1
|
Shen Y, Fang L. Efficacy and Safety of Intermittent Theta Burst Stimulation and High-Frequency Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder: A Systematic Meta-Analysis. Br J Hosp Med (Lond) 2024; 85:1-19. [PMID: 39212556 DOI: 10.12968/hmed.2024.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims/Background High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) and intermittent theta burst stimulation (iTBS) are emerging neuromodulation techniques for major depressive disorder (MDD). However, clinical trials directly comparing their efficacy are limited. This meta-analysis aimed to evaluate the antidepressant effects and safety profiles of iTBS versus HF-rTMS for MDD. Methods A systematic literature search was conducted in major databases to identify randomized controlled trials (RCTs) comparing iTBS and HF-rTMS for MDD. The primary outcome measures were response rate, remission rate, and common side effects. Meta-analysis was performed using fixed-effects and random-effects models. Publication bias was assessed. Results Seven RCTs were included in the meta-analysis. No significant differences were found in response rate (odds ratio (OR) 0.97, 95% confidence interval (95% CI) 0.81 to 1.16, p = 0.75) or remission rate (OR 1.06, 95% CI 0.85 to 1.31, p = 0.62) between iTBS and HF-rTMS. Both active stimulations showed significantly higher response rates than sham treatment. The odds of response were 4-5 times greater for iTBS versus sham (OR 4.84, 95% CI 2.66 to 8.80, p < 0.001) and 3-4 times greater for HF-rTMS versus sham (OR 3.85, 95% CI 2.08 to 7.13, p < 0.001). No differences in common side effects such as headache were observed between iTBS and HF-rTMS. Conclusion iTBS and HF-rTMS have comparable efficacy and safety profiles in treating MDD based on current evidence. Both neuromodulation techniques are superior to sham stimulation. iTBS could be considered an alternative to HF-rTMS, with the advantage of shorter daily treatment duration. Further large RCTs with long-term follow-up are warranted to confirm these findings.
Collapse
Affiliation(s)
- Yue Shen
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Lanlan Fang
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang Y, Gao H, Qi M. Left dorsolateral prefrontal cortex activation can accelerate stress recovery: A repetitive transcranial stimulation study. Psychophysiology 2023; 60:e14352. [PMID: 37221649 DOI: 10.1111/psyp.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
In this study, a single high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) session was applied over the left dorsolateral prefrontal cortex (DLPFC) after a moderate-to-intense stressor to investigate whether left DLPFC stimulation could regulate cortisol concentration after stress induction. Participants were randomly divided into three groups (stress-TMS, stress, and placebo-stress). Stress was induced in both the stress-TMS and stress groups using the Trier Social Stress Test (TSST). The placebo-stress group received a placebo TSST. In the stress-TMS group, a single HF-rTMS session was applied over the left DLPFC after TSST. Cortisol was measured across the different groups, and each group's responses to the stress-related questionnaire were recorded. After TSST, both the stress-TMS and stress groups reported increased self-reported stress, state anxiety, negative affect, and cortisol concentration compared with the placebo-stress group, indicating that TSST successfully induced a stress response. Compared with the stress group, the stress-TMS group exhibited reduced cortisol levels at 0, 15, 30, and 45 min after HF-rTMS. These results suggest that left DLPFC stimulation after stress induction might accelerate the stress recovery.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Heming Gao
- School of Psychology, Liaoning Normal University, Dalian, China
| | - Mingming Qi
- School of Psychology, Liaoning Normal University, Dalian, China
| |
Collapse
|
3
|
Kumpf U, Soldini A, Burkhardt G, Bulubas L, Dechantsreiter E, Eder J, Padberg F, Palm U. Association between Mood and Sensation Seeking Following rTMS. Brain Sci 2023; 13:1265. [PMID: 37759866 PMCID: PMC10527256 DOI: 10.3390/brainsci13091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Previous studies investigating mood changes in healthy subjects after prefrontal repetitive transcranial magnetic stimulation (rTMS) have shown largely inconsistent results. This may be due to methodological issues, considerable inter-individual variation in prefrontal connectivity or other factors, e.g., personality traits. This pilot study investigates whether mood changes after rTMS are affected by personality parameters. In a randomized cross-over design, 17 healthy volunteers received three sessions of 1 Hz rTMS to Fz, F3 and T3 (10/20 system). The T3 electrode site served as the control condition with the coil angled 45° to the scalp. Subjective mood was rated at baseline and after each condition. Personality traits were assessed using the NEO Five-Factor Inventory (NEO-FFI) and the Sensation Seeking Scale (SSS). For all conditions, a significant association between mood changes towards a deterioration in mood and SSS scores was observed. There were no differences between conditions and no correlations between mood changes and NEO-FFI. The data show that sensation-seeking personality has an impact on subjective mood changes following prefrontal rTMS in all conditions. Future studies investigating the effects of rTMS on emotional paradigms should include individual measures of sensation-seeking personality. The pre-selection of subjects according to personality criteria may reduce the variability in results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University Munich, Nussbaumstr. 7, 80336 Munich, Germany; (U.K.)
| |
Collapse
|
4
|
Vignaud P, Adam O, Palm U, Baeken C, Prieto N, Poulet E, Brunelin J. Can a single session of noninvasive brain stimulation applied over the prefrontal cortex prevent stress-induced cortisol release? Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110667. [PMID: 36273508 DOI: 10.1016/j.pnpbp.2022.110667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION A better understanding of how the hypothalamic-pituitary-adrenal (HPA) axis can be externally regulated is of major importance, especially because hyperreactivity to stress has been proposed as a key factor in the onset and maintenance of many psychiatric conditions. Over the past decades, numerous studies have investigated whether non-invasive brain stimulation (NIBS) can regulate HPA axis reactivity in acute stress situation. As the current results did not allow us to draw clear conclusions, we decided to conduct a systematic review of the literature investigating the effect of a single NIBS session on stress-induced cortisol release. METHODS We searched MEDLINE and Web Of Science for articles indexed through December 2021. Among the 246 articles identified, 15 fulfilled our inclusion criteria with a quality estimated between 52 and 93%. RESULTS Of the different NIBS used and targeted brain regions, stimulating the left dorsolateral prefrontal cortex, with either high frequency repetitive transcranial magnetic stimulation or anodal transcranial direct current stimulation, seems to be the most appropriate for reducing cortisol release in acute stress situations. CONCLUSIONS Despite the heterogeneity of the stimulation parameters, the characteristics of participants, the modalities of cortisol collection, the timing of the NIBS session in relation to the stressor exposure, and methodological considerations, stimulating the left dorsolateral prefrontal cortex can be efficient to modulate stress-induced cortisol release.
Collapse
Affiliation(s)
- Philippe Vignaud
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France; INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France.
| | - Ondine Adam
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| | - Ulrich Palm
- Dept. of Psychiatry and Psychotherapy, Munich University Hospital, Munich, Germany; Medicalpark Chiemseeblick, Bernau-Felden, Germany.
| | - Chris Baeken
- Ghent University, Dept. of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB) Department of Psychiatry (UZBrussel), Belgium; Eindhoven University of Technology, Department of ELectrical Engineering, the Netherlands.
| | - Nathalie Prieto
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France; Department of Psychiatric Emergency, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
5
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Personality traits affect anticipatory stress vulnerability and coping effectiveness in occupational critical care situations. Sci Rep 2022; 12:20965. [PMID: 36470906 PMCID: PMC9722917 DOI: 10.1038/s41598-022-24905-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The present study aimed at investigating the influence of personality on both anticipatory stress vulnerability and the effectiveness of coping strategies in an occupational stressful context. Following assessment of individual personality traits (Big Five Inventory), 147 volunteers were exposed to the anticipation of a stressful event. Anxiety and cardiac reactivity were assessed as markers of vulnerability to anticipatory stress. Participants were then randomly assigned to three groups and subjected to a 5-min intervention: relaxation breathing, relaxation breathing combined with cardiac biofeedback, and control. The effectiveness of coping interventions was determined through the cardiac coherence score achieved during the intervention. Higher neuroticism was associated with higher anticipatory stress vulnerability, whereas higher conscientiousness and extraversion were related to lower anticipatory stress vulnerability. Relaxation breathing and biofeedback coping interventions contributed to improve the cardiac coherence in all participants, albeit with greater effectiveness in individuals presenting higher score of openness to experience. The present findings demonstrated that personality traits are related to both anticipatory stress vulnerability and effectiveness of coping interventions. These results bring new insights into practical guidelines for stress prevention by considering personality traits. Specific practical applications for health professionals, who are likely to manage stressful situations daily, are discussed.
Collapse
|
7
|
Moulier V, Gaudeau-Bosma C, Thomas F, Isaac C, Thomas M, Durand F, Schenin-King Andrianisaina P, Valabregue R, Laidi C, Benadhira R, Bouaziz N, Januel D. Effect of Intermittent Theta Burst Stimulation on the Neural Processing of Emotional Stimuli in Healthy Volunteers. J Clin Med 2021; 10:jcm10112449. [PMID: 34205840 PMCID: PMC8198492 DOI: 10.3390/jcm10112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that has shown to be effective in treatment-resistant depression. Through studying the effect of iTBS on healthy subjects, we wished to attain a greater understanding of its impact on the brain. Our objective was to assess whether 10 iTBS sessions altered the neural processing of emotional stimuli, mood and brain anatomy in healthy subjects. METHODS In this double-blind randomized sham-controlled study, 30 subjects received either active iTBS treatment (10 sessions, two sessions a day) or sham treatment over the left dorsolateral prefrontal cortex. Assessments of mood, structural magnetic resonance imaging (MRI) and functional MRI (fMRI) were performed before and after iTBS sessions. During the fMRI, three different categories of stimuli were presented: positive, negative and neutral photographs. RESULTS This study showed that, during the presentation of negative stimuli (compared with neutral stimuli), 10 sessions of iTBS increased activity in the left anterior insula. However, iTBS did not induce any change in mood, regional gray matter volume or cortical thickness. CONCLUSIONS iTBS modifies healthy subjects' brain activity in a key region that processes emotional stimuli. (AFSSAPS: ID-RCB 2010A01032-37).
Collapse
Affiliation(s)
- Virginie Moulier
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
- Centre Hospitalier du Rouvray, University Department of Psychiatry, 76301 Sotteville-lès-Rouen, France
- Correspondence: ; Tel.: +33-014-309-3232
| | - Christian Gaudeau-Bosma
- Espace Territoriale d’Accompagnement Psychosociale, CH Les Murets, GHT94, 94120 Fontenay sous Bois, France;
| | - Fanny Thomas
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Clémence Isaac
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Maxence Thomas
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Florence Durand
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Palmyre Schenin-King Andrianisaina
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle Épinière—ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, 75013 Paris, France;
| | - Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, 94028 Créteil, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, 94028 Créteil, France
- UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, 91191 Gif-sur-Yvette, France
- Fondation Fondamental, 94028 Créteil, France
| | - René Benadhira
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Noomane Bouaziz
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Dominique Januel
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| |
Collapse
|
8
|
Crewther BT, Kasprzycka W, Cook CJ, Rola R. Impact of one HF-rTMS session over the DLPFC and motor cortex on acute hormone dynamics and emotional state in healthy adults: a sham-controlled pilot study. Neurol Sci 2021; 43:651-659. [PMID: 34041633 DOI: 10.1007/s10072-021-05335-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Studies indicate that high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) can lower cortisol concentration or output, with some evidence suggesting a link to testosterone. Together, these stress and social hormones might help regulate the emotional response to HF-rTMS. This pilot study evaluated the effect of HF-rTMS on acute testosterone and cortisol dynamics and emotional state in eleven healthy adults. Using a sham-controlled, single-blind, crossover design, participants completed a HF-rTMS session targeting the dorsolateral prefrontal cortex (DLPFC) and motor cortex on separate days. Stimulation (250 total pulses) was applied at 90% of the resting motor threshold. Salivary testosterone and cortisol, mood, motivation, anxiety, and heart rate (HR) were assessed before (T1) and 1 (T2), 15 (T3), and 30 min (T4) after each session. There were no significant session differences in testosterone and cortisol concentration, mood, motivation, and HR. Although DLPFC stimulation produced less anxiety (vs. motor cortex), and testosterone output was stable across both treatments (vs. sham-related decline in testosterone), neither differed from the sham. Within-person fluctuations in testosterone, mood, motivation, and/or anxiety were significantly related across the DLPFC and motor cortex trials only. In conclusion, a single sub-maximal session of HF-rTMS did not affect the hormonal, emotional, or physiological state of healthy adults, relative to a sham. However, the emergence of stimulation-specific testosterone and/or emotional linkages suggests that the repeated effects of HF-rTMS may also manifest at the individual level. This offers another pathway to explain the therapeutic efficacy of rTMS and a model to explore interindividual variability in health-related outcomes.
Collapse
Affiliation(s)
- Blair T Crewther
- Department of Endocrinology, Institute of Sport - National Research Institute, Warsaw, Poland.
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland.
| | - Wiktoria Kasprzycka
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Christian J Cook
- Biomedical Sciences, School of Science and Technology, University of New England, Armidale, Australia
- Hamlyn Centre, Imperial College, London, UK
| | - Rafał Rola
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
- Military Institute of Aviation Medicine, Warsaw, Poland
| |
Collapse
|
9
|
De Smet S, Baeken C, De Raedt R, Pulopulos MM, Razza LB, Van Damme S, De Witte S, Brunoni AR, Vanderhasselt MA. Effects of combined theta burst stimulation and transcranial direct current stimulation of the dorsolateral prefrontal cortex on stress. Clin Neurophysiol 2021; 132:1116-1125. [PMID: 33773176 DOI: 10.1016/j.clinph.2021.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Research suggests that the combination of different non-invasive brain stimulation techniques, such as intermittent theta-burst stimulation (iTBS) and transcranial direct current stimulation (tDCS), could enhance the effects of stimulation. Studies investigating the combination of tDCS and iTBS over the dorsolateral prefrontal cortex (DLPFC) are lacking. In this within-subjects study, we evaluated the additive effects of iTBS with tDCS on psychophysiological measures of stress. METHOD Sixty-eight healthy individuals were submitted to a bifrontaltDCS + iTBS and shamtDCS + iTBS protocol targeting the DLPFC with a one-week interval. The Maastricht Acute Stress Test was used to activate the stress system after stimulation. Stress reactivity and recovery were assessed using physiological and self-report measures. RESULTS The stressor evoked significant psychophysiological changes in both stimulation conditions. However, no evidence was found for differences between them in stress reactivity and recovery. Participants reported more pain and feelings of discomfort to the bifrontaltDCS + iTBS protocol. CONCLUSION In this study set-up, iTBS plus tDCS was not superior to iTBS in downregulating stress in healthy subjects. SIGNIFICANCE There is no evidence for an effect of combined tDCS-iTBS of the DLPFC on stress according to the parameters employed in our study. Future studies should explore other stimulation parameters, additive approaches and/or neurobiological markers.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, Brussels University Hospital, Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - Matias M Pulopulos
- Department of Psychology and Sociology, University of Zaragoza, Aragon, Spain.
| | - Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Stefaan Van Damme
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - Sara De Witte
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
10
|
Vallejo L, Zapater-Fajarí M, Montoliu T, Puig-Perez S, Nacher J, Hidalgo V, Salvador A. No Effects of Acute Psychosocial Stress on Working Memory in Older People With Type 2 Diabetes. Front Psychol 2021; 11:596584. [PMID: 33584433 PMCID: PMC7874042 DOI: 10.3389/fpsyg.2020.596584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) has been considered a public health threat due to its growing prevalence, particularly in the older population. It is important to know the effects of psychosocial stress and its potential consequences for some basic cognitive processes that are important in daily life. Currently, there is very little information about how people with T2D face acute psychosocial stressors, and even less about how their response affects working memory (WM), which is essential for their functionality and independence. Our aim was to characterize the response to an acute laboratory psychosocial stressor and its effects on WM in older people with T2D. Fifty participants with T2D from 52 to 77 years old were randomly assigned to a stress (12 men and 12 women) or control (12 men and 14 women) condition. Mood and physiological (cortisol, C, and salivary alpha-amylase, sAA) responses to tasks were measured. In addition, participants completed a WM test before and after the stress or control task. Our results showed that the TSST elicited higher negative affect and greater C and sAA responses than the control task. No significant differences in WM were observed depending on the exposure to stress or the control task. Finally, participants who showed higher C and sAA responses to the stressor had lower WM performance. Our results indicate that medically treated older adults with T2D show clear, typical mood and physiological responses to an acute psychosocial stressor. Finally, the lack of acute psychosocial stress effects on WM suggests that it could be related to aging and not to this disease, at least when T2D is adequately treated.
Collapse
Affiliation(s)
- Lorena Vallejo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Mariola Zapater-Fajarí
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Teresa Montoliu
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain
| | - Sara Puig-Perez
- Department of Health Sciences, Valencian International University, Valencia, Spain
| | - Juan Nacher
- Valencian (VLC) Campus Research Microcluster "Technologies of Information and Control Applied to the Pathophysiology and Treatment of Diabetes," University of Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental: Spanish National Network of Research in Mental Health, Madrid, Spain
| | - Vanesa Hidalgo
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain.,II Aragón, Department of Psychology and Sociology, Area of Psychobiology, University of Zaragoza, Teruel, Spain
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and University Institute for Research in Psychology of Human Resources, Organizational Development and Quality of Work Life (IDOCAL), University of Valencia, Valencia, Spain.,Valencian (VLC) Campus Research Microcluster "Technologies of Information and Control Applied to the Pathophysiology and Treatment of Diabetes," University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
de Wandel L, Pulopulos MM, Labanauskas V, de Witte S, Vanderhasselt MA, Baeken C. Individual resting-state frontocingular functional connectivity predicts the intermittent theta burst stimulation response to stress in healthy female volunteers. Hum Brain Mapp 2020; 41:5301-5312. [PMID: 33010200 PMCID: PMC7670632 DOI: 10.1002/hbm.25193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Intermittent theta burst stimulation (iTBS) delivered to the dorsolateral prefrontal cortex (DLPFC) has been investigated as a promising treatment for stress and stress‐related mental disorders such as major depression, yet large individual differences in responsiveness demand further exploration and optimization of its effectiveness. Clinical research suggests that resting‐state functional connectivity (rsFC) between the DLPFC and the anterior cingulate cortex (ACC) can predict iTBS treatment response in depression. The present study aimed to investigate whether rsFC between the left DLPFC and ACC subregions could predict the degree to which the stress system is affected by iTBS. After assessment of baseline resting‐state fMRI data, 34 healthy female participants performed the Trier Social Stress Test on two separate days, each followed by active or sham iTBS over the left DLPFC. To evaluate iTBS effects on the stress‐system, salivary cortisol was measured throughout the procedure. Our results showed that a stronger negative correlation between the left DLPFC and the caudal ACC was linked to a larger attenuation of stress‐system sensitivity during active, but not during sham iTBS. In conclusion, based on individual rsFC between left DLPFC and caudal ACC, iTBS could be optimized to more effectively attenuate deregulation of the stress system.
Collapse
Affiliation(s)
- Linde de Wandel
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Vytautas Labanauskas
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Sara de Witte
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Psychiatry, University Hospital UZ Brussel, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
12
|
Pulopulos MM, Schmausser M, De Smet S, Vanderhasselt MA, Baliyan S, Venero C, Baeken C, De Raedt R. The effect of HF-rTMS over the left DLPFC on stress regulation as measured by cortisol and heart rate variability. Horm Behav 2020; 124:104803. [PMID: 32526225 DOI: 10.1016/j.yhbeh.2020.104803] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex, and especially the Dorsolateral Prefrontal Cortex (DLPFC), plays an inhibitory role in the regulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis under stressful situations. Moreover, recent evidence suggests that a sustained DLPFC activation is associated with adaptive stress regulation in anticipation of a stressful event, leading to a reduced stress-induced amygdala response, and facilitating the confrontation with the stressor. However, studies using experimental manipulation of the activity of the DLPFC before a stressor are scarce, and more research is needed to understand the specific role of this brain area in the stress-induced physiological response. This pre-registered study investigated the effect on stress regulation of a single excitatory high frequency (versus sham) repetitive transcranial magnetic stimulation (HF-rTMS) session over the left DLPFC applied before the Trier Social Stress Test in 75 healthy young women (M = 21.05, SD = 2.60). Heart rate variability (HRV) and salivary cortisol were assessed throughout the experimental protocol. The active HF-rTMS and the sham group showed a similar cognitive appraisal of the stress task. No differences in HRV were observed during both the anticipation and the actual confrontation with the stress task and therefore, our results did not reflect DLPFC-related adaptive anticipatory adjustments. Importantly, participants in the active HF-rTMS group showed a lower cortisol response to stress. The effect of left prefrontal HF-rTMS on the stress system provides further critical experimental evidence for the inhibitory role played by the DLPFC in the regulation of the HPA axis.
Collapse
Affiliation(s)
- Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.
| | - Maximilian Schmausser
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium; Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Shishir Baliyan
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Department of Psychiatry, University Hospital Brussels (UZBrussel), Belgium; Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
13
|
Pulopulos M, Allaert J, Vanderhasselt MA, Sanchez-Lopez A, De Witte S, Baeken C, De Raedt R. Effects of HF-rTMS over the left and right DLPFC on proactive and reactive cognitive control. Soc Cogn Affect Neurosci 2020; 17:109-119. [PMID: 32613224 PMCID: PMC8824550 DOI: 10.1093/scan/nsaa082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023] Open
Abstract
Previous research supports the distinction between proactive and reactive control. Although the dorsolateral prefrontal cortex (DLPFC) has been consistently related to these processes, lateralization of proactive and reactive control is still under debate. We manipulated brain activity to investigate the role of the left and right DLPFC in proactive and reactive cognitive control. Using a single-blind, sham-controlled crossover within-subjects design, 25 young healthy females performed the 'AX' Continuous Performance Task after receiving sham versus active High-Frequency repetitive Transcranial Magnetic Stimulation (HF-rTMS) to increase left and right DLPFC activity. RTs and pupillometry were used to assess patterns of proactive and reactive cognitive control and task-related resource allocation respectively. We observed that, compared to sham, HF-rTMS over the left DLPFC increased proactive control. After right DLPFC HF-rTMS, participants showed slower RTs on AX trials, suggesting more reactive control. However, this latter result was not supported by RTs on BX trials (i.e. the trial that specifically assess reactive control). Pupil measures showed a sustained increase in resource allocation after both active left and right HF-rTMS. Our results with RT data provide evidence on the role of the left DLPFC in proactive control and suggest that the right DLPFC is implicated in reactive control.
Collapse
Affiliation(s)
- Matias Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | - Jens Allaert
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Alvaro Sanchez-Lopez
- Department of Personality, Evaluation and Psychological Treatment, Complutense University of Madrid, Spain
| | - Sara De Witte
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium.,Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Belgium.,Department of Psychiatry, University Hospital Brussels (UZBrussel), Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|