1
|
Song JW, Zhang ZS, Chen L, Wang QW, Xu JY, Bai WW, Li B, Wang SX, Guo T. Vitamin B-6 Prevents Heart Failure with Preserved Ejection Fraction Through Downstream of Kinase 3 in a Mouse Model. J Nutr 2024; 154:3031-3041. [PMID: 39147036 DOI: 10.1016/j.tjnut.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND There is an urgent need to develop an efficient therapeutic strategy for heart failure with preserved ejection fraction (HFpEF), which is mediated by phenotypic changes in cardiac macrophages. We previously reported that vitamin B-6 inhibits macrophage-mediated inflammasome activation. OBJECTIVES We sought to examine whether the prophylactic use of vitamin B-6 prevents HFpEF. METHODS HFpEF model was elicited by a combination of high-fat diet and Nω-nitro-l-arginine methyl ester supplement in mice. Cardiac function was assessed using conventional echocardiography and Doppler imaging. Immunohistochemistry and immunoblotting were used to detect changes in the macrophage phenotype and myocardial remodeling-related molecules. RESULTS Co-administration of vitamin B-6 with HFpEF mice mitigated HFpEF phenotypes, including diastolic dysfunction, cardiac macrophage phenotypic shifts, fibrosis, and hypertrophy. Echocardiographic improvements were observed, with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving from 2.13 to 1.17. The exercise capacity also increased from 295.3 to 657.7 min. However, these beneficial effects were negated in downstream of kinase (DOK) 3-deficient mice. Mechanistically, vitamin B-6 increased DOK3 protein concentrations and inhibited macrophage phenotypic changes, which were abrogated by an AMP-activated protein kinase inhibitor. CONCLUSIONS Vitamin B-6 increases DOK3 signaling to lower risk of HFpEF by inhibiting phenotypic changes in cardiac macrophages.
Collapse
Affiliation(s)
- Jia-Wen Song
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen-Shan Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qian-Wen Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Yao Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Wang H, Wu J, Wei H, Zhang Y, Wang Y, Wang DW. Increased Tryptophan Catabolism Provides Predictive Value to Chronic Heart Failure Patients with Low-Grade Inflammation. Inflammation 2024:10.1007/s10753-024-02100-8. [PMID: 39012560 DOI: 10.1007/s10753-024-02100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Kynurenine to tryptophan ratio (KTR), which serves as an indicator for evaluating indoleamine-2,3-dioxygenase activity and inflammation, has been reported to be linked with cardiovascular incidences. However, its correlation with cardiovascular outcomes in patients suffering from heart failure (HF) remains to be explored. The objective of this study was to investigate the prognostic value of KTR in HF. The concentration of tryptophan and kynurenine were quantified by liquid chromatography-tandem mass spectrometry, and the KTR value was calculated in a population of 3150 HF patients. The correlation between plasma KTR levels and the occurrence of adverse cardiovascular events was evaluated for its prognostic value. We also assessed the role of KTR in addition to the classic inflammatory biomarker hypersensitive C-reactive protein (hs-CRP) in different subtypes of HF. We found that increased KTR levels were associated with an elevated risk and severity of the primary endpoints in different subtypes of HF. The simultaneous evaluation of KTR and hs-CRP levels enhanced risk categorization among HF patients. Furthermore, the KTR index presented complementary prognostic value for those HF patients with low-grade inflammation (hs-CRP ≤ 6 mg/L). Our results indicated plasma KTR is an independent risk factor for cardiovascular events. Plasma KTR levels in patients with HF can provide both concurrent and complementary prognostic value to hs-CRP.
Collapse
Affiliation(s)
- Huiqing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yinhui Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
3
|
Neves LS, Saraiva F, Ferreira R, Leite-Moreira A, Barros AS, Diaz SO. Metabolomics and Cardiovascular Risk in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5693. [PMID: 38891881 PMCID: PMC11172189 DOI: 10.3390/ijms25115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The associations of plasma metabolites with adverse cardiovascular (CV) outcomes are still underexplored and may be useful in CV risk stratification. We performed a systematic review and meta-analysis to establish correlations between blood metabolites and adverse CV outcomes in patients with heart failure (HF). Four cohorts were included, involving 83 metabolites and 37 metabolite ratios, measured in 1158 HF patients. Hazard ratios (HR) of 42 metabolites and 3 metabolite ratios, present in at least two studies, were combined through meta-analysis. Higher levels of histidine (HR 0.74, 95% CI [0.64; 0.86]) and tryptophan (HR 0.82 [0.71; 0.96]) seemed protective, whereas higher levels of symmetric dimethylarginine (SDMA) (HR 1.58 [1.30; 1.93]), N-methyl-1-histidine (HR 1.56 [1.27; 1.90]), SDMA/arginine (HR 1.38 [1.14; 1.68]), putrescine (HR 1.31 [1.06; 1.61]), methionine sulfoxide (HR 1.26 [1.03; 1.52]), and 5-hydroxylysine (HR 1.25 [1.05; 1.48]) were associated with a higher risk of CV events. Our findings corroborate important associations between metabolic imbalances and a higher risk of CV events in HF patients. However, the lack of standardization and data reporting hampered the comparison of a higher number of studies. In a future clinical scenario, metabolomics will greatly benefit from harmonizing sample handling, data analysis, reporting, and sharing.
Collapse
Affiliation(s)
- Leonel Sousa Neves
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Francisca Saraiva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - António S. Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| | - Sílvia O. Diaz
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (L.S.N.); (F.S.); (A.L.-M.)
| |
Collapse
|
4
|
Zhang Y, Huang K, Duan J, Zhao R, Yang L. Gut microbiota connects the brain and the heart: potential mechanisms and clinical implications. Psychopharmacology (Berl) 2024; 241:637-651. [PMID: 38407637 DOI: 10.1007/s00213-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Nowadays, high morbidity and mortality of cardiovascular diseases (CVDs) and high comorbidity rate of neuropsychiatric disorders contribute to global burden of health and economics. Consequently, a discipline concerning abnormal connections between the brain and the heart and the resulting disease states, known as psychocardiology, has garnered interest among researchers. However, identifying a common pathway that physicians can modulate remains a challenge. Gut microbiota, a constituent part of the human intestinal ecosystem, is likely involved in mutual mechanism CVDs and neuropsychiatric disorder share, which could be a potential target of interventions in psychocardiology. This review aimed to discuss complex interactions from the perspectives of microbial and intestinal dysfunction, behavioral factors, and pathophysiological changes and to present possible approaches to regulating gut microbiota, both of which are future directions in psychocardiology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
5
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
6
|
Kretzschmar T, Westphal J, Neugebauer S, Wu JM, Zeller M, Bogoviku J, Bekhite MM, Bekfani T, Schlattmann P, Kiehntopf M, Franz M, Schulze PC. Metabolic Profiling Identifies 1-MetHis and 3-IPA as Potential Diagnostic Biomarkers for Patients With Acute and Chronic Heart Failure With Reduced Ejection Fraction. Circ Heart Fail 2024; 17:e010813. [PMID: 38179791 PMCID: PMC10782933 DOI: 10.1161/circheartfailure.123.010813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Metabolomics has become a valuable tool for identifying potential new biomarkers and metabolic profiles. It has the potential to improve the diagnosis and prognosis of different phenotypes of heart failure. To generate a distinctive metabolic profile, we assessed and compared the metabolic phenotypes of patients with acute decompensated heart failure (ADHF), patients with chronic heart failure (CHF), and healthy controls. METHODS Plasma metabolites were analyzed by liquid-chromatography mass spectrometry/mass spectrometry and the MxP Quant 500 kit in 15 patients with ADHF, 50 patients with CHF (25 with dilated cardiomyopathy, 25 with ischemic cardiomyopathy), and 13 controls. RESULTS Of all metabolites identified to be significantly altered, 3-indolepropionic acid and 1-methyl histidine showed the highest concentration differences in ADHF and CHF compared with control. Area under the curve-receiver operating characteristic analysis showed an area under the curve ≥0.8 for 3-indolepropionic acid and 1-methyl histidine, displaying good discrimination capabilities between control and patient cohorts. Additionally, symmetrical dimethylarginine (mean, 1.97±0.61 [SD]; P=0.01) was identified as a suitable biomarker candidate for ADHF and kynurenine (mean, 1.69±0.39 [SD]; P=0.009) for CHF when compared with control, both demonstrating an area under the curve ≥0.85. CONCLUSIONS Our study provides novel insights into the metabolic differences between ADHF and CHF and healthy controls. We here identify new metabolites for potential diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Tom Kretzschmar
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Julian Westphal
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics (S.N., M.K.), University Hospital Jena, Germany
| | - Jasmine M.F. Wu
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Max Zeller
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Jurgen Bogoviku
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Mohamed M. Bekhite
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Magdeburg, Germany (T.B.)
| | - Peter Schlattmann
- Department of Medical Statistics, Computer Sciences and Data Science, Centre for Sepsis Control and Care, Jena University Hospital, Germany (P.S.)
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics (S.N., M.K.), University Hospital Jena, Germany
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| | - P. Christian Schulze
- Department of Internal Medicine I, Division of Cardiology (T.K., J.W., J.M.F.W., M.Z., J.B., M.M.B., M.F., P.C.S.), University Hospital Jena, Germany
| |
Collapse
|
7
|
Zeng F, Zhou P, Wang M, Xie L, Huang X, Wang Y, Huang J, Shao X, Yang Y, Liu W, Gu M, Yu Y, Sun F, He M, Li Y, Zhang Z, Gong W, Wang Y. ACMSD mediated de novo NAD + biosynthetic impairment in cardiac endothelial cells as a potential therapeutic target for diabetic cardiomyopathy. Diabetes Res Clin Pract 2023; 206:111014. [PMID: 37977551 DOI: 10.1016/j.diabres.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
OBJECT The highly conserved α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is the key enzyme that regulates the de novo NAD+ synthesis from tryptophan. NAD+ metabolism in diabetic cardiomyopathy (DCM) was not elucidated yet. METHODS Mice were assigned to non-diabetic (NDM) group, streptozocin (STZ)-induced diabetic (DM) group, and nicotinamide (NAM) treated (DM + NAM) group. ACMSD mediated NAD+ metabolism were studied both in mice and patients with diabetes. RESULTS NAD+ level was significantly lower in the heart of DM mice than that of the NDM group. Supplementation with NAM could partially increased myocardial capillary density and ameliorated myocardial fibrosis by increasing NAD+ level through salvage pathway. Compared with NDM mice, the expression of ACMSD in myocardial endothelial cells of DM mice was significantly increased. It was further confirmed that in endothelial cells, high glucose promoted the expression of ACMSD. Inhibition of ACMSD could increase de novo NAD+ synthesis and improve endothelial cell function by increasing Sirt1 activity. Targeted mass spectrometry analysis indicated increased ACMSD enzyme activity in diabetic patients, higher ACMSD activity increased risk of heart diastolic dysfunction. CONCLUSION In summary, increased expression of ACMSD lead to impaired de novo NAD+ synthesis in diabetic heart. Inhibition of ACMSD could potentially improve DCM.
Collapse
Affiliation(s)
- Fangfang Zeng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Peng Zhou
- Department of Cardiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijie Xie
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinmei Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yilin Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinya Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqing Shao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yeping Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjuan Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maocheng Gu
- Department of Cardiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fei Sun
- Department of Endocrinology and Metabolism, Pudong New Area Gongli Hospital, Shanghai 200135, China
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yi Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Zhang ZH, Yang CT, Su XR, Li YP, Zhang XJ, Wang SJ, Cong B. CCK1R2R -/- ameliorates myocardial damage caused by unpredictable stress via altering fatty acid metabolism. Stress 2023; 26:2254566. [PMID: 37665601 DOI: 10.1080/10253890.2023.2254566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023] Open
Abstract
The heart is the main organ of the circulatory system and requires fatty acids to maintain its activity. Stress is a contributor to aggravating cardiovascular diseases and even death, and exacerbates the abnormal lipid metabolism. The cardiac metabolism may be disturbed by stress. Cholecystokinin (CCK), which is a classical peptide hormone, and its receptor (CCKR) are expressed in myocardial cells and affect cardiovascular function. Nevertheless, under stress, the exact role of CCKR on cardiac function and cardiac metabolism is unknown and the mechanism is worth exploring. After unpredictable stress, a common stress-inducing model that induces the development of mood disorders such as anxiety and reduces motivated behavior, we found that the abnormal contraction and diastole of the heart, myocardial injury, oxidative stress and inflammation of mice were aggravated. Cholecystokinin A receptor and cholecystokinin B receptor knockout (CCK1R2R-/-) significantly reversed these changes. Mechanistically, fatty acid metabolism was found to be altered in CCK1R2R-/- mice. Differential metabolites, especially L-tryptophan, L-aspartic acid, cholesterol, taurocholic acid, ADP, oxoglutaric acid, arachidonic acid and 17-Hydroxyprogesterone, influenced cardiac function after CCK1R2R knockout and unpredictable stress. We conclude that CCK1R2R-/- ameliorated myocardial damage caused by unpredictable stress via altering fatty acid metabolism.
Collapse
Affiliation(s)
- Zhi-Hua Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
- Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung Disease, Hebei, P.R. China
| | - Chen-Teng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Xiao-Rui Su
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Ya-Ping Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Xiao-Jing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Song-Jun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Hebei, P.R. China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, Hainan, P.R. China
| |
Collapse
|
9
|
Wang Y, Song J, Yu K, Nie D, Zhao C, Jiao L, Wang Z, Zhou L, Wang F, Yu Q, Zhang S, Wen Z, Wu J, Wang CY, Wang DW, Cheng J, Zhao C. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency Inhibits Pathological Cardiac Hypertrophy. Hypertension 2023; 80:2099-2111. [PMID: 37485661 DOI: 10.1161/hypertensionaha.122.20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Aberrant amino acid metabolism is implicated in cardiac hypertrophy, while the involvement of tryptophan metabolism in pathological cardiac hypertrophy remains elusive. Herein, we aimed to investigate the effect and potential mechanism of IDO1 (indoleamine 2,3-dioxygenase) and its metabolite kynurenine (Kyn) on pathological cardiac hypertrophy. METHODS Transverse aortic constriction was performed to induce cardiac hypertrophy in IDO1-knockout (KO) mice and AAV9-cTNT-shIDO1 mice. Liquid chromatography-mass spectrometry was used to detect the metabolites of tryptophan-Kyn pathway. Chromatin immunoprecipitation assay and dual luciferase assay were used to validate the binding of protein and DNA. RESULTS IDO1 expression was upregulated in both human and murine hypertrophic myocardium, alongside with increased IDO1 activity and Kyn content in transverse aortic constriction-induced mice's hearts using liquid chromatography-mass spectrometry analysis. Myocardial remodeling and heart function were significantly improved in transverse aortic constriction-induced IDO1-KO mice, but were greatly exacerbated with subcutaneous Kyn administration. IDO1 inhibition or Kyn addition confirmed the alleviation or aggravation of hypertrophy in cardiomyocyte treated with isoprenaline, respectively. Mechanistically, IDO1 and metabolite Kyn contributed to pathological hypertrophy via the AhR (aryl hydrocarbon receptor)-GATA4 (GATA binding protein 4) axis. CONCLUSIONS This study demonstrated that IDO1 deficiency and consequent Kyn insufficiency can protect against pathological cardiac hypertrophy by decreasing GATA4 expression in an AhR-dependent manner.
Collapse
Affiliation(s)
- Yinhui Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.S.)
| | - Kun Yu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Daan Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.N.)
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (D.N.)
| | - Chengcheng Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Liping Jiao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China (L.J.)
| | - Ziyi Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Ling Zhou
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Feng Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Qilin Yu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Shu Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Zheng Wen
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Junfang Wu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Dao Wen Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Cheng
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Chunxia Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| |
Collapse
|
10
|
Bai L, Han X, Kee HJ, He X, Kim SH, Jeon MJ, Zhou H, Jeong SM, Kee SJ, Jeong MH. Protocatechuic acid prevents isoproterenol-induced heart failure in mice by downregulating kynurenine-3-monooxygenase. J Cell Mol Med 2023; 27:2290-2307. [PMID: 37482908 PMCID: PMC10424289 DOI: 10.1111/jcmm.17869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor β1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Xiaonan He
- Emergency Critical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Seong Hoon Kim
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Mi Jin Jeon
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Min Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Lai Q, Wu L, Dong S, Zhu X, Fan Z, Kou J, Liu F, Yu B, Li F. Inhibition of KMO Ameliorates Myocardial Ischemia Injury via Maintaining Mitochondrial Fusion and Fission Balance. Int J Biol Sci 2023; 19:3077-3098. [PMID: 37416768 PMCID: PMC10321280 DOI: 10.7150/ijbs.83392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Looking for early diagnostic markers and therapeutic targets is the key to ensuring prompt treatment of myocardial ischemia (MI). Here, a novel biomarker xanthurenic acid (XA) was identified based on metabolomics and exhibited high sensitivity and specificity in the diagnosis of MI patients. Additionally, the elevation of XA was proved to induce myocardial injury in vivo by promoting myocardial apoptosis and ferroptosis. Combining metabolomics and transcriptional data further revealed that kynurenine 3-monooxygenase (KMO) profoundly increased in MI mice, and was closely associated with the elevation of XA. More importantly, pharmacological or heart-specific inhibition of KMO obviously suppressed the elevation of XA and profoundly ameliorated the OGD-induced cardiomyocytes injury and the ligation-induced MI injury. Mechanistically, KMO inhibition effectively restrained myocardial apoptosis and ferroptosis by modulating mitochondrial fission and fusion. In addition, virtual screening and experimental validation were adopted to identify ginsenoside Rb3 as a novel inhibitor of KMO and exhibited great cardioprotective effects by regulating mitochondrial dynamical balance. Taken together, targeting KMO may provide a new approach for the clinical treatment of MI through maintaining mitochondrial fusion and fission balance, and ginsenoside Rb3 showed great potential to be developed as a novel therapeutic drug targeting KMO.
Collapse
Affiliation(s)
- Qiong Lai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Shuhong Dong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xiaozhou Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Zhaoyang Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| |
Collapse
|
12
|
Cui X, Su Y, Huang X, Chen J, Ma J, Liao P, He X. Combined analysis of plasma metabolome and intestinal microbiome sequencing to explore jiashen prescription and its potential role in changing intestine–heart axis and effect on chronic heart failure. Front Cardiovasc Med 2023; 10:1147438. [PMID: 36970332 PMCID: PMC10036802 DOI: 10.3389/fcvm.2023.1147438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundHeart failure (HF) is a syndrome with global clinical and socioeconomic burden worldwide owing to its poor prognosis. Jiashen Prescription (JSP), a traditional Chinese medicine (TCM) formula, exhibits unambiguous effects on treating HF. Previously, we have reported that underlying mechanisms of JSP by an untargeted metabolomics approach, but the contribution of gut microbiota and metabolic interaction to the cardioprotective efficacy of JSP remains to be elucidated.Materials and methodsFirstly, the rat model of heart failure was established by the permanent ligation of the left anterior descending coronary artery. The efficacy evaluation of JSP in treating HF rats was per-formed by left ventricular ejection fraction (LVEF). Then, 16S rRNA gene sequencing and LC/MS-based metabolomic analysis were utilized to explore the characteristics of cecal-contents microecology and plasma metabolic profile, respectively. After that, the correlation between intestinal micro-ecological characteristics and plasma metabolic characteristics was analyzed to explore the potential mechanism of the JSP treatment in HF.ResultsJSP could improve the cardiac function of heart failure rats and thus ameliorate heart failure via enhancing rat LVEF. Results of intestinal flora analysis revealed that JSP not only adjusted gut microbiota disturbances by enriching species diversity, reducing the abundance of pathogenic bacteria (such as Allobaculum, Brevinema), as well as increasing the abundance of beneficial bacteria (such as Lactobacillus, Lachnospiraceae_NK4A136_group), but also improved metabolic disorders by reversing metabolite plasma levels to normality. Through the conjoint analysis of 8 metabolites and the OTUs relative abundance data in the 16srRNA sequencing results by WGCNA method, 215 floras significantly related to the eight compounds were identified. The results of the correlation analysis demonstrated a significant association between intestinal microbiota and plasma metabolic profile, especially the significant correlation of Ruminococcaceae_UCG-014 and Protoporphyrin IX, Ruminococcaceae_UCG-005, Christensenellaceae_R-7_group and nicotinamide, dihydrofolic acid.ConclusionThe present study illustrated the underlying mechanism of JSP to treat heart failure by affecting intestinal flora and plasma metabolites, provide a potential therapeutic strategy against heart failure.
Collapse
Affiliation(s)
- Xialian Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangyan Su
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaotong Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaping Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiang Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiran Liao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Peiran Liao
| | - Xin He
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- Xin He
| |
Collapse
|
13
|
Zhang NN, Jiang ZM, Li SZ, Yang X, Liu EH. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol 2023; 949:175557. [PMID: 36716810 DOI: 10.1016/j.ejphar.2023.175557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shang-Zhen Li
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Watne LO, Pollmann CT, Neerland BE, Quist-Paulsen E, Halaas NB, Idland AV, Hassel B, Henjum K, Knapskog AB, Frihagen F, Raeder J, Godø A, Ueland PM, McCann A, Figved W, Selbæk G, Zetterberg H, Fang EF, Myrstad M, Giil LM. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J Clin Invest 2023; 133:163472. [PMID: 36409557 PMCID: PMC9843060 DOI: 10.1172/jci163472] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUNDThe kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.METHODSWe undertook a multicenter observational study with 586 hospitalized patients (248 with delirium) and investigated associations between delirium and KP metabolites measured in cerebrospinal fluid (CSF) and serum by targeted metabolomics. We also explored associations between KP metabolites and markers of neuronal damage and 1-year mortality.RESULTSIn delirium, we found concentrations of the neurotoxic metabolite quinolinic acid in CSF (CSF-QA) (OR 2.26 [1.78, 2.87], P < 0.001) to be increased and also found increases in several other KP metabolites in serum and CSF. In addition, CSF-QA was associated with the neuronal damage marker neurofilament light chain (NfL) (β 0.43, P < 0.001) and was a strong predictor of 1-year mortality (HR 4.35 [2.93, 6.45] for CSF-QA ≥ 100 nmol/L, P < 0.001). The associations between CSF-QA and delirium, neuronal damage, and mortality remained highly significant following adjustment for confounders and multiple comparisons.CONCLUSIONOur data identified how systemic inflammation, neurotoxicity, and delirium are strongly linked via the KP and should inform future delirium prevention and treatment clinical trials that target enzymes of the KP.FUNDINGNorwegian Health Association and South-Eastern Norway Regional Health Authorities.
Collapse
Affiliation(s)
- Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine and
| | | | | | | | | | - Ane-Victoria Idland
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Department of Anesthesiology, Akershus University Hospital, Lørenskog, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Kristi Henjum
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Frede Frihagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Orthopaedic Surgery, Østfold Hospital Trust, Grålum, Norway
| | - Johan Raeder
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Aasmund Godø
- Department of Anesthesiology, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Wender Figved
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Orthopaedic Department, Bærum Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Geir Selbæk
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lasse M. Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Cai Z, Tian S, Klein T, Tu L, Geenen LW, Koudstaal T, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, van der Ley C, Van Faassen M, Kema I, Duncker DJ, Boomars KA, Tran-Lundmark K, Guignabert C, Merkus D. Kynurenine metabolites predict survival in pulmonary arterial hypertension: A role for IL-6/IL-6Rα. Sci Rep 2022; 12:12326. [PMID: 35853948 PMCID: PMC9296482 DOI: 10.1038/s41598-022-15039-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the kynurenine pathway (KP) has been reported in patients with pulmonary arterial hypertension (PAH) undergoing PAH therapy. We aimed to determine KP-metabolism in treatment-naïve PAH patients, investigate its prognostic values, evaluate the effect of PAH therapy on KP-metabolites and identify cytokines responsible for altered KP-metabolism. KP-metabolite levels were determined in plasma from PAH patients (median follow-up 42 months) and in rats with monocrotaline- and Sugen/hypoxia-induced PH. Blood sampling of PAH patients was performed at the time of diagnosis, six months and one year after PAH therapy. KP activation with lower tryptophan, higher kynurenine (Kyn), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KA), and anthranilic acid was observed in treatment-naïve PAH patients compared with controls. A similar KP-metabolite profile was observed in monocrotaline, but not Sugen/hypoxia-induced PAH. Human lung primary cells (microvascular endothelial cells, pulmonary artery smooth muscle cells, and fibroblasts) were exposed to different cytokines in vitro. Following exposure to interleukin-6 (IL-6)/IL-6 receptor α (IL-6Rα) complex, all cell types exhibit a similar KP-metabolite profile as observed in PAH patients. PAH therapy partially normalized this profile in survivors after one year. Increased KP-metabolites correlated with higher pulmonary vascular resistance, shorter six-minute walking distance, and worse functional class. High levels of Kyn, 3-HK, QA, and KA measured at the latest time-point were associated with worse long-term survival. KP-metabolism was activated in treatment-naïve PAH patients, likely mediated through IL-6/IL-6Rα signaling. KP-metabolites predict response to PAH therapy and survival of PAH patients.
Collapse
Affiliation(s)
- Zongye Cai
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyu Tian
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurie W Geenen
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics/Neonatology, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Clinical Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Claude van der Ley
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn Van Faassen
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido Kema
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Karin A Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, LMU Munich, Munich, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| |
Collapse
|
16
|
Spehlmann ME, Rangrez AY, Dhotre DP, Schmiedel N, Chavan N, Bang C, Müller OJ, Shouche YS, Franke A, Frank D, Frey N. Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations. Biomedicines 2022; 10:biomedicines10040809. [PMID: 35453559 PMCID: PMC9033061 DOI: 10.3390/biomedicines10040809] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Growing evidence suggests an altered gut microbiome in patients with heart failure (HF). However, the exact interrelationship between microbiota, HF, and its consequences on the metabolome are still unknown. We thus aimed here to decipher the association between the severity and progression of HF and the gut microbiome composition and circulating metabolites. Using a mouse model of transverse aortic constriction (TAC), gut bacterial diversity was found to be significantly lower in mice as early as day 7 post-TAC compared to Sham controls (p = 0.03), with a gradual progressive decrease in alpha-diversity on days 7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021) compared to day 0, which coincided with compensated hypertrophy, maladaptive hypertrophy, and overtly failing hearts, respectively. Strikingly, segregated analysis based on the severity of the cardiac dysfunction (EF < 40% vs. EF 40−55%) manifested marked differences in the abundance and the grouping of several taxa. Multivariate analysis of plasma metabolites and bacterial diversity produced a strong correlation of metabolic alterations, such as reduced short-chain fatty acids and an increase in primary bile acids, with a differential abundance of distinct bacteria in HF. In conclusion, we showed that HF begets HF, likely via a vicious cycle of an altered microbiome and metabolic products.
Collapse
Affiliation(s)
- Martina E. Spehlmann
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Ashraf Y. Rangrez
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (A.Y.R.); (N.F.)
| | - Dhiraj P. Dhotre
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Nesrin Schmiedel
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Nikita Chavan
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany; (C.B.); (A.F.)
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Yogesh S. Shouche
- National Centre for Cell Science, Pune 411021, India; (D.P.D.); (N.C.); (Y.S.S.)
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany; (C.B.); (A.F.)
| | - Derk Frank
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Rosalind-Franklin Str. 12, 24105 Kiel, Germany; (M.E.S.); (N.S.); (O.J.M.); (D.F.)
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (A.Y.R.); (N.F.)
| |
Collapse
|
17
|
Gáspár R, Halmi D, Demján V, Berkecz R, Pipicz M, Csont T. Kynurenine Pathway Metabolites as Potential Clinical Biomarkers in Coronary Artery Disease. Front Immunol 2022; 12:768560. [PMID: 35211110 PMCID: PMC8861075 DOI: 10.3389/fimmu.2021.768560] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading cause of mortality worldwide. Several risk factors including unhealthy lifestyle, genetic background, obesity, diabetes, hypercholesterolemia, hypertension, smoking, age, etc. contribute to the development of coronary atherosclerosis and subsequent coronary artery disease. Inflammation plays an important role in coronary artery disease development and progression. Pro-inflammatory signals promote the degradation of tryptophan via the kynurenine pathway resulting in the formation of several immunomodulatory metabolites. An unbalanced kynurenic pathway has been implicated in the pathomechanisms of various diseases including CAD. Significant improvements in detection methods in the last decades may allow simultaneous measurement of multiple metabolites of the kynurenine pathway and such a thorough analysis of the kynurenine pathway may be a valuable tool for risk stratification and determination of CAD prognosis. Nevertheless, imbalance in the activities of different branches of the kynurenine pathway may require careful interpretation. In this review, we aim to summarize clinical evidence supporting a possible use of kynurenine pathway metabolites as clinical biomarkers in various manifestations of CAD.
Collapse
Affiliation(s)
- Renáta Gáspár
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Dóra Halmi
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Virág Demján
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Research Group (MEDICS), Department of Biochemistry, University of Szeged Albert Szent-Györgyi Medical School, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Tuerhongjiang G, Guo M, Qiao X, Lou B, Wang C, Wu H, Wu Y, Yuan Z, She J. Interplay Between Gut Microbiota and Amino Acid Metabolism in Heart Failure. Front Cardiovasc Med 2021; 8:752241. [PMID: 34746265 PMCID: PMC8566708 DOI: 10.3389/fcvm.2021.752241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome of which the incidence is on the rise worldwide. Cardiometabolic disorders are associated with the deterioration of cardiac function and progression of HF. Recently, there has been renewed interest in gut microbiota (GM) and its metabolites in the cardiovascular disease. HF-caused hypoperfusion could increase intestinal permeability, and a “leaky” bowel leads to bacterial translocation and make its metabolites more easily enter the circulation. Considerable evidence shows that the composition of microbiota and amino acids (AAs) has been altered in HF patients, and AAs could serve as a diagnostic and prognostic biomarker in HF. The findings indicate that the gut–amino acid–HF axis may play a key role in the progression of HF. In this paper, we focus on the interrelationship between the AA metabolism and GM alterations during the development of heart failure. We also discuss the potential prognostic and therapeutic value of the gut–amino acid–HF axis in the cortex of HF.
Collapse
Affiliation(s)
- Gulinigaer Tuerhongjiang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Manyun Guo
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiangrui Qiao
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Bowen Lou
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Chen Wang
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Haoyu Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Yue Wu
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Zuyi Yuan
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jianqing She
- Department of Cardiovascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
19
|
Kira S, Miyamoto T, Tsuchiya S, Nakagomi H, Ihara T, Sawada N, Takeda M, Mitsui T. Potential Targets for Overactive Bladder in Older Men Based on Urinary Analysis of Metabolomics. Urol Int 2021; 106:672-678. [PMID: 34569539 DOI: 10.1159/000518300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We investigated the association between overactive bladder (OAB) and urinary metabolites in men. METHODS This prospective observational study included 42 men aged 65-80 years. The 3-day frequency volume chart (FVC), International Prostate Symptom Score (IPSS), and quality of life score were adapted to assess the micturition behavior. Participants with IPSS urgency score ≥2 were included in the OAB group, and those with IPSS urgency score <2 were included in the control group. We performed a comprehensive metabolomic analysis using urine samples. Metabolites were compared between the groups using an unpaired t test and Fisher's exact test in a nonadjusted analysis. Multivariable logistic regression analysis was performed to investigate the association between OAB and the metabolites. RESULTS Overall, 23 men were included in the OAB group and 19 in the control group. There were no differences in the background factors except age between the groups. FVC analysis demonstrated that nocturnal urine volume, 24-h micturition frequency, and nocturnal micturition frequency were significantly higher, and the maximum voided volume was significantly lower in the OAB group than in the controls. Metabolomic analysis revealed 14 metabolites that were differentially expressed between the groups. Multivariate analysis indicated that an increase in the levels of 5-iso prostaglandin F2α-VI (5-iPF2a-VI) and 5-methoxyindoleacetic acid was associated with OAB. CONCLUSION Abnormal urinary metabolites, including metabolites in the tryptophan (5-methoxyindoleacetic acid, 3-indoleacetonitrile, and 3-hydroxyanthranilic acid) and arachidonic acid (5-iPF2a-VI) pathways, play a role in the pathogenesis of OAB in older men.
Collapse
Affiliation(s)
- Satoru Kira
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Tatsuya Miyamoto
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Sachiko Tsuchiya
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Hiroshi Nakagomi
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Tatsuya Ihara
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| |
Collapse
|
20
|
Wagner-Skacel J, Mörkl S, Dalkner N, Fellendorf F, Fitz W, Brix B, Neshev R, Wedenig S, Mächler P, Dorr A, Picha R, Rudlof ME, Bartel TO, Tatschl JM, Gostner JM, Bengesser SA, Reininghaus EZ, Jenewein J, Goswami N. The Impact of Cardiovascular Rehabilitation on Psychophysiological Stress, Personality and Tryptophan Metabolism: A Randomized Pilot Feasibility Study. Antioxidants (Basel) 2021; 10:antiox10091425. [PMID: 34573057 PMCID: PMC8467958 DOI: 10.3390/antiox10091425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 01/17/2023] Open
Abstract
Multicomponent cardiac rehabilitation (CR) is a secondary prevention strategy for cardiac patients to tackle stress and psychosocial wellbeing. However, there is a lack of data on its psychoneuroimmunological effects and of biomarkers to determine individual risk and to develop treatment strategies. We conducted a pilot randomized controlled trial (RCT) to investigate the feasibility of deriving psychophysiological stress markers in patients with cardiovascular diseases. Thirty individuals with cardiovascular disease (mean age 58.8 years; 23.3% female) were enrolled and randomized into three treatment groups: standard rehabilitation, yoga, or transcendental meditation (TM). Depression, anxiety, sleep, stress perception, personality functioning, hair cortisol, serum tryptophan, kynurenine and neopterin concentrations were estimated at baseline and after a four-week intervention. Hair cortisol levels decreased significantly after rehabilitation in all groups (F = 15.98, p < 0.001). In addition, personality functioning improved in all patients over time. Participants with impairments in personality functioning showed a positive correlation with baseline neopterin that did not remain significant after Bonferroni correction. Concentrations of serum tryptophan and its metabolite kynurenine did not change significantly. This pilot RCT provides preliminary evidence of multicomponent CR leading to stabilization of hair cortisol levels and improved psychophysiological wellbeing and personality functioning. Impairments in personality functioning were correlated with neopterin levels, which may impact the symptomatology and outcome.
Collapse
Affiliation(s)
- Jolana Wagner-Skacel
- Department of Medical Psychology and Psychotherapy, Medical University Graz, 8036 Graz, Austria; (J.W.-S.); (J.J.)
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
- Correspondence: ; Tel.: +43-316-3858-1743
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Werner Fitz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Bianca Brix
- Department of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, 8010 Graz, Austria; (B.B.); (R.N.); (M.E.R.); (T.O.B.); (N.G.)
| | - Ruslan Neshev
- Department of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, 8010 Graz, Austria; (B.B.); (R.N.); (M.E.R.); (T.O.B.); (N.G.)
| | - Sarah Wedenig
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Petra Mächler
- Rehabilitation Center for Cardiovascular Disease, 8061 St. Radegund, Austria; (P.M.); (A.D.); (R.P.)
| | - Andreas Dorr
- Rehabilitation Center for Cardiovascular Disease, 8061 St. Radegund, Austria; (P.M.); (A.D.); (R.P.)
| | - Rainer Picha
- Rehabilitation Center for Cardiovascular Disease, 8061 St. Radegund, Austria; (P.M.); (A.D.); (R.P.)
| | - Maximilian E. Rudlof
- Department of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, 8010 Graz, Austria; (B.B.); (R.N.); (M.E.R.); (T.O.B.); (N.G.)
| | - Till O. Bartel
- Department of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, 8010 Graz, Austria; (B.B.); (R.N.); (M.E.R.); (T.O.B.); (N.G.)
| | - Josef M. Tatschl
- Health Psychology Unit, Institute of Psychology, Karl-Franzens University of Graz, 8010 Graz, Austria;
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Susanne A. Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, 8036 Graz, Austria; (N.D.); (F.F.); (W.F.); (S.W.); (S.A.B.); (E.Z.R.)
| | - Josef Jenewein
- Department of Medical Psychology and Psychotherapy, Medical University Graz, 8036 Graz, Austria; (J.W.-S.); (J.J.)
| | - Nandu Goswami
- Department of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, 8010 Graz, Austria; (B.B.); (R.N.); (M.E.R.); (T.O.B.); (N.G.)
| |
Collapse
|
21
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
22
|
Wongpraparut N, Pengchata P, Piyophirapong S, Panchavinnin P, Pongakasira R, Arechep N, Kasetsinsombat K, Maneechotesuwan K. Indoleamine 2,3 dioxygenase (IDO) level as a marker for significant coronary artery disease. BMC Cardiovasc Disord 2021; 21:353. [PMID: 34311709 PMCID: PMC8314527 DOI: 10.1186/s12872-021-02140-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background Indoleamine 2,3 dioxygenase (IDO), the rate-limiting enzyme in the kynurenine (Kyn) pathway of tryptophan (Trp) degradation, is modulated by inflammation, and is regarded as a key molecule driving immunotolerance and immunosuppressive mechanisms. Little is known about IDO activity in patients with active coronary artery disease (CAD). Methods We prospectively enrolled patients who were scheduled to undergo coronary angiography. Measurement of IDO, high-sensitivity troponin T (hs-TnT), and high-sensitivity C-reactive protein (hs-CRP) levels was performed at baseline, and IDO activity was monitored at the 6-month follow-up. Results Three hundred and five patients were enrolled. Ninety-eight patients (32.1%) presented with recent acute coronary syndrome (ACS). Significant difference in IDO, kynurenine, and hs-TnT between patients with and without significant CAD was observed. Baseline IDO activity, kynurenine level, and hs-TnT level were all significantly higher in significant CAD patients with 3-vessel, 2-vessel, and 1-vessel involvement than in those with insignificant CAD [(0.17, 0.13, and 0.16 vs. 0.03, respectively; p = 0.003), (5.89, 4.58, and 5.24 vs. 2.74 µM/g, respectively; p = 0.011), and (18.27, 12.22, and 12.86 vs. 10.89 mg/dL, respectively; p < 0.001)]. One-year mortality was 3.9%. When we compared between patients who survived and patients who died, we found a significantly lower prevalence of left main (LM) disease by coronary angiogram (6.1% vs. 33.3%, p = 0.007), and also a trend toward higher baseline kynurenine (5.07 vs. 0.79 µM/g, p = 0.082) and higher IDO (0.15 vs. 0.02, p = 0.081) in patients who survived. Conclusion Immunometabolic response mediated via IDO function was enhanced in patients with CAD, and correlated with the extent and severity of disease. Patients with LM disease had higher 1-year mortality. Lower level of IDO, as suggested by inadequate IDO response, demonstrated a trend toward predicting 1-year mortality. Trial registration TCTR Trial registration number TCTR20200626001. Date of registration 26 June 2020. “Retrospectively registered”.
Collapse
Affiliation(s)
- Nattawut Wongpraparut
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Ploy Pengchata
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sudarat Piyophirapong
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pariya Panchavinnin
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Rungtiwa Pongakasira
- Her Majesty's Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Noppadol Arechep
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittipong Maneechotesuwan
- Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Razquin C, Ruiz-Canela M, Toledo E, Hernández-Alonso P, Clish CB, Guasch-Ferré M, Li J, Wittenbecher C, Dennis C, Alonso-Gómez A, Fitó M, Liang L, Corella D, Gómez-Gracia E, Estruch R, Fiol M, Lapetra J, Serra-Majem L, Ros E, Aros F, Salas-Salvadó J, Hu FB, Martínez-González MA. Metabolomics of the tryptophan-kynurenine degradation pathway and risk of atrial fibrillation and heart failure: potential modification effect of Mediterranean diet. Am J Clin Nutr 2021; 114:1646-1654. [PMID: 34291275 PMCID: PMC8764340 DOI: 10.1093/ajcn/nqab238] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The tryptophan-kynurenine pathway is linked to inflammation. We hypothesize that metabolites implicated in this pathway may be associated with the risk of heart failure (HF) or atrial fibrillation (AF) in a population at high risk of cardiovascular disease. OBJECTIVES We aimed to prospectively analyze the associations of kynurenine-related metabolites with the risk of HF and AF and to analyze a potential effect modification by the randomized interventions of the PREDIMED (Prevención con Dieta Mediterránea) trial with Mediterranean diet (MedDiet). METHODS Two case-control studies nested within the PREDIMED trial were designed. We selected 324 incident HF cases and 502 incident AF cases individually matched with ≤3 controls. Conditional logistic regression models were fitted. Interactions with the intervention were tested for each of the baseline plasma metabolites measured by LC-tandem MS. RESULTS Higher baseline kynurenine:tryptophan ratio (OR for 1 SD: 1.20; 95% CI: 1.01, 1.43) and higher levels of kynurenic acid (OR: 1.19; 95% CI: 1.01, 1.40) were associated with HF. Quinolinic acid was associated with AF (OR: 1.15; 95% CI: 1.01, 1.32) and HF (OR: 1.25; 95% CI: 1.04, 1.49). The MedDiet intervention modified the positive associations of kynurenine (Pinteraction = 0.006), kynurenic acid (Pinteraction = 0.008), and quinolinic acid (Pinteraction = 0.033) with HF and the association between kynurenic acid and AF (Pinteraction = 0.02). CONCLUSIONS We found that tryptophan-kynurenine pathway metabolites were prospectively associated with higher HF risk and to a lesser extent with AF risk. Moreover, an effect modification by MedDiet was observed for the association between plasma baseline kynurenine-related metabolites and the risk of HF, showing that the positive association of increased levels of these metabolites and HF was restricted to the control group.
Collapse
Affiliation(s)
- Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain,Navarra Health Research Institute (IdiSNA), Pamplona, Spain,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain,Navarra Health Research Institute (IdiSNA), Pamplona, Spain,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
| | - Estefania Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain,Navarra Health Research Institute (IdiSNA), Pamplona, Spain,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain
| | - Pablo Hernández-Alonso
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Human Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain,Endocrinology and Nutrition Clinical Management Unit, Virgen de la Victoria Hospital, Málaga Biomedical Research Institute (IBIMA), Málaga, Spain,Pere Virgili Health Research Institute (IISPV), San Joan de Reus University Hospital, Reus, Spain
| | - Clary B Clish
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Li
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA,Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Courtney Dennis
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Angel Alonso-Gómez
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Montse Fitó
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Institute for Medical Research (IMIM), Barcelona, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Enrique Gómez-Gracia
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Department of Preventive Medicine, University of Málaga, Málaga, Spain
| | - Ramon Estruch
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Department of Internal Medicine, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Miquel Fiol
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Clinical Trials Platform, Balearic Islands Health Research Institute (IdISBa), Son Espases University Hospital, Palma de Mallorca, Spain
| | - Jose Lapetra
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Research Unit, Department of Family Medicine, Seville Primary Care Health District, Sevilla, Spain
| | - Lluis Serra-Majem
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Nutrition Research Group, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Emilio Ros
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Lipid Clinic, Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Aros
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital; University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jordi Salas-Salvadó
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain,Human Nutrition Unit, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Reus, Spain,Pere Virgili Health Research Institute (IISPV), San Joan de Reus University Hospital, Reus, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
24
|
Li Q, Larouche-Lebel É, Loughran KA, Huh TP, Suchodolski JS, Oyama MA. Metabolomics Analysis Reveals Deranged Energy Metabolism and Amino Acid Metabolic Reprogramming in Dogs With Myxomatous Mitral Valve Disease. J Am Heart Assoc 2021; 10:e018923. [PMID: 33890477 PMCID: PMC8200728 DOI: 10.1161/jaha.120.018923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Myxomatous mitral valve disease (MMVD), a naturally occurring heart disease, affects 10% to 15% of the canine population. Canine MMVD shares many similarities with human MMVD. Untargeted metabolomics was performed to identify changes in metabolic pathways and biomarkers with potential clinical utilities. Methods and Results Serum samples from 27 healthy, 22 stage B1, 18 stage B2 preclinical MMVD dogs, and 17 MMVD dogs with a history of congestive heart failure (CHF) were analyzed. Linear regression analysis identified 173 known metabolites whose concentrations were different among the 4 groups (adjusted P<0.05), of which 40% belonged to amino acid super pathways, while 30% were lipids. More than 50% of significant metabolites were correlated with left atrial diameter but not left ventricular dimension. Acylcarnitines, tricarboxylic acid cycle intermediates, and creatine accumulated in proportion to MMVD severity. α‐Ketobutyrate and ketone bodies were increased as MMVD advanced. Nicotinamide, a key substrate of the main nicotinamide adenine dinucleotide (NAD+) salvage pathway, was decreased, while quinolinate of the de novo NAD+ biosynthesis was increased in CHF dogs versus healthy dogs. 3‐Methylhistidine, marker for myofibrillar protein degradation, was higher in CHF dogs than non‐CHF dogs. Trimethylamine N‐oxide (TMAO) and TMAO–producing precursors, including carnitine, phosphatidylcholine, betaine, and trimethyllysine, were increased in CHF dogs versus non‐CHF dogs. Elevated levels of uremic toxins, including guanidino compounds, TMAO, and urea, were observed in CHF dogs. Pathway analysis highlighted the importance of bioenergetics and amino acid metabolism in canine MMVD. Conclusions Our study revealed altered energy metabolism, amino acid metabolic programming, and reduced renal function in the development of MMVD and CHF. Complex interplays along the heart‐kidney‐gut axis were implicated.
Collapse
Affiliation(s)
| | - Éva Larouche-Lebel
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Kerry A Loughran
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Terry P Huh
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory Department of Small Animal Clinical Sciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
25
|
Al-Karagholi MAM, Hansen JM, Abou-Kassem D, Hansted AK, Ubhayasekera K, Bergquist J, Vécsei L, Jansen-Olesen I, Ashina M. Phase 1 study to access safety, tolerability, pharmacokinetics, and pharmacodynamics of kynurenine in healthy volunteers. Pharmacol Res Perspect 2021; 9:e00741. [PMID: 33682377 PMCID: PMC7937944 DOI: 10.1002/prp2.741] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/16/2020] [Accepted: 01/17/2021] [Indexed: 01/13/2023] Open
Abstract
The kynurenine pathway (KP) is the main path for tryptophan metabolism, and it represents a multitude of potential sites for drug discovery in neuroscience, including pain, stroke, and epilepsy. L‐kynurenine (LKYN), the first active metabolite in the pathway, emerges to be a prodrug targeting glutamate receptors. The safety, tolerability, pharmacokinetics, and pharmacodynamics of LKYN in humans have not been previously investigated. In an open‐label, single ascending dose study, six participants received an intravenous infusion of 50, 100, and 150 µg/kg LKYN and new six participants received an intravenous infusion of 0.3, 0.5, 1, and 5 mg/kg LKYN. To compare the pharmacological effects between species, we investigated in vivo the vascular effects of LKYN in rats. In humans, LKYN was safe and well‐tolerated at all dose levels examined. After infusion, LKYN plasma concentration increased significantly over time 3.23 ± 1.12 µg/mL (after 50 µg/kg), 4.04 ± 1.1 µg/mL (after 100 µg/kg), and 5.25 ± 1.01 µg/mL (after 150 µg/kg) (p ≤ 0.001). We observed no vascular changes after infusion compared with baseline. In rats, LKYN had no effect on HR and MAP and caused no dilation of dural and pial arteries. This first‐in‐human study of LKYN showed that LKYN was safe and well‐tolerated after intravenous infusion up to 5 mg/kg over 20 minutes. The lack of change in LKYN metabolites in plasma suggests a relatively slow metabolism of LKYN and no or little feed‐back effect of LKYN on its synthesis. The therapeutic potential of LKYN in stroke and epilepsy should be explored in future studies in humans.
Collapse
Affiliation(s)
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark.,Danish Knowledge Center on Headache Disorders, Rigshospitalet-Glostrup, Denmark
| | - Dalia Abou-Kassem
- Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark
| | - Anna Koldbro Hansted
- Danish Headache Center, Glostrup Research Institute, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kumari Ubhayasekera
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Sweden
| | - László Vécsei
- Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Inger Jansen-Olesen
- Danish Headache Center, Glostrup Research Institute, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark.,Danish Knowledge Center on Headache Disorders, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
26
|
Kretzschmar T, Wu JMF, Schulze PC. Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium. Int J Mol Sci 2021; 22:1498. [PMID: 33540894 PMCID: PMC7867320 DOI: 10.3390/ijms22031498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure remains the most common cause of death in the industrialized world. In spite of new therapeutic interventions that are constantly being developed, it is still not possible to completely protect against heart failure development and progression. This shows how much more research is necessary to understand the underlying mechanisms of this process. In this review, we give a detailed overview of the contribution of impaired mitochondrial dynamics and energy homeostasis during heart failure progression. In particular, we focus on the regulation of fatty acid metabolism and the effects of fatty acid accumulation on mitochondrial structural and functional homeostasis.
Collapse
Affiliation(s)
| | | | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, 07747 Jena, Thüringen, Germany; (T.K.); (J.M.F.W.)
| |
Collapse
|
27
|
Joisten N, Walzik D, Metcalfe AJ, Bloch W, Zimmer P. Physical Exercise as Kynurenine Pathway Modulator in Chronic Diseases: Implications for Immune and Energy Homeostasis. Int J Tryptophan Res 2020; 13:1178646920938688. [PMID: 32684749 PMCID: PMC7346690 DOI: 10.1177/1178646920938688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence highlights the substantial role of the kynurenine pathway in various physiological systems and pathological conditions. Physical exercise has been shown to impact the kynurenine pathway in response to both single (acute) and multiple (chronic) exercise training stimuli. In this perspective article, we briefly outline the current knowledge concerning exercise-induced modulations of the kynurenine pathway and discuss underlying mechanisms. Furthermore, we expose the potential involvement of exercise-induced kynurenine pathway modulations on energy homeostasis (eg, through de novo synthesis of NAD+) and finally suggest how these modulations may contribute to exercise-induced benefits in the prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Niklas Joisten
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - David Walzik
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Alan J Metcalfe
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of ‘Performance and Health (Sports Medicine)’, Institute of Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Lund A, Nordrehaug JE, Slettom G, Solvang SEH, Pedersen EK, Midttun Ø, Ulvik A, Ueland PM, Nygård O, Giil LM. Correction: Plasma kynurenines and prognosis in patients with heart failure. PLoS One 2020; 15:e0230056. [PMID: 32109260 PMCID: PMC7046265 DOI: 10.1371/journal.pone.0230056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0227365.].
Collapse
|