1
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
2
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
3
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. Nat Commun 2024; 15:8336. [PMID: 39333151 PMCID: PMC11437063 DOI: 10.1038/s41467-024-52664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
Affiliation(s)
- Sudiksha Sridhar
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Howard J Gritton
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer Freire
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Pharmacology, Boston University, Boston, MA, USA
| | - Chengqian Zhou
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Florence Liang
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xue Han
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602408. [PMID: 39026712 PMCID: PMC11257482 DOI: 10.1101/2024.07.07.602408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
|
5
|
Sanabria BD, Baskar SS, Yonk AJ, Linares-Garcia I, Abraira VE, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. eNeuro 2024; 11:ENEURO.0503-23.2023. [PMID: 38164611 PMCID: PMC10849041 DOI: 10.1523/eneuro.0503-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.
Collapse
Affiliation(s)
- Branden D Sanabria
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Sindhuja S Baskar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Iván Linares-Garcia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| |
Collapse
|
6
|
Varin C, Cornil A, Houtteman D, Bonnavion P, de Kerchove d'Exaerde A. The respective activation and silencing of striatal direct and indirect pathway neurons support behavior encoding. Nat Commun 2023; 14:4982. [PMID: 37591838 PMCID: PMC10435545 DOI: 10.1038/s41467-023-40677-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The basal ganglia are known to control actions and modulate movements. Neuronal activity in the two efferent pathways of the dorsal striatum is critical for appropriate behavioral control. Previous evidence has led to divergent conclusions on the respective engagement of both pathways during actions. Using calcium imaging to evaluate how neurons in the direct and indirect pathways encode behaviors during self-paced spontaneous explorations in an open field, we observed that the two striatal pathways exhibit distinct tuning properties. Supervised learning algorithms revealed that direct pathway neurons encode behaviors through their activation, whereas indirect pathway neurons exhibit behavior-specific silencing. These properties remain stable for weeks. Our findings highlight a complementary encoding of behaviors with congruent activations in the direct pathway encoding multiple accessible behaviors in a given context, and in the indirect pathway encoding the suppression of competing behaviors. This model reconciles previous conflicting conclusions on motor encoding in the striatum.
Collapse
Affiliation(s)
- Christophe Varin
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Amandine Cornil
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Delphine Houtteman
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Patricia Bonnavion
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Alban de Kerchove d'Exaerde
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
| |
Collapse
|
7
|
Sanabria BD, Baskar SS, Yonk AJ, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531405. [PMID: 36945420 PMCID: PMC10028946 DOI: 10.1101/2023.03.06.531405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and is considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in the strength of their connections with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS, and as a result exert an opposing influence on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution onto striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1, and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex-vivo patch-clamp electrophysiology. We found that SPNs are less innervated by S1 compared to M1, but FSIs receive a similar number of inputs from both M1 and S1. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPNs and FSIs. Notably, clusters of inputs were prevalent in SPNs but not FSIs. Our results suggest that SPNs have stronger functional connectivity to M1 compared to S1 due to a higher density of synaptic inputs. The clustering of M1 and S1 inputs onto SPNs but not FSIs suggest that cortical inputs are integrated through cell-type specific mechanisms and more generally have implications for how sensorimotor integration is performed in the striatum. Significance Statement The dorsolateral striatum (DLS) is a key brain area involved in sensorimotor integration due to its dense innervation by the primary motor (M1) and sensory cortex (S1). However, the quantity and anatomical distribution of these inputs to the striatal cell population has not been well characterized. In this study we demonstrate that corticostriatal projections from M1 and S1 differentially innervate spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS. S1 inputs innervate SPNs less than M1 and are likely to form synaptic clusters in SPNs but not in FSIs. These findings suggest that sensorimotor integration is partly achieved by differences in the synaptic organization of corticostriatal inputs to local striatal microcircuits.
Collapse
|
8
|
de la Torre-Martinez R, Ketzef M, Silberberg G. Ongoing movement controls sensory integration in the dorsolateral striatum. Nat Commun 2023; 14:1004. [PMID: 36813791 PMCID: PMC9947004 DOI: 10.1038/s41467-023-36648-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The dorsolateral striatum (DLS) receives excitatory inputs from both sensory and motor cortical regions. In the neocortex, sensory responses are affected by motor activity, however, it is not known whether such sensorimotor interactions occur in the striatum and how they are shaped by dopamine. To determine the impact of motor activity on striatal sensory processing, we performed in vivo whole-cell recordings in the DLS of awake mice during the presentation of tactile stimuli. Striatal medium spiny neurons (MSNs) were activated by both whisker stimulation and spontaneous whisking, however, their responses to whisker deflection during ongoing whisking were attenuated. Dopamine depletion reduced the representation of whisking in direct-pathway MSNs, but not in those of the indirect-pathway. Furthermore, dopamine depletion impaired the discrimination between ipsilateral and contralateral sensory stimulation in both direct and indirect pathway MSNs. Our results show that whisking affects sensory responses in DLS and that striatal representation of both processes is dopamine- and cell type-dependent.
Collapse
Affiliation(s)
| | - Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
11
|
Alegre-Cortés J, Sáez M, Montanari R, Reig R. Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum. eLife 2021; 10:e60580. [PMID: 33599609 PMCID: PMC7924950 DOI: 10.7554/elife.60580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.
Collapse
Affiliation(s)
| | - María Sáez
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| | | | - Ramon Reig
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
12
|
Holmes SA, Kim A, Borsook D. The brain and behavioral correlates of motor-related analgesia (MRA). Neurobiol Dis 2020; 148:105158. [PMID: 33157210 DOI: 10.1016/j.nbd.2020.105158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/03/2023] Open
Abstract
The human motor system has the capacity to act as an internal form of analgesia. Since the discovery of the potential influence of motor systems on analgesia in rodent models, clinical applications of targeting the motor system for analgesia have been implemented. However, a neurobiological basis for motor activation's effects on analgesia is not well defined. Motor-related analgesia (MRA) is a phenomenon wherein a decrease in pain symptoms can be achieved through either indirect or direct activation of the motor axis. To date, research has focused on (a) evaluating the pain-motor interaction as one focused on the acute protection from painful stimuli; (b) motor cortex stimulation for chronic pain; or (c) exercise as a method of improving chronic pain in animal and human models. This review evaluates (1) current knowledge surrounding how pain interferes with canonical neurological performance throughout the motor axis; and (2) the physiological basis for motor-related analgesia as a means to reduce pain symptom loads for patients. A proposal for future research directions is provided.
Collapse
Affiliation(s)
- S A Holmes
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| | - A Kim
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| | - D Borsook
- Center for Pain and the Brain, Boston Childrens Hospital and Harvard Medical School, 1-Department of Anesthesiology Critical Care and Pain Medicine, Boston Children's Hospital- Harvard Medical School, Boston, United States.
| |
Collapse
|
13
|
Carton-Leclercq A, Lecas S, Chavez M, Charpier S, Mahon S. Neuronal excitability and sensory responsiveness in the thalamo-cortical network in a novel rat model of isoelectric brain state. J Physiol 2020; 599:609-629. [PMID: 33095909 DOI: 10.1113/jp280266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS The neuronal and network properties that persist during an isoelectric coma remain largely unknown. We developed a new in vivo rat model to assess cell excitability and sensory responsiveness in the thalamo-cortical pathway during an isoflurane-induced isoelectric brain state. The isoelectric electrocorticogram reflected a complete interruption of spontaneous synaptic and firing activities in cortical and thalamic neurons. Cell excitability and sensory responses in the thalamo-cortical network persisted at a reduced level in the isoelectric condition and returned to control values after resumption of background brain activity. These findings could lead to a reassessment of the functional status of the drug-induced isoelectric state: a latent state in which individual neurons and networks retain to some extent the ability of being activated by external inputs. ABSTRACT The neuronal and network properties that persist in an isoelectric brain completely deprived of spontaneous electrical activity remain largely unexplored. Here, we developed a new in vivo rat model to examine cell excitability and sensory responsiveness in somatosensory thalamo-cortical networks during the interruption of endogenous brain activity induced by high doses of isoflurane. Electrocorticograms (ECoGs) from the barrel cortex were captured simultaneously with either intracellular recordings of subjacent cortical pyramidal neurons or extracellular records of the related thalamo-cortical neurons. Isoelectric ECoG periods reflected the disappearance of spontaneous synaptic and firing activities in cortical and thalamic neurons. This was associated with a sustained membrane hyperpolarization and a reduced intrinsic excitability in deep-layer cortical neurons, without significant changes in their membrane input resistance. Concomitantly, we found that whisker-evoked potentials in the ECoG and synaptic responses in cortical neurons were attenuated in amplitude and increased in latency. Impaired responsiveness in the barrel cortex paralleled with a lowering of the sensory-induced firing in thalamic cells. The return of endogenous brain electrical activities, after reinstatement of a control isoflurane concentration, led to the recovery of cortical neurons excitability and sensory responsiveness. These findings demonstrate the persistence of a certain level of cell excitability and sensory integration in the isoelectric state and the full recovery of cortico-thalamic functions after restoration of internal cerebral activities.
Collapse
Affiliation(s)
- Antoine Carton-Leclercq
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Mario Chavez
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphane Charpier
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Séverine Mahon
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|