several tissues, in particular those with high energy demand like brain and muscles. Over the past decades, changes in respiratory chain complexes and energy metabolism have been emphasized, whereas little attention has been paid to other reports on ROS overproduction, protein synthesis inhibition, myelin vacuolation, demyelination, autophagy, apoptosis, and involvement of lipid raft and oligodendrocytes in KSS. Therefore, this paper draws attention towards these relatively underemphasized findings that might further clarify the pathologic cascades following deletions in the mtDNA.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.
| |
Collapse
|
5
|
Martucci M, Moretton A, Tarrés-Solé A, Ropars V, Lambert L, Vernet P, Solà M, Falkenberg M, Farge G, van den Wildenberg S. The mutation R107Q alters mtSSB ssDNA compaction ability and binding dynamics. Nucleic Acids Res 2024; 52:5912-5927. [PMID: 38742632 PMCID: PMC11162770 DOI: 10.1093/nar/gkae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.
Collapse
Affiliation(s)
- Martial Martucci
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Amandine Moretton
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Aleix Tarrés-Solé
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Louise Lambert
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Maria Solà
- Structural MitoLab, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona 08028, Spain
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg, Sweden
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
| | - Siet van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
7
|
Macken WL, Falabella M, Pizzamiglio C, Woodward CE, Scotchman E, Chitty LS, Polke JM, Bugiardini E, Hanna MG, Vandrovcova J, Chandler N, Labrum R, Pitceathly RDS. Enhanced mitochondrial genome analysis: bioinformatic and long-read sequencing advances and their diagnostic implications. Expert Rev Mol Diagn 2023; 23:797-814. [PMID: 37642407 DOI: 10.1080/14737159.2023.2241365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Cathy E Woodward
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lyn S Chitty
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - James M Polke
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Natalie Chandler
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robyn Labrum
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
- Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Sahin ZO, Weiss-Sadan T, Possemato AP, Harry S, Takahashi M, Yang TY, Richter M, Patel H, Smith AE, Carlin AD, Hubertus de Groot AF, Wolf K, Shi L, Wei TY, Dürr BR, Chen NJ, Vornbäumen T, Wichmann NO, Pooladanda V, Matoba Y, Kumar S, Kim E, Bouberhan S, Olivia E, Rueda B, Bardeesy N, Liau B, Lawrence M, Stokes MP, Beausoleil SA, Bar-Peled L. Identification of chemotherapy targets reveals a nucleus-to-mitochondria ROS sensing pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532189. [PMID: 36945474 PMCID: PMC10028958 DOI: 10.1101/2023.03.11.532189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Multiple chemotherapies are proposed to cause cell death in part by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs exactly how the resultant ROS function and are sensed is poorly understood. In particular, it's unclear which proteins the ROS modify and their roles in chemotherapy sensitivity/resistance. To answer these questions, we examined 11 chemotherapies with an integrated proteogenomic approach identifying many unique targets for these drugs but also shared ones including ribosomal components, suggesting one mechanism by which chemotherapies regulate translation. We focus on CHK1 which we find is a nuclear H 2 O 2 sensor that promotes an anti-ROS cellular program. CHK1 acts by phosphorylating the mitochondrial-DNA binding protein SSBP1, preventing its mitochondrial localization, which in turn decreases nuclear H 2 O 2 . Our results reveal a druggable nucleus-to-mitochondria ROS sensing pathway required to resolve nuclear H 2 O 2 accumulation, which mediates resistance to platinum-based chemotherapies in ovarian cancers.
Collapse
|
9
|
Abstract
Leigh syndrome, or subacute necrotizing encephalomyelopathy, was initially recognized as a neuropathological entity in 1951. Bilateral symmetrical lesions, typically extending from the basal ganglia and thalamus through brainstem structures to the posterior columns of the spinal cord, are characterized microscopically by capillary proliferation, gliosis, severe neuronal loss, and relative preservation of astrocytes. Leigh syndrome is a pan-ethnic disorder usually with onset in infancy or early childhood, but late-onset forms occur, including in adult life. Over the last six decades it has emerged that this complex neurodegenerative disorder encompasses more than 100 separate monogenic disorders associated with enormous clinical and biochemical heterogeneity. This chapter discusses clinical, biochemical and neuropathological aspects of the disorder, and postulated pathomechanisms. Known genetic causes, including defects of 16 mitochondrial DNA (mtDNA) genes and approaching 100 nuclear genes, are categorized into disorders of subunits and assembly factors of the five oxidative phosphorylation enzymes, disorders of pyruvate metabolism and vitamin and cofactor transport and metabolism, disorders of mtDNA maintenance, and defects of mitochondrial gene expression, protein quality control, lipid remodeling, dynamics, and toxicity. An approach to diagnosis is presented, together with known treatable causes and an overview of current supportive management options and emerging therapies on the horizon.
Collapse
Affiliation(s)
- Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Medicine Department, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
10
|
Jacoby E, Bar-Yosef O, Gruber N, Lahav E, Varda-Bloom N, Bolkier Y, Bar D, Blumkin MBY, Barak S, Eisenstein E, Ahonniska-Assa J, Silberg T, Krasovsky T, Bar O, Erez N, Bielorai B, Golan H, Dekel B, Besser MJ, Pozner G, Khoury H, Jacobs A, Campbell J, Herskovitz E, Sher N, Yivgi-Ohana N, Anikster Y, Toren A. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci Transl Med 2022; 14:eabo3724. [PMID: 36542693 DOI: 10.1126/scitranslmed.abo3724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with single large-scale mitochondrial DNA (mtDNA) deletion syndromes (SLSMDs) usually present with multisystemic disease, either as Pearson syndrome in early childhood or as Kearns-Sayre syndrome later in life. No disease-modifying therapies exist for SLSMDs. We have developed a method to enrich hematopoietic cells with exogenous mitochondria, and we treated six patients with SLSMDs through a compassionate use program. Autologous CD34+ hematopoietic cells were augmented with maternally derived healthy mitochondria, a technology termed mitochondrial augmentation therapy (MAT). All patients had substantial multisystemic disease involvement at baseline, including neurologic, endocrine, or renal impairment. We first assessed safety, finding that the procedure was well tolerated and that all study-related severe adverse events were either leukapheresis-related or related to the baseline disorder. After MAT, heteroplasmy decreased in the peripheral blood in four of the six patients. An increase in mtDNA content of peripheral blood cells was measured in all six patients 6 to 12 months after MAT as compared baseline. We noted some clinical improvement in aerobic function, measured in patients 2 and 3 by sit-to-stand or 6-min walk testing, and an increase in the body weight of five of the six patients suffering from very low body weight before treatment. Quality-of-life measurements as per caregiver assessment and physical examination showed improvement in some parameters. Together, this work lays the ground for clinical trials of MAT for the treatment of patients with mtDNA disorders.
Collapse
Affiliation(s)
- Elad Jacoby
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omer Bar-Yosef
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noah Gruber
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Einat Lahav
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nira Varda-Bloom
- Stem Cell Processing Laboratory, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Yoav Bolkier
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Diana Bar
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | | | - Sharon Barak
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Nursing, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel
| | - Etzyona Eisenstein
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Jaana Ahonniska-Assa
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,School of Behavioral Sciences, Academic College of Tel Aviv Yaffo, Tel Aviv 64044, Israel
| | - Tamar Silberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tal Krasovsky
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 34988, Israel
| | - Orly Bar
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Neta Erez
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Bella Bielorai
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hana Golan
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin Dekel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal J Besser
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Ella Lemelbaum Institute of Immuno-oncology, Sheba Medical Center, Tel Hashomer 5262000, Israel
| | - Gat Pozner
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - Hanan Khoury
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - Alan Jacobs
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | - John Campbell
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | | | - Noa Sher
- Minovia Therapeutics, Tirat HaCarmel 3902603, Israel
| | | | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amos Toren
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
12
|
Urrutia KM, Xu W, Zhao L. The 5′-phosphate enhances the DNA-binding and exonuclease activities of human mitochondrial genome maintenance nuclease 1 (MGME1). J Biol Chem 2022; 298:102306. [PMID: 35934053 PMCID: PMC9460513 DOI: 10.1016/j.jbc.2022.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
In higher eukaryotes, mitochondria play multiple roles in energy production, signaling, and biosynthesis. Mitochondria possess multiple copies of mitochondrial DNA (mtDNA), which encodes 37 genes that are essential for mitochondrial and cellular function. When mtDNA is challenged by endogenous and exogenous factors, mtDNA undergoes repair, degradation, and compensatory synthesis. mtDNA degradation is an emerging pathway in mtDNA damage response and maintenance. A key factor involved is the human mitochondrial genome maintenance exonuclease 1 (MGME1). Despite previous biochemical and functional studies, controversies exist regarding the polarity of MGME1-mediated DNA cleavage. Also, how DNA sequence may affect the activities of MGME1 remains elusive. Such information is not only fundamental to the understanding of MGME1 but critical for deciphering the mechanism of mtDNA degradation. Herein, we use quantitative assays to examine the effects of substrate structure and sequence on the DNA-binding and enzymatic activities of MGME1. We demonstrate that MGME1 binds to and cleaves from the 5′-end of single-stranded DNA substrates, especially in the presence of 5′-phosphate, which plays an important role in DNA binding and optimal cleavage by MGME1. In addition, MGME1 tolerates certain modifications at the terminal end, such as a 5′-deoxyribosephosphate intermediate formed in base excision repair. We show that MGME1 processes different sequences with varying efficiencies, with dT and dC sequences being the most and least efficiently digested, respectively. Our results provide insights into the enzymatic properties of MGME1 and a rationale for the coordination of MGME1 with the 3′–5′ exonuclease activity of DNA polymerase γ in mtDNA degradation.
Collapse
Affiliation(s)
- Kathleen M Urrutia
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, USA; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, USA.
| |
Collapse
|
13
|
Carvalho G, Repolês BM, Mendes I, Wanrooij PH. Mitochondrial DNA Instability in Mammalian Cells. Antioxid Redox Signal 2022; 36:885-905. [PMID: 34015960 PMCID: PMC9127837 DOI: 10.1089/ars.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Significance: The small, multicopy mitochondrial genome (mitochondrial DNA [mtDNA]) is essential for efficient energy production, as alterations in its coding information or a decrease in its copy number disrupt mitochondrial ATP synthesis. However, the mitochondrial replication machinery encounters numerous challenges that may limit its ability to duplicate this important genome and that jeopardize mtDNA stability, including various lesions in the DNA template, topological stress, and an insufficient nucleotide supply. Recent Advances: An ever-growing array of DNA repair or maintenance factors are being reported to localize to the mitochondria. We review current knowledge regarding the mitochondrial factors that may contribute to the tolerance or repair of various types of changes in the mitochondrial genome, such as base damage, incorporated ribonucleotides, and strand breaks. We also discuss the newly discovered link between mtDNA instability and activation of the innate immune response. Critical Issues: By which mechanisms do mitochondria respond to challenges that threaten mtDNA maintenance? What types of mtDNA damage are repaired, and when are the affected molecules degraded instead? And, finally, which forms of mtDNA instability trigger an immune response, and how? Future Directions: Further work is required to understand the contribution of the DNA repair and damage-tolerance factors present in the mitochondrial compartment, as well as the balance between mtDNA repair and degradation. Finally, efforts to understand the events underlying mtDNA release into the cytosol are warranted. Pursuing these and many related avenues can improve our understanding of what goes wrong in mitochondrial disease. Antioxid. Redox Signal. 36, 885-905.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Bruno Marçal Repolês
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Isabela Mendes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Wu WY, Wang ZX, Li TS, Ding XQ, Liu ZH, Yang J, Fang L, Kong LD. SSBP1 drives high fructose-induced glomerular podocyte ferroptosis via activating DNA-PK/p53 pathway. Redox Biol 2022; 52:102303. [PMID: 35390676 PMCID: PMC8990215 DOI: 10.1016/j.redox.2022.102303] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
High fructose consumption is a significant risking factor for glomerular podocyte injury. However, the causes of high fructose-induced glomerular podocyte injury are still unclear. In this study, we reported a novel mechanism by which high fructose induced ferroptosis, a newly form of programmed cell death, in glomerular podocyte injury. We performed quantitative proteomic analysis in glomeruli of high fructose-fed rats to identify key regulating proteins involved in glomerular injury, and found that mitochondrial single-strand DNA-binding protein 1 (SSBP1) was markedly upregulated. Depletion of SSBP1 could alleviate high fructose-induced ferroptotic cell death in podocytes. Subsequently, we found that SSBP1 positively regulated a transcription factor p53 by interacting with DNA-dependent protein kinase (DNA-PK) and p53 to drive ferroptosis in high fructose-induced podocyte injury. Mechanically, SSBP1 activated DNA-PK to induce p53 phosphorylation at serine 15 (S15) to promote the nuclear accumulation of p53, and thereby inhibited expression of ferroptosis regulator solute carrier family 7 member 11 (SLC7A11) in high fructose-exposed podocytes. Natural antioxidant pterostilebene was showed to downregulate SSBP1 and then inhibit DNA-PK/p53 pathway in its alleviation of high fructose-induced glomerular podocyte ferroptosis and injury. This study identified SSBP1 as a novel intervention target against high fructose-induced podocyte ferroptosis and suggested that the suppression of SSBP1 by pterostilbene may be a potential therapy for the treatment of podocyte ferroptosis in glomerular injury.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
15
|
Melo ESD, Paiva ARBD, de Amorim AD, Lima de Carvalho JR, Bezerra MER, van der Linden V, Lynch DS, Kok F. Extreme Clinical Variability Among Carriers of Pathogenic Variant in SSBP1. Mov Disord 2022; 37:879-881. [PMID: 35142387 DOI: 10.1002/mds.28956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eduardo Sousa de Melo
- Department of Neuropsychiatry, Federal University of Pernambuco, Recife, Brazil.,Department of Neurology, Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Brazil
| | - Anderson Rodrigues Brandão de Paiva
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Neurology Department, Hospital São Rafael-Rede D'Or São Luiz, Salvador, Brazil
| | - Antônio Duarte de Amorim
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Brazil.,Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcos Eugenio Ramalho Bezerra
- Department of Neurology, Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Brazil
| | | | - David S Lynch
- National Hospital for Neurology and Neurosurgery, Queen Sq, London, United Kingdom
| | - Fernando Kok
- Neurogenetics Unit, Neurology Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Mendelics Genomic Analysis, São Paulo, Brazil
| |
Collapse
|
16
|
Jurkute N, D'Esposito F, Robson AG, Pitceathly RDS, Cordeiro F, Raymond FL, Moore AT, Michaelides M, Yu-Wai-Man P, Webster AR, Arno G. SSBP1-Disease Update: Expanding the Genetic and Clinical Spectrum, Reporting Variable Penetrance and Confirming Recessive Inheritance. Invest Ophthalmol Vis Sci 2021; 62:12. [PMID: 34905022 PMCID: PMC8684315 DOI: 10.1167/iovs.62.15.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose To report novel genotypes and expand the phenotype spectrum of SSBP1-disease and explore potential disease mechanism. Methods Five families with previously unsolved optic atrophy and retinal dystrophy underwent whole genome sequencing as part of the National Institute for Health Research BioResource Rare-Diseases and the UK's 100,000 Genomes Project. In silico analysis and protein modelling was performed on the identified variants. Deep phenotyping including retinal imaging and International Society for Clinical Electrophysiology of Vision standard visual electrophysiology was performed. Results Seven individuals from five unrelated families with bilateral optic atrophy and/or retinal dystrophy with extraocular signs and symptoms in some are described. In total, 6 SSBP1 variants were identified including the previously unreported variants: c.151A>G, p.(Lys51Glu), c.335G>A p.(Gly112Glu), and c.380G>A, p.(Arg127Gln). One individual was found to carry biallelic variants (c.380G>A p.(Arg127Gln); c.394A>G p.(Ile132Val)) associated with likely autosomal recessive SSBP1-disease. In silico analysis predicted all variants to be pathogenic and Three-dimensional protein modelling suggested possible disease mechanisms via decreased single-stranded DNA binding affinity or impaired higher structure formation. Conclusions SSBP1 is essential for mitochondrial DNA replication and maintenance, with defects leading to a spectrum of disease that includes optic atrophy and/or retinal dystrophy, occurring with or without extraocular features. This study provides evidence of intrafamilial variability and confirms the existence of an autosomal recessive inheritance in SSBP1-disease consequent upon a previously unreported genotype.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | - Anthony G. Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robert D. S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Francesca Cordeiro
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - F. Lucy Raymond
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Anthony T. Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew R. Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - for the Genomics England Research Consortium
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
18
|
Gustafson MA, Perera L, Shi M, Copeland WC. Mechanisms of SSBP1 variants in mitochondrial disease: Molecular dynamics simulations reveal stable tetramers with altered DNA binding surfaces. DNA Repair (Amst) 2021; 107:103212. [PMID: 34464898 PMCID: PMC8526412 DOI: 10.1016/j.dnarep.2021.103212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Several mutations in the gene for the mitochondrial single stranded DNA binding protein (SSBP1) have recently been implicated in human disease, but initial reports are insufficient to explain the molecular mechanism of disease, including the possible role of SSBP1 heterotetramers in heterozygous patients. Here we employed molecular simulations to model the dynamics of wild type and 31 variant SSBP1 tetramer systems, including 7 variant homotetramer and 24 representative heterotetramer systems. Our simulations indicate that all variants are stable and most have stronger intermonomer interactions, reduced solvent accessible surface areas, and a net loss of positive surface charge. We then used structural alignments and phosphate binding simulations to predict DNA binding surfaces on SSBP1. Our models suggest that nearly the entire surface of SSBP1, excluding flexible loops and protruding helices, is available for DNA binding, and we observed several potential DNA binding hotspots. Changes to the protein surface in variant SSBP1 tetramers potentially alter anchor points or wrapping paths, rather than abolishing binding altogether. Overall, our findings disqualify tetramer destabilization or gross disruption of DNA binding as mechanisms of disease. Instead, they are consistent with subtle changes to DNA binding, wrapping, or release that cause rare but consequential failures of mtDNA maintenance, which, in turn, are consistent with the late onset of disease in most of the reported SSBP1 cases.
Collapse
Affiliation(s)
- Margaret A Gustafson
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Lalith Perera
- Computational Chemistry and Molecular Modeling Support Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
19
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George-Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli-Cunningham Z. Development of a Mitochondrial Myopathy-Composite Assessment Tool. JCSM CLINICAL REPORTS 2021; 6:109-127. [PMID: 35071983 PMCID: PMC8782422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND 'Mitochondrial Myopathy' (MM) refers to genetically-confirmed Primary Mitochondrial Disease (PMD) that predominantly impairs skeletal muscle function. Validated outcome measures encompassing core MM domains of muscle weakness, muscle fatigue, imbalance, impaired dexterity, and exercise intolerance do not exist. The goal of this study was to validate clinically-meaningful, quantitative outcome measures specific to MM. METHODS This was a single centre study. Objective measures evaluated included hand-held dynamometry, balance assessments, Nine Hole Peg Test (9HPT), Functional Dexterity Test (FDT), 30 second Sit to Stand (30s STS), and 6-minute walk test (6MWT). Results were assessed as z-scores, with < -2 standard deviations considered abnormal. Performance relative to the North Star Ambulatory Assessment (NSAA) of functional mobility was assessed by Pearson's correlation. RESULTS In genetically-confirmed MM participants [n = 59, mean age 21.6 ± 13.9 (range 7 - 64.6 years), 44.1% male], with nuclear gene aetiologies, n = 18/59, or mitochondrial (mtDNA) aetiologies, n = 41/59, dynamometry measurements demonstrated both proximal [dominant elbow flexion (-2.6 ± 2.1, mean z-score ± standard deviation, SD), hip flexion (-2.5 ± 2.3), and knee flexion (-2.8 ± 1.3)] and distal muscle weakness [wrist extension (-3.4 ± 1.7), palmar pinch (-2.5 ± 2.8), and ankle dorsiflexion (-2.4 ± 2.5)]. Balance [Tandem Stance (TS) Eyes Open (-3.2 ± 8.8, n = 53) and TS Eyes Closed (-2.6 ± 2.7, n = 52)] and dexterity [FDT (-5.9 ± 6.0, n = 44) and 9HPT (-8.3 ± 11.2, n = 53)] assessments also revealed impairment. Exercise intolerance was confirmed by strength-based 30s STS test (-2.0 ± 0.8, n = 38) and mobility-based 6MWT mean z-score (-2.9 ± 1.3, n = 46) with significant decline in minute distances (slope -0.9, p = 0.03, n = 46). Muscle fatigue was quantified by dynamometry repetitions with strength decrement noted between first and sixth repetitions at dominant elbow flexors (-14.7 ± 2.2%, mean ± standard error, SEM, n = 21). All assessments were incorporated in the MM-Composite Assessment Tool (MM-COAST). MM-COAST composite score for MM participants was 1.3± 0.1(n = 53) with a higher score indicating greater MM disease severity, and correlated to NSAA (r = 0.64, p < 0.0001, n = 52) to indicate clinical meaning. Test-retest reliability of MM-COAST assessments in an MM subset (n = 14) revealed an intraclass correlation coefficient (ICC) of 0.81 (95% confidence interval: 0.59-0.92) indicating good reliability. CONCLUSIONS We have developed and successfully validated a MM-specific Composite Assessment Tool to quantify the key domains of MM, shown to be abnormal in a Definite MM cohort. MM-COAST may hold particular utility as a meaningful outcome measure in future MM intervention trials.
Collapse
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allan M. Glanzman
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Ballance
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin Leonhardt
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ibrahim George-Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Meunier I, Bocquet B, Defoort-Dhellemmes S, Smirnov V, Arndt C, Picot MC, Dollfus H, Charif M, Audo I, Huguet H, Zanlonghi X, Lenaers G. Characterization of SSBP1-related optic atrophy and foveopathy. Sci Rep 2021; 11:18703. [PMID: 34548540 PMCID: PMC8455542 DOI: 10.1038/s41598-021-98150-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Dominant optic atrophy (DOA) is genetically heterogeneous and most commonly caused by mutations in OPA1. To distinguish between the classical OPA1-related and the recently identified SSBP1-related DOAs, the retina and fovea of 27 patients carrying the SSBP1 p.Arg38Gln variant were scrutinized using 20° × 20° macular cube and 30° and 55° field fundus autofluorescence photographs. Age of onset, visual acuity, retinal nerve fiber layer and macular thicknesses were recorded. Three SSBP1-patients were asymptomatic, 10 had isolated DOA, and 12 had a combined DOA plus foveopathy. The foveopathy, with a tiny defect of the ellipsoid and interdigitation lines, was similar in all patients, independent of age. There were no significant statistical differences in terms of visual acuity and SD-OCT measurements between patients with isolated DOA (mean visual acuity in decimals: 0.54 ± 0.41) and those with combined foveopathy (0.50 ± 0.23). Two patients over 50 years of age developed a progressive rod-cone dystrophy, leading to severe visual impairment. SSBP1-related DOA shares similarities with OPA1-related DOA with an incomplete penetrance and an early childhood visual impairment. Nevertheless, the presence of a congenital foveopathy with no impact on visual acuity is a major criterion to distinguish SSBP1 cases and orient the appropriate genetic analysis.
Collapse
Affiliation(s)
- Isabelle Meunier
- National reference centre for inherited sensory diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France. .,Sensgene Care Network, Strasbourg, France. .,Institute for Neurosciences of Montpellier, Inserm, University of Montpellier, Montpellier, France.
| | - Béatrice Bocquet
- National reference centre for inherited sensory diseases, University Hospital of Montpellier, University of Montpellier, Montpellier, France.,Sensgene Care Network, Strasbourg, France.,Institute for Neurosciences of Montpellier, Inserm, University of Montpellier, Montpellier, France
| | - Sabine Defoort-Dhellemmes
- Sensgene Care Network, Strasbourg, France.,Department of Neuro-Ophthalmology and Electrophysiology, Robert Salengro Hospital, Lille, France
| | - Vasily Smirnov
- Sensgene Care Network, Strasbourg, France.,Department of Neuro-Ophthalmology and Electrophysiology, Robert Salengro Hospital, Lille, France
| | - Carl Arndt
- Department of Ophthalmology, University Hospital of Reims, Reims, France
| | - Marie Christine Picot
- Clinical Investigation Center (CIC) and Clinical Research and Epidemiology Unit (URCE), Montpellier, France
| | - Hélène Dollfus
- Sensgene Care Network, Strasbourg, France.,Department of Ophthalmology, National Center for Rare Disorders in Ophthalmic Genetics CARGO, Strasbourg Hospital, Strasbourg, France
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Isabelle Audo
- Sensgene Care Network, Strasbourg, France.,CNRS, INSERM, Institut de la Vision, Sorbonne Université, Paris, France.,DHU Sight Restore, INSERM-DHOS CIC1423, CHNO des Quinze-Vingts, Paris, France
| | - Hélèna Huguet
- Clinical Investigation Center (CIC) and Clinical Research and Epidemiology Unit (URCE), Montpellier, France
| | - Xavier Zanlonghi
- Sensgene Care Network, Strasbourg, France.,Clinic Jules Verne, Nantes, France.,Department of Ophthalmology, University Hospital of Rennes, Rennes, France
| | - Guy Lenaers
- UMR CNRS 6015 - INSERM U1083, University of Angers MitoLab Team, University Hospital of Angers, Angers, France
| |
Collapse
|
21
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George‐Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli‐Cunningham Z. Development of a Mitochondrial Myopathy‐Composite Assessment Tool. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Allan M. Glanzman
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth Ballance
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Kristin Leonhardt
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Ibrahim George‐Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center La Jolla CA USA
- Department of Neurosciences University of California San Diego School of Medicine La Jolla CA USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
22
|
Two Novel Variants in YARS2 Gene Are Responsible for an Extended MLASA Phenotype with Pancreatic Insufficiency. J Clin Med 2021; 10:jcm10163471. [PMID: 34441767 PMCID: PMC8397107 DOI: 10.3390/jcm10163471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in the mitochondrial tyrosyl-tRNA synthetase gene (YARS2) were associated with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). However, patients can present mitochondrial myopathy, with exercise intolerance and muscle weakness, leading from mild to lethal phenotypes. Genes implicated in mtDNA replication were studied by Next Generation Sequencing (NGS) and whole exome sequence with the TruSeq Rapid Exome kit (Illumina, San Diego, CA, USA). Mitochondrial protein translation was studied following the Sasarman and Shoubridge protocol and oxygen consumption rates with Agilent Seahorse XF24 Analyzer Mitostress Test, (Agilent, Santa Clara, CA, USA). We report two siblings with two novel compound heterozygous pathogenic variants in YARS2 gene: a single nucleotide deletion in exon 1, c.314delG (p.(Gly105Alafs*4)), which creates a premature stop codon in the amino acid 109, and a single nucleotide change in exon 5 c.1391T>C (p.(Ile464Thr)), that cause a missense variant in amino acid 464. We demonstrate the pathogenicity of these new variants associated with reduced YARS2 mRNA transcript, reduced mitochondrial protein translation and dysfunctional organelle function. These pathogenic variants are responsible for late onset MLASA, herein accompanied by pancreatic insufficiency, observed in both brothers, clinically considered as Pearson's syndrome. Molecular study of YARS2 gene should be considered in patients presenting Pearson's syndrome characteristics and MLASA related phenotypes.
Collapse
|
23
|
Jiang M, Xie X, Zhu X, Jiang S, Milenkovic D, Misic J, Shi Y, Tandukar N, Li X, Atanassov I, Jenninger L, Hoberg E, Albarran-Gutierrez S, Szilagyi Z, Macao B, Siira SJ, Carelli V, Griffith JD, Gustafsson CM, Nicholls TJ, Filipovska A, Larsson NG, Falkenberg M. The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. SCIENCE ADVANCES 2021; 7:eabf8631. [PMID: 34215584 PMCID: PMC11057760 DOI: 10.1126/sciadv.abf8631] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Xie Xie
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Dusanka Milenkovic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Yonghong Shi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Nirwan Tandukar
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Xinping Li
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Sara Albarran-Gutierrez
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, WA 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, Australia
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Synthetic Biology, Nedlands, WA 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA, Australia
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden.
| |
Collapse
|
24
|
Mir FF, Madasu A, Humad H, Rana AN. Lactic Acidosis in a Congenital Bone Marrow Failure Syndrome. DUBAI MEDICAL JOURNAL 2021. [DOI: 10.1159/000516288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fifteen-month-old male child, known to have a congenital bone marrow failure syndrome, presented in a state of shock with severe lactic acidosis following a brief episode of vomiting. Hospital stay was complicated by recurrent bouts of metabolic acidosis and progressive hepatic failure. Blood mitochondrial DNA sequencing revealed a large heteroplasmic 4,977 bp mitochondrial deletion (approximately 40% of all mitochondrial copies) suggestive of Pearson marrow-pancreas syndrome. By virtue of natural disease course, within a month of admission child succumbed to end-stage liver failure with multi-organ failure and died.
Collapse
|
25
|
Gustafson MA, Sullivan ED, Copeland WC. Consequences of compromised mitochondrial genome integrity. DNA Repair (Amst) 2021; 93:102916. [PMID: 33087282 DOI: 10.1016/j.dnarep.2020.102916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Maintenance and replication of the mitochondrial genome (mtDNA) is essential to mitochondrial function and eukaryotic energy production through the electron transport chain. mtDNA is replicated by a core set of proteins: Pol γ, Twinkle, and the single-stranded DNA binding protein. Fewer pathways exist for repair of mtDNA than nuclear DNA, and unrepaired damage to mtDNA may accumulate and lead to dysfunctional mitochondria. The mitochondrial genome is susceptible to damage by both endogenous and exogenous sources. Missense mutations to the nuclear genes encoding the core mtDNA replisome (POLG, POLG2, TWNK, and SSBP1) cause changes to the biochemical functions of their protein products. These protein variants can damage mtDNA and perturb oxidative phosphorylation. Ultimately, these mutations cause a diverse set of diseases that can affect virtually every system in the body. Here, we briefly review the mechanisms of mtDNA damage and the clinical consequences of disease variants of the core mtDNA replisome.
Collapse
Affiliation(s)
- Margaret A Gustafson
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA
| | - Eric D Sullivan
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
26
|
Lee Y, Kim T, Lee M, So S, Karagozlu MZ, Seo GH, Choi IH, Lee PCW, Kim CJ, Kang E, Lee BH. De Novo Development of mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans. Genes (Basel) 2021; 12:genes12020284. [PMID: 33671400 PMCID: PMC7922481 DOI: 10.3390/genes12020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
Defects in the mitochondrial genome (mitochondrial DNA (mtDNA)) are associated with both congenital and acquired disorders in humans. Nuclear-encoded DNA polymerase subunit gamma (POLG) plays an important role in mtDNA replication, and proofreading and mutations in POLG have been linked with increased mtDNA deletions. SSBP1 is also a crucial gene for mtDNA replication. Here, we describe a patient diagnosed with Pearson syndrome with large mtDNA deletions that were not detected in the somatic cells of the mother. Exome sequencing was used to evaluate the nuclear factors associated with the patient and his family, which revealed a paternal POLG mutation (c.868C > T) and a maternal SSBP1 mutation (c.320G > A). The patient showed lower POLG and SSBP1 expression than his healthy brothers and the general population of a similar age. Notably, c.868C in the wild-type allele was highly methylated in the patient compared to the same site in both his healthy brothers. These results suggest that the co- deficient expression of POLG and SSBP1 genes could contribute to the development of mtDNA deletion.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Taeho Kim
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - Miju Lee
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Seongjun So
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Mustafa Zafer Karagozlu
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
| | - Go Hun Seo
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - In Hee Choi
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
| | - Peter C. W. Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Chong-Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.L.); (M.L.); (S.S.); (M.Z.K.)
- Correspondence: (E.K.); (B.H.L.); Tel.: +82-2-3010-8547 (E.K.); +82-2-3010-5950 (B.H.L.)
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.K.); (G.H.S.); (I.H.C.)
- Correspondence: (E.K.); (B.H.L.); Tel.: +82-2-3010-8547 (E.K.); +82-2-3010-5950 (B.H.L.)
| |
Collapse
|
27
|
Bermek O, Ciesielski GL. Analysis of Mitochondrial SSB-DNA Complexes and Their Effects on DNA Polymerase γ Activity by Electron Microscopy and Enzymatic Assays. Methods Mol Biol 2021; 2281:265-272. [PMID: 33847964 DOI: 10.1007/978-1-0716-1290-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mitochondrial single-stranded DNA-binding protein (mtSSB) regulates the function of the mitochondrial DNA (mtDNA) replisome. In vitro, mtSSB stimulates the activity of enzymatic components of the replisome, namely mtDNA helicase and DNA polymerase gamma (Pol γ). We have demonstrated that the stimulatory properties of mtSSB result from its ability to organize the single-stranded DNA template in a specific manner. Here we present methods employing electron microscopy and enzymatic assays to characterize and classify the mtSSB-DNA complexes and their effects on the activity of Pol γ.
Collapse
Affiliation(s)
- Oya Bermek
- National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | | |
Collapse
|
28
|
Liu R, Mo GL, Song YZ. Identification of a novel large deletion of the mitochondrial DNA in an infant with Pearson syndrome: a case report. Transl Pediatr 2021; 10:204-208. [PMID: 33633954 PMCID: PMC7882279 DOI: 10.21037/tp-20-138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pearson syndrome (PS), also known as Pearson marrow-pancreas syndrome, is a rare, multi-systemic disorder caused by large-scale deletion of mitochondrial DNA (mtDNA) ranging from 2.3 kb to 9 kb, with 4,977 bp in length as the most common variant. This paper reported a novel mtDNA deletion of 4,734 bp in size, spanning from nucleotide 11,220 to 15,953. The infant suffered from chronic hepatomegaly, liver dysfunction, anemia and lactic acidosis over 1 year. Evidences of any infections were negative. Bone marrow aspiration and whole exome sequencing covering nearly 20,000 nucleus genes were performed when aged 3.3 and 6 months, respectively, but no genetic cause was identified. However, at his age 13 months, multiplex ligation-dependent probe amplification assay of the mtDNA in the patient detected a large deletion of 4,734 bp in size spanning the mitochondrial genes MTND4, MTTH, MTTS2, MTTL2, MTND5, MTND6, MTTE, MTCYB and MTTT which were functionally crucial for the intact oxidative phosphorylation pathway and adenosine triphosphate production, and PS was thus definitely diagnosed. This large deletion was negative in his parents and elder brother. Oral ursodeoxycholic acid, fat-soluble vitamins and blood transfusions were administrated, his clinical and laboratory presentations remained stable so far, but the long-term prognosis needed to be followed up. These findings enriched the variant spectrum of mtDNA, and demonstrated the importance of considering mitochondrial disorder in patient with intractable anemia, liver dysfunction and lactic acidosis as well as the significance of appropriate choosing of relevant genetic tools in the etiology diagnosis of such patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gui-Ling Mo
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Anteneová N, Kelifová S, Kolářová H, Vondráčková A, Tóthová I, Lišková P, Magner M, Zámečník J, Hansíková H, Zeman J, Tesařová M, Honzík T. The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions. Brain Sci 2020; 10:brainsci10110766. [PMID: 33105723 PMCID: PMC7690373 DOI: 10.3390/brainsci10110766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background: In this retrospective study, we analysed clinical, biochemical and molecular genetic data of 47 Czech patients with Single, Large-Scale Mitochondrial DNA Deletions (SLSMD). Methods: The diagnosis was based on the long-range PCR (LX-PCR) screening of mtDNA isolated from muscle biopsy in 15 patients, and from the buccal swab, urinary epithelial cells and blood in 32 patients. Results: A total of 57% patients manifested before the age of 16. We did not find any significant difference between paediatric and adult manifestation in either the proportion of patients that would develop extraocular symptoms, or the timespan of its progression. The survival rate in patients with Pearson Syndrome reached 60%. Altogether, five patients manifested with atypical phenotype not fulfilling the latest criteria for SLSMD. No correlation was found between the disease severity and all heteroplasmy levels, lengths of the deletion and respiratory chain activities in muscle. Conclusions: Paediatric manifestation of Progressive External Ophthalmoplegia (PEO) is not associated with a higher risk of multisystemic involvement. Contrary to PEO and Kearns-Sayre Syndrome Spectrum, Pearson Syndrome still contributes to a significant childhood mortality. SLSMD should be considered even in cases with atypical presentation. To successfully identify carriers of SLSMD, a repeated combined analysis of buccal swab and urinary epithelial cells is needed.
Collapse
Affiliation(s)
- Nicole Anteneová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Silvie Kelifová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Hana Kolářová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Alžběta Vondráčková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Iveta Tóthová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Petra Lišková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Martin Magner
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
- Department of Paediatrics, First Faculty of Medicine, Charles University and Thomayer Hospital, Vídeňská 800, 140 59 Prague 4, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic;
| | - Hana Hansíková
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| | - Markéta Tesařová
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
- Correspondence:
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, 128 08 Prague 2, Czech Republic; (N.A.); (S.K.); (H.K.); (A.V.); (I.T.); (P.L.); (M.M.); (H.H.); (J.Z.); (T.H.)
| |
Collapse
|
30
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
31
|
Falkenberg M, Gustafsson CM. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol Biol 2020; 55:509-524. [DOI: 10.1080/10409238.2020.1818684] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Lujan SA, Longley MJ, Humble MH, Lavender CA, Burkholder A, Blakely EL, Alston CL, Gorman GS, Turnbull DM, McFarland R, Taylor RW, Kunkel TA, Copeland WC. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol 2020; 21:248. [PMID: 32943091 PMCID: PMC7500033 DOI: 10.1186/s13059-020-02138-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.
Collapse
Affiliation(s)
- Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, DNA Replication Fidelity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Margaret H Humble
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Grainne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, DNA Replication Fidelity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|