1
|
Spilseth B, Fogel EL, Toledo FG, Campbell-Thompson M. Imaging abnormalities of the pancreas in diabetes: implications for diagnosis and treatment. Curr Opin Gastroenterol 2024; 40:381-388. [PMID: 38967933 PMCID: PMC11305921 DOI: 10.1097/mog.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Radiographic imaging of the pancreas has drawn recent interest as pancreas volume may serve as a biomarker in identifying the likelihood of diabetes development, subtyping diabetes, and identifying prognostic indicators of poor ultimate outcomes. In this review, the role of pancreas imaging is discussed in various forms of diabetes including type 1 diabetes (T1D), type 2 diabetes (T2D), and diabetes of the exocrine pancreas, particularly diabetes following acute or chronic pancreatitis. RECENT FINDINGS Recent literature of quantitative pancreatic imaging correlating with various forms of diabetes was reviewed. Imaging-derived pancreas volumes are lower in individuals with diabetes, in particular those with T1D. Additionally, morphologic changes, enhancement characteristics, fat content, and MRI signal changes have been observed in different diabetes subtypes. These characteristics, as well as potential confounding variables, are reviewed. Additionally, future areas of research in MRI, CT radiomics, and pancreatitis-related imaging predictors of diabetes are discussed. SUMMARY Increased understanding of pancreas imaging features which predict diabetes and gauge prognosis has the potential to identify at-risk individuals and will become increasingly important in diabetes care. This article reviews the current knowledge of common pancreas imaging features as well as future directions of ongoing research in diabetes imaging.
Collapse
Affiliation(s)
| | - Evan L Fogel
- Digestive and Liver Disorders, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Martha Campbell-Thompson
- Department of Pathology immunology and Laboratory Medicine, University of Florida College of Medicine
| |
Collapse
|
2
|
Bette S, Canalini L, Feitelson LM, Woźnicki P, Risch F, Huber A, Decker JA, Tehlan K, Becker J, Wollny C, Scheurig-Münkler C, Wendler T, Schwarz F, Kroencke T. Radiomics-Based Machine Learning Model for Diagnosis of Acute Pancreatitis Using Computed Tomography. Diagnostics (Basel) 2024; 14:718. [PMID: 38611632 PMCID: PMC11011980 DOI: 10.3390/diagnostics14070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In the early diagnostic workup of acute pancreatitis (AP), the role of contrast-enhanced CT is to establish the diagnosis in uncertain cases, assess severity, and detect potential complications like necrosis, fluid collections, bleeding or portal vein thrombosis. The value of texture analysis/radiomics of medical images has rapidly increased during the past decade, and the main focus has been on oncological imaging and tumor classification. Previous studies assessed the value of radiomics for differentiating between malignancies and inflammatory diseases of the pancreas as well as for prediction of AP severity. The aim of our study was to evaluate an automatic machine learning model for AP detection using radiomics analysis. Patients with abdominal pain and contrast-enhanced CT of the abdomen in an emergency setting were retrospectively included in this single-center study. The pancreas was automatically segmented using TotalSegmentator and radiomics features were extracted using PyRadiomics. We performed unsupervised hierarchical clustering and applied the random-forest based Boruta model to select the most important radiomics features. Important features and lipase levels were included in a logistic regression model with AP as the dependent variable. The model was established in a training cohort using fivefold cross-validation and applied to the test cohort (80/20 split). From a total of 1012 patients, 137 patients with AP and 138 patients without AP were included in the final study cohort. Feature selection confirmed 28 important features (mainly shape and first-order features) for the differentiation between AP and controls. The logistic regression model showed excellent diagnostic accuracy of radiomics features for the detection of AP, with an area under the curve (AUC) of 0.932. Using lipase levels only, an AUC of 0.946 was observed. Using both radiomics features and lipase levels, we showed an excellent AUC of 0.933 for the detection of AP. Automated segmentation of the pancreas and consecutive radiomics analysis almost achieved the high diagnostic accuracy of lipase levels, a well-established predictor of AP, and might be considered an additional diagnostic tool in unclear cases. This study provides scientific evidence that automated image analysis of the pancreas achieves comparable diagnostic accuracy to lipase levels and might therefore be used in the future in the rapidly growing era of AI-based image analysis.
Collapse
Affiliation(s)
- Stefanie Bette
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Luca Canalini
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Laura-Marie Feitelson
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Piotr Woźnicki
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany;
| | - Franka Risch
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Adrian Huber
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Josua A. Decker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Kartikay Tehlan
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Judith Becker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Claudia Wollny
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Christian Scheurig-Münkler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Thomas Wendler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Institute of Digital Health, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, 86356 Neusaess, Germany
- Computer-Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei Muenchen, Germany
| | - Florian Schwarz
- Centre for Diagnostic Imaging and Interventional Therapy, Donau-Isar-Klinikum, 94469 Deggendorf, Germany;
| | - Thomas Kroencke
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
3
|
Yang T, Feng J, Yao R, Feng Q, Shen J. CT-based pancreatic radiomics predicts secondary loss of response to infliximab in biologically naïve patients with Crohn's disease. Insights Imaging 2024; 15:69. [PMID: 38472447 DOI: 10.1186/s13244-024-01637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/27/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVES Predicting secondary loss of response (SLR) to infliximab (IFX) is paramount for tailoring personalized management regimens. Concurrent pancreatic manifestations in patients with Crohn's disease (CD) may correlate with SLR to anti-tumor necrosis factor treatment. This work aimed to evaluate the potential of pancreatic radiomics to predict SLR to IFX in biologic-naive individuals with CD. METHODS Three models were developed by logistic regression analyses to identify high-risk subgroup prone to SLR. The area under the curve (AUC), calibration curve, decision curve analysis (DCA), and integrated discrimination improvement (IDI) were applied for the verification of model performance. A quantitative nomogram was proposed based on the optimal prediction model, and its reliability was substantiated by 10-fold cross-validation. RESULTS In total, 184 CD patients were enrolled in the period January 2016 to February 2022. The clinical model incorporated age of onset, disease duration, disease location, and disease behavior, whereas the radiomics model consisted of five texture features. These clinical parameters and the radiomics score calculated by selected texture features were applied to build the combined model. Compared to other two models, combined model achieved favorable, significantly improved discrimination power (AUCcombined vs clinical 0.851 vs 0.694, p = 0.02; AUCcombined vs radiomics 0.851 vs 0.740, p = 0.04) and superior clinical usefulness, which was further converted into reliable nomogram with an accuracy of 0.860 and AUC of 0.872. CONCLUSIONS The first proposed pancreatic-related nomogram represents a credible, noninvasive predictive instrument to assist clinicians in accurately identifying SLR and non-SLR in CD patients. CRITICAL RELEVANCE STATEMENT This study first built a visual nomogram incorporating pancreatic texture features and clinical factors, which could facilitate clinicians to make personalized treatment decisions and optimize cost-effectiveness ratio for patients with CD. KEY POINTS • The first proposed pancreatic-related model predicts secondary loss of response for infliximab in Crohn's disease. • The model achieved satisfactory predictive accuracy, calibration ability, and clinical value. • The model-based nomogram has the potential to identify long-term failure in advance and tailor personalized management regimens.
Collapse
Affiliation(s)
- Tian Yang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
- NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Shanghai, China
| | - Jing Feng
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
- NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Shanghai, China
| | - Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
- NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China.
- NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Shanghai, China.
| |
Collapse
|
4
|
Michel LJ, Rospleszcz S, Reisert M, Rau A, Nattenmueller J, Rathmann W, Schlett CL, Peters A, Bamberg F, Weiss J. Deep learning to estimate impaired glucose metabolism from Magnetic Resonance Imaging of the liver: An opportunistic population screening approach. PLOS DIGITAL HEALTH 2024; 3:e0000429. [PMID: 38227569 PMCID: PMC10791001 DOI: 10.1371/journal.pdig.0000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
AIM Diabetes is a global health challenge, and many individuals are undiagnosed and not aware of their increased risk of morbidity/mortality although dedicated tests are available, which indicates the need for novel population-wide screening approaches. Here, we developed a deep learning pipeline for opportunistic screening of impaired glucose metabolism using routine magnetic resonance imaging (MRI) of the liver and tested its prognostic value in a general population setting. METHODS In this retrospective study a fully automatic deep learning pipeline was developed to quantify liver shape features on routine MR imaging using data from a prospective population study. Subsequently, the association between liver shape features and impaired glucose metabolism was investigated in individuals with prediabetes, type 2 diabetes and healthy controls without prior cardiovascular diseases. K-medoids clustering (3 clusters) with a dissimilarity matrix based on Euclidean distance and ordinal regression was used to assess the association between liver shape features and glycaemic status. RESULTS The deep learning pipeline showed a high performance for liver shape analysis with a mean Dice score of 97.0±0.01. Out of 339 included individuals (mean age 56.3±9.1 years; males 58.1%), 79 (23.3%) and 46 (13.6%) were classified as having prediabetes and type 2 diabetes, respectively. Individuals in the high risk cluster using all liver shape features (n = 14) had a 2.4 fold increased risk of impaired glucose metabolism after adjustment for cardiometabolic risk factors (age, sex, BMI, total cholesterol, alcohol consumption, hypertension, smoking and hepatic steatosis; OR 2.44 [95% CI 1.12-5.38]; p = 0.03). Based on individual shape features, the strongest association was found between liver volume and impaired glucose metabolism after adjustment for the same risk factors (OR 1.97 [1.38-2.85]; p<0.001). CONCLUSIONS Deep learning can estimate impaired glucose metabolism on routine liver MRI independent of cardiometabolic risk factors and hepatic steatosis.
Collapse
Affiliation(s)
- Lea J. Michel
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Johanna Nattenmueller
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Christopher. L. Schlett
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Annette Peters
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
- German Center for Diabetes Research (DZD), partner site Neuherberg, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Qu W, Zhou Z, Yuan G, Li S, Li J, Chu Q, Zhang Q, Xie Q, Li Z, Kamel IR. Is the radiomics-clinical combined model helpful in distinguishing between pancreatic cancer and mass-forming pancreatitis? Eur J Radiol 2023; 164:110857. [PMID: 37172441 DOI: 10.1016/j.ejrad.2023.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE To develop CT-based radiomics models for distinguishing between resectable PDAC and mass-forming pancreatitis (MFP) and to provide a non-invasive tool for cases of equivocal imaging findings with EUS-FNA needed. METHODS A total of 201 patients with resectable PDAC and 54 patients with MFP were included. Development cohort: patients without preoperative EUS-FNA (175 PDAC cases, 38 MFP cases); validation cohort: patients with EUS-FNA (26 PDAC cases, 16 MFP cases). Two radiomic signatures (LASSOscore, PCAscore) were developed based on the LASSO model and principal component analysis. LASSOCli and PCACli prediction models were established by combining clinical features with CT radiomic features. ROC analysis and decision curve analysis (DCA) were performed to evaluate the utility of the model versus EUS-FNA in the validation cohort. RESULTS In the validation cohort, the radiomic signatures (LASSOscore, PCAscore) were both effective in distinguishing between resectable PDAC and MFP (AUCLASSO = 0.743, 95% CI: 0.590-0.896; AUCPCA = 0.788, 95% CI: 0.639-0.938) and improved the diagnostic accuracy of the baseline onlyCli model (AUConlyCli = 0.760, 95% CI: 0.614-0.960) after combination with variables including age, CA19-9, and the double-duct sign (AUCPCACli = 0.880, 95% CI: 0.776-0.983; AUCLASSOCli = 0.825, 95% CI: 0.694-0.955). The PCACli model showed comparable performance to FNA (AUCFNA = 0.810, 95% CI: 0.685-0.935). In DCA, the net benefit of the PCACli model was superior to that of EUS-FNA, avoiding biopsies in 70 per 1000 patients at a risk threshold of 35%. CONCLUSIONS The PCACli model showed comparable performance with EUS-FNA in discriminating resectable PDAC from MFP.
Collapse
Affiliation(s)
- Weinuo Qu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ziling Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Biomedical Engineering Department, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jiali Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qingpeng Zhang
- Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong Special Administrative Region; The Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Qingguo Xie
- Biomedical Engineering Department, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ihab R Kamel
- Johns Hopkins Hospital, Russell H Morgan Department of Radiology & Radiological Science, 600 N Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Khasawneh H, Patra A, Rajamohan N, Suman G, Klug J, Majumder S, Chari ST, Korfiatis P, Goenka AH. Volumetric Pancreas Segmentation on Computed Tomography: Accuracy and Efficiency of a Convolutional Neural Network Versus Manual Segmentation in 3D Slicer in the Context of Interreader Variability of Expert Radiologists. J Comput Assist Tomogr 2022; 46:841-847. [PMID: 36055122 DOI: 10.1097/rct.0000000000001374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to compare accuracy and efficiency of a convolutional neural network (CNN)-enhanced workflow for pancreas segmentation versus radiologists in the context of interreader reliability. METHODS Volumetric pancreas segmentations on a data set of 294 portal venous computed tomographies were performed by 3 radiologists (R1, R2, and R3) and by a CNN. Convolutional neural network segmentations were reviewed and, if needed, corrected ("corrected CNN [c-CNN]" segmentations) by radiologists. Ground truth was obtained from radiologists' manual segmentations using simultaneous truth and performance level estimation algorithm. Interreader reliability and model's accuracy were evaluated with Dice-Sorenson coefficient (DSC) and Jaccard coefficient (JC). Equivalence was determined using a two 1-sided test. Convolutional neural network segmentations below the 25th percentile DSC were reviewed to evaluate segmentation errors. Time for manual segmentation and c-CNN was compared. RESULTS Pancreas volumes from 3 sets of segmentations (manual, CNN, and c-CNN) were noninferior to simultaneous truth and performance level estimation-derived volumes [76.6 cm 3 (20.2 cm 3 ), P < 0.05]. Interreader reliability was high (mean [SD] DSC between R2-R1, 0.87 [0.04]; R3-R1, 0.90 [0.05]; R2-R3, 0.87 [0.04]). Convolutional neural network segmentations were highly accurate (DSC, 0.88 [0.05]; JC, 0.79 [0.07]) and required minimal-to-no corrections (c-CNN: DSC, 0.89 [0.04]; JC, 0.81 [0.06]; equivalence, P < 0.05). Undersegmentation (n = 47 [64%]) was common in the 73 CNN segmentations below 25th percentile DSC, but there were no major errors. Total inference time (minutes) for CNN was 1.2 (0.3). Average time (minutes) taken by radiologists for c-CNN (0.6 [0.97]) was substantially lower compared with manual segmentation (3.37 [1.47]; savings of 77.9%-87% [ P < 0.0001]). CONCLUSIONS Convolutional neural network-enhanced workflow provides high accuracy and efficiency for volumetric pancreas segmentation on computed tomography.
Collapse
Affiliation(s)
- Hala Khasawneh
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | - Anurima Patra
- Department of Radiology, Tata Medical Center, Kolkata, India
| | | | - Garima Suman
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | - Jason Klug
- From the Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
7
|
Wright DE, Mukherjee S, Patra A, Khasawneh H, Korfiatis P, Suman G, Chari ST, Kudva YC, Kline TL, Goenka AH. Radiomics-based machine learning (ML) classifier for detection of type 2 diabetes on standard-of-care abdomen CTs: a proof-of-concept study. Abdom Radiol (NY) 2022; 47:3806-3816. [PMID: 36085379 DOI: 10.1007/s00261-022-03668-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To determine if pancreas radiomics-based AI model can detect the CT imaging signature of type 2 diabetes (T2D). METHODS Total 107 radiomic features were extracted from volumetrically segmented normal pancreas in 422 T2D patients and 456 age-matched controls. Dataset was randomly split into training (300 T2D, 300 control CTs) and test subsets (122 T2D, 156 control CTs). An XGBoost model trained on 10 features selected through top-K-based selection method and optimized through threefold cross-validation on training subset was evaluated on test subset. RESULTS Model correctly classified 73 (60%) T2D patients and 96 (62%) controls yielding F1-score, sensitivity, specificity, precision, and AUC of 0.57, 0.62, 0.61, 0.55, and 0.65, respectively. Model's performance was equivalent across gender, CT slice thicknesses, and CT vendors (p values > 0.05). There was no difference between correctly classified versus misclassified patients in the mean (range) T2D duration [4.5 (0-15.4) versus 4.8 (0-15.7) years, p = 0.8], antidiabetic treatment [insulin (22% versus 18%), oral antidiabetics (10% versus 18%), both (41% versus 39%) (p > 0.05)], and treatment duration [5.4 (0-15) versus 5 (0-13) years, p = 0.4]. CONCLUSION Pancreas radiomics-based AI model can detect the imaging signature of T2D. Further refinement and validation are needed to evaluate its potential for opportunistic T2D detection on millions of CTs that are performed annually.
Collapse
Affiliation(s)
- Darryl E Wright
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Sovanlal Mukherjee
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Anurima Patra
- Department of Radiology, Tata Medical Center, Kolkata, 700160, India
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Panagiotis Korfiatis
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Garima Suman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Suresh T Chari
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Gastroenterology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yogish C Kudva
- Department of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Dong W, Xiong S, Lei P, Wang X, Liu H, Liu Y, Zou H, Fan B, Qiu Y. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization. Front Oncol 2022; 12:944005. [PMID: 36081562 PMCID: PMC9446086 DOI: 10.3389/fonc.2022.944005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Objective This study aimed to establish a combined radiomics nomogram to preoperatively predict the risk categorization of thymomas by using contrast-enhanced computed tomography (CE-CT) images. Materials and Methods The clinical, pathological, and CT data of 110 patients with thymoma (50 patients with low-risk thymomas and 60 patients with high-risk thymomas) collected in our Hospital from July 2017 to March 2022 were retrospectively analyzed. The study subjects were randomly divided into the training set (n = 77) and validation set (n = 33) in a 7:3 ratio. Radiomics features were extracted from the CT images, and the least absolute shrinkage and selection operator (LASSO) algorithm was performed to select 13 representative features. Five models, including logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), and gradient boosting decision tree (GBDT) were constructed to predict thymoma risks based on these features. A combined radiomics nomogram was further established based on the clinical factors and radiomics scores. The performance of the models was evaluated using receiver operating characteristic (ROC) curve, DeLong tests, and decision curve analysis. Results Maximum tumor diameter and boundary were selected to build the clinical factors model. Thirteen features were acquired by LASSO algorithm screening as the optimal features for machine learning model construction. The LR model exhibited the highest AUC value (0.819) among the five machine learning models in the validation set. Furthermore, the radiomics nomogram combining the selected clinical variables and radiomics signature predicted the categorization of thymomas at different risks more effectively (the training set, AUC = 0.923; the validation set, AUC = 0.870). Finally, the calibration curve and DCA were utilized to confirm the clinical value of this combined radiomics nomogram. Conclusion We demonstrated the clinical diagnostic value of machine learning models based on CT semantic features and the selected clinical variables, providing a non-invasive, appropriate, and accurate method for preoperative prediction of thymomas risk categorization.
Collapse
Affiliation(s)
- Wentao Dong
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pinggui Lei
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolian Wang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hao Liu
- R&D, Yizhun Medical AI, Beijing, China
| | - Yangchun Liu
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huachun Zou
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Bing Fan, ; Yingying Qiu,
| | - Yingying Qiu
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Bing Fan, ; Yingying Qiu,
| |
Collapse
|
9
|
Abunahel BM, Pontre B, Ko J, Petrov MS. Towards developing a robust radiomics signature in diffuse diseases of the pancreas: Accuracy and stability of features derived from T1-weighted magnetic resonance imaging. J Med Imaging Radiat Sci 2022; 53:420-428. [DOI: 10.1016/j.jmir.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
10
|
Zeng N, Wang Y, Cheng Y, Huang Z, Song B. Imaging evaluation of the pancreas in diabetic patients. Abdom Radiol (NY) 2022; 47:715-726. [PMID: 34786594 DOI: 10.1007/s00261-021-03340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is becoming a global epidemic and its diagnosis and monitoring are based on laboratory testing which sometimes have limitations. The pancreas plays a key role in metabolism and is involved in the pathogenesis of DM. It has long been known through cadaver biopsies that pancreas volume is decreased in patients with DM. With the development of different imaging modalities over the last two decades, many studies have attempted to determine whether there other changes occurred in the pancreas of diabetic patients. This review summarizes current knowledge about the use of different imaging approaches (such as CT, MR, and US) and radiomics for exploring pancreatic changes in diabetic patients. Imaging studies are expected to produce reliable information regarding DM, and radiomics could provide increasingly valuable information to identify some undetectable features and help diagnose and predict the occurrence of diabetes through pancreas imaging.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yue Cheng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Tirkes T, Dasyam AK, Shah ZK, Fogel EL. Role of standardized reporting and novel imaging markers in chronic pancreatitis. Curr Opin Gastroenterol 2021; 37:512-519. [PMID: 34148967 PMCID: PMC8364495 DOI: 10.1097/mog.0000000000000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This article reviews recent efforts about standardized imaging features and reporting of chronic pancreatitis and recently published or ongoing imaging studies, which aim to establish novel imaging biomarkers for detection of parenchymal changes seen in chronic pancreatitis. RECENT FINDINGS New novel MRI techniques are being developed to increase the diagnostic yield of chronic pancreatitis specifically in the early stage. T1 relaxation time, T1 signal intensity ratio and extracellular volume fraction offer potential advantages over conventional cross-sectional imaging, including simplicity of analysis and more objective interpretation of observations allowing population-based comparisons. In addition, standardized definitions and reporting guidelines for chronic pancreatitis based on available evidence and expert consensus have been proposed. These new imaging biomarkers and reporting guidelines are being validated for prognostic/therapeutic assessment of adult patients participating in longitudinal studies of The Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreatic Cancer. SUMMARY New imaging biomarkers derived from novel MRI sequences promise a new chapter for diagnosis and severity assessment of chronic pancreatitis; a cross-sectional imaging-based diagnostic criteria for chronic pancreatitis combining ductal and parenchymal findings. Standardized imaging findings and reporting guidelines of chronic pancreatitis would enhance longitudinal assessment of disease severity in clinical trials and improve communication between radiologists and pancreatologists in clinical practice.
Collapse
Affiliation(s)
- Temel Tirkes
- Associate Professor of Radiology, Imaging Sciences, Medicine and Urology, Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anil K. Dasyam
- Associate Professor of Radiology and Medicine, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zarine K. Shah
- Associate Professor of Radiology, Department of Radiology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Evan L. Fogel
- Professor of Medicine, Lehman, Bucksot and Sherman Section of Pancreatobiliary Endoscopy, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Sartoris R, Calandra A, Lee KJ, Gauss T, Vilgrain V, Ronot M. Quantification of Pancreas Surface Lobularity on CT: A Feasibility Study in the Normal Pancreas. Korean J Radiol 2021; 22:1300-1309. [PMID: 33938646 PMCID: PMC8316779 DOI: 10.3348/kjr.2020.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To assess the feasibility and reproducibility of pancreatic surface lobularity (PSL) quantification derived from abdominal computed tomography (CT) in a population of patients free from pancreatic disease. Materials and Methods This retrospective study included 265 patients free from pancreatic disease who underwent contrast-enhanced abdominal CT between 2017 and 2019. A maximum of 11 individual PSL measurements were performed by two abdominal radiologists (head [5 measurements], body, and tail [3 measurements each]) using dedicated software. The influence of age, body mass index (BMI), and sex on PSL was assessed using the Pearson correlation and repeated measurements. Inter-reader agreement was assessed using the intraclass correlation coefficient (ICC) and Bland Altman (BA) plots. Results CT images of 15 (6%) patients could not be analyzed. A total of 2750 measurements were performed in the remaining 250 patients (143 male [57%], mean age 45 years [range, 18–91]), and 2237 (81%) values were obtained in the head 951/1250 (76%), body 609/750 (81%), and tail 677/750 (90%). The mean ± standard deviation PSL was 6.53 ± 1.37. The mean PSL was significantly higher in male than in female (6.89 ± 1.30 vs. 6.06 ± 1.31, respectively, p < 0.001). PSL gradually increased with age (r = 0.32, p < 0.001) and BMI (r = 0.32, p < 0.001). Inter-reader agreement was excellent (ICC 0.82 [95% confidence interval 0.72–0.85], with a BA bias of 0.30 and 95% limits of agreement of −1.29 and 1.89). Conclusion CT-based PSL quantification is feasible with a high success rate and inter-reader agreement in subjects free from pancreatic disease. Significant variations were observed according to sex, age, and BMI. This study provides a reference for future studies.
Collapse
Affiliation(s)
- Riccardo Sartoris
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, Centre de Recherche de l'Inflammation (CRI), Paris, France
| | | | - Kyung Jin Lee
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Department of Radiology, Asan Medical Center, Seoul, Korea
| | - Tobias Gauss
- Intensive Care Unit, Hôpital Beaujon, Clichy, Paris, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, Centre de Recherche de l'Inflammation (CRI), Paris, France
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, Centre de Recherche de l'Inflammation (CRI), Paris, France.
| |
Collapse
|
13
|
Abunahel BM, Pontre B, Kumar H, Petrov MS. Pancreas image mining: a systematic review of radiomics. Eur Radiol 2020; 31:3447-3467. [PMID: 33151391 DOI: 10.1007/s00330-020-07376-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To systematically review published studies on the use of radiomics of the pancreas. METHODS The search was conducted in the MEDLINE database. Human studies that investigated the applications of radiomics in diseases of the pancreas were included. The radiomics quality score was calculated for each included study. RESULTS A total of 72 studies encompassing 8863 participants were included. Of them, 66 investigated focal pancreatic lesions (pancreatic cancer, precancerous lesions, or benign lesions); 4, pancreatitis; and 2, diabetes mellitus. The principal applications of radiomics were differential diagnosis between various types of focal pancreatic lesions (n = 19), classification of pancreatic diseases (n = 23), and prediction of prognosis or treatment response (n = 30). Second-order texture features were most useful for the purpose of differential diagnosis of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature), whereas filtered image features were most useful for the purpose of classification of diseases of the pancreas and prediction of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature). The median radiomics quality score of the included studies was 28%, with the interquartile range of 22% to 36%. The radiomics quality score was significantly correlated with the number of extracted radiomics features (r = 0.52, p < 0.001) and the study sample size (r = 0.34, p = 0.003). CONCLUSIONS Radiomics of the pancreas holds promise as a quantitative imaging biomarker of both focal pancreatic lesions and diffuse changes of the pancreas. The usefulness of radiomics features may vary depending on the purpose of their application. Standardisation of image acquisition protocols and image pre-processing is warranted prior to considering the use of radiomics of the pancreas in routine clinical practice. KEY POINTS • Methodologically sound studies on radiomics of the pancreas are characterised by a large sample size and a large number of extracted features. • Optimisation of the radiomics pipeline will increase the clinical utility of mineable pancreas imaging data. • Radiomics of the pancreas is a promising personalised medicine tool in diseases of the pancreas.
Collapse
Affiliation(s)
| | - Beau Pontre
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Abstract
MRI and MRCP play an important role in the diagnosis of chronic pancreatitis (CP) by imaging pancreatic parenchyma and ducts. MRI/MRCP is more widely used than computed tomography (CT) for mild to moderate CP due to its increased sensitivity for pancreatic ductal and gland changes; however, it does not detect the calcifications seen in advanced CP. Quantitative MR imaging offers potential advantages over conventional qualitative imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of detected changes. These techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in the diagnosis of chronic pancreatitis. Given the fact that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing MRI/MRCP-based, more robust diagnostic criteria combining ductal and parenchymal findings. Among cross-sectional imaging modalities, multi-detector CT (MDCT) has been a cornerstone for evaluating chronic pancreatitis (CP) since it is ubiquitous, assesses primary disease process, identifies complications like pseudocyst or vascular thrombosis with high sensitivity and specificity, guides therapeutic management decisions, and provides images with isotropic resolution within seconds. Conventional MDCT has certain limitations and is reserved to provide predominantly morphological (e.g., calcifications, organ size) rather than functional information. The emerging applications of radiomics and artificial intelligence are poised to extend the current capabilities of MDCT. In this review article, we will review advanced imaging techniques by MRI, MRCP, CT, and ultrasound.
Collapse
|