1
|
Kaufmann M, Vaysse PM, Savage A, Kooreman LFS, Janssen N, Varma S, Ren KYM, Merchant S, Engel CJ, Olde Damink SWM, Smidt ML, Shousha S, Chauhan H, Karali E, Kazanc E, Poulogiannis G, Fichtinger G, Tauber B, Leff DR, Pringle SD, Rudan JF, Heeren RMA, Porta Siegel T, Takáts Z, Balog J. Testing of rapid evaporative mass spectrometry for histological tissue classification and molecular diagnostics in a multi-site study. Br J Cancer 2024; 131:1298-1308. [PMID: 39294437 PMCID: PMC11473823 DOI: 10.1038/s41416-024-02739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND While REIMS technology has successfully been demonstrated for the histological identification of ex-vivo breast tumor tissues, questions regarding the robustness of the approach and the possibility of tumor molecular diagnostics still remain unanswered. In the current study, we set out to determine whether it is possible to acquire cross-comparable REIMS datasets at multiple sites for the identification of breast tumors and subtypes. METHODS A consortium of four sites with three of them having access to fresh surgical tissue samples performed tissue analysis using identical REIMS setups and protocols. Overall, 21 breast cancer specimens containing pathology-validated tumor and adipose tissues were analyzed and results were compared using uni- and multivariate statistics on normal, WT and PIK3CA mutant ductal carcinomas. RESULTS Statistical analysis of data from standards showed significant differences between sites and individual users. However, the multivariate classification models created from breast cancer data elicited 97.1% and 98.6% correct classification for leave-one-site-out and leave-one-patient-out cross validation. Molecular subtypes represented by PIK3CA mutation gave consistent results across sites. CONCLUSIONS The results clearly demonstrate the feasibility of creating and using global classification models for a REIMS-based margin assessment tool, supporting the clinical translatability of the approach.
Collapse
Affiliation(s)
- Martin Kaufmann
- Department of Surgery, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, NL, Netherlands
- Department of Surgery, Maastricht University Medical Center + (MUMC+), Maastricht, NL, Netherlands
- Department of Otorhinolaryngology, Head & Neck Surgery, MUMC+, Maastricht, NL, Netherlands
| | - Adele Savage
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Loes F S Kooreman
- Department of Pathology, MUMC+, Maastricht, NL, Netherlands
- GROW School for Oncology and Reproduction, MUMC+, Maastricht, NL, Netherlands
| | - Natasja Janssen
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Sonal Varma
- Department of Pathology, Queen's University, Kingston, ON, Canada
| | - Kevin Yi Mi Ren
- Department of Pathology, Queen's University, Kingston, ON, Canada
| | - Shaila Merchant
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Cecil Jay Engel
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center + (MUMC+), Maastricht, NL, Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism Faculty of Health, Maastricht University, Maastricht, NL, Netherlands
| | - Marjolein L Smidt
- Department of Surgery, Maastricht University Medical Center + (MUMC+), Maastricht, NL, Netherlands
- GROW School for Oncology and Reproduction, MUMC+, Maastricht, NL, Netherlands
| | | | - Hemali Chauhan
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Evdoxia Karali
- Signalling and Cancer Metabolism Team, The Institute of Cancer Research, London, UK
| | - Emine Kazanc
- Signalling and Cancer Metabolism Team, The Institute of Cancer Research, London, UK
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, The Institute of Cancer Research, London, UK
| | | | - Boglárka Tauber
- Qamcom Research & Technology Central Europe, Budapest, Hungary
| | - Daniel R Leff
- Department of Surgery and Cancer, Biosurgery and Surgical Technology, Imperial College London, London, UK
| | | | - John F Rudan
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, NL, Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, NL, Netherlands
| | - Zoltán Takáts
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Júlia Balog
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Waters Research Center, Budapest, Hungary.
| |
Collapse
|
2
|
Grünherz L, Kollarik S, Sanchez-Macedo N, McLuckie M, Lindenblatt N. Lipidomic Analysis of Microfat and Nanofat Reveals Different Lipid Mediator Compositions. Plast Reconstr Surg 2024; 154:895e-905e. [PMID: 39480647 PMCID: PMC11512614 DOI: 10.1097/prs.0000000000011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/30/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Microfat and nanofat are commonly used in various surgical procedures, from skin rejuvenation to scar correction, to contribute to tissue regeneration. Microfat contains mainly adipocytes and is well suited for tissue augmentation, and nanofat is rich in lipids, adipose-derived stem cells, microvascular fragments, and growth factors, making it attractive for aesthetic use. The authors have previously demonstrated that the mechanical processing of microfat into nanofat significantly changes its proteomic profile. Considering that mechanical fractionation leads to adipocyte disruption and lipid release, they aimed to analyze their lipidomic profiles for their regenerative properties. METHODS Microfat and nanofat samples were isolated from 14 healthy patients. Lipidomic profiling was performed by liquid chromatography tandem mass spectrometry. The resulting data were compared against the Human Metabolome and LIPID MAPS Structure Database. MetaboAnalyst was used to analyze metabolic pathways and lipids of interest. RESULTS From 2388 mass-to-charge ratio features, metabolic pathway enrichment analysis of microfat and nanofat samples revealed 109 pathways that were significantly enriched. Microfat samples revealed higher-intensity levels of sphingosines, different eicosanoids, and fat-soluble vitamins. Increased levels of coumaric acids and prostacyclin were found in nanofat. CONCLUSIONS This is the first study to analyze the lipidomic profiles of microfat and nanofat, providing evidence that mechanical emulsification of microfat into nanofat leads to changes in their lipid profiles. From 109 biological pathways, antiinflammatory, antifibrotic, and antimelanogenic lipid mediators were particularly enriched in nanofat samples when compared with microfat. Although further studies are necessary for a deeper understanding of the composition of these specific lipid mediators in nanofat samples, the authors propose that they might contribute to its regenerative effects on tissue. CLINICAL RELEVANCE STATEMENT Profiling the unique lipid mediators in nanofat and microfat enhances our understanding of their different therapeutic effects and allows us to link these specific mediators to antiinflammatory, pro-regenerative, or healing properties. Ultimately, this insight can advance personalized therapeutic strategies, where a specific type of fat is selected based on its optimal therapeutic effect.
Collapse
Affiliation(s)
- Lisanne Grünherz
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Sedef Kollarik
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nadia Sanchez-Macedo
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Michelle McLuckie
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| | - Nicole Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich
| |
Collapse
|
3
|
Pannkuk EL, Moore MS, Bansal S, Kumar K, Suman S, Howell D, Kath JA, Kurta A, Reeder DM, Field KA. White adipose tissue remodeling in Little Brown Myotis (Myotis lucifugus) with white-nose syndrome. Metabolomics 2024; 20:100. [PMID: 39190217 DOI: 10.1007/s11306-024-02165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
White-nose syndrome (WNS) is a fungal wildlife disease of bats that has caused precipitous declines in certain Nearctic bat species. A key driver of mortality is premature exhaustion of fat reserves, primarily white adipose tissue (WAT), that bats rely on to meet their metabolic needs during winter. However, the pathophysiological and metabolic effects of WNS have remained ill-defined. To elucidate metabolic mechanisms associated with WNS mortality, we infected a WNS susceptible species, the Little Brown Myotis (Myotis lucifugus), with Pseudogymnoascus destructans (Pd) and collected WAT biopsies for histology and targeted lipidomics. These results were compared to the WNS-resistant Big Brown Bat (Eptesicus fuscus). A similar distribution in broad lipid class was observed in both species, with total WAT primarily consisting of triacylglycerides. Baseline differences in WAT chemical composition between species showed that higher glycerophospholipids (GPs) levels in E. fuscus were dominated by unsaturated or monounsaturated moieties and n-6 (18:2, 20:2, 20:3, 20:4) fatty acids. Conversely, higher GP levels in M. lucifugus WAT were primarily compounds containing n-3 (20:5 and 22:5) fatty acids. Following Pd-infection, we found that perturbation to WAT reserves occurs in M. lucifugus, but not in the resistant E. fuscus. A total of 66 GPs (primarily glycerophosphocholines and glycerophosphoethanolamines) were higher in Pd-infected M. lucifugus, indicating perturbation to the WAT structural component. In addition to changes in lipid chemistry, smaller adipocyte sizes and increased extracellular matrix deposition was observed in Pd-infected M. lucifugus. This is the first study to describe WAT GP composition of bats with different susceptibilities to WNS and highlights that recovery from WNS may require repair from adipose remodeling in addition to replenishing depot fat during spring emergence.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 3970 Reservoir Road, NW, New Research Building, Room E504, Washington, DC, 20057, USA.
- Center for Metabolomic Studies, Georgetown University, Washington, DC, USA.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| | - Marianne S Moore
- Department of Biological Sciences, University of the Virgin Islands, St. Thomas, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Daryl Howell
- Iowa Department of Natural Resources, Des Moines, IA, USA
| | - Joseph A Kath
- Illinois Department of Natural Resources, Springfield, IL, USA
| | - Allen Kurta
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - DeeAnn M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - Kenneth A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| |
Collapse
|
4
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Hoeffner N, Paul A, Goo YH. Drug screen identifies verteporfin as a regulator of lipid metabolism in macrophage foam cells. Sci Rep 2023; 13:19588. [PMID: 37949969 PMCID: PMC10638409 DOI: 10.1038/s41598-023-46467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Arterial macrophage foam cells are filled with cholesterol ester (CE) stored in cytosolic lipid droplets (LDs). Foam cells are central players in progression of atherosclerosis as regulators of lipid metabolism and inflammation, two major driving forces of atherosclerosis development. Thus, foam cells are considered plausible targets for intervention in atherosclerosis. However, a compound that directly regulates the lipid metabolism of LDs in the arterial foam cells has not yet been identified. In this study, we screened compounds that inhibit macrophage foam cell formation using a library of 2697 FDA-approved drugs. From the foam cells generated via loading of human oxidized low-density lipoprotein (oxLDL), we found 21 and 6 compounds that reduced and enhanced accumulations of lipids respectively. Among them, verteporfin most significantly reduced oxLDL-induced foam cell formation whereas it did not display a significant impact on foam cell formation induced by fatty acid. Mechanistically our data demonstrate that verteporfin acts via inhibition of oxLDL association with macrophages, reducing accumulation of CE. Interestingly, while other drugs that reduced foam cell formation did not have impact on pre-existing foam cells, verteporfin treatment significantly reduced their total lipids, CE, and pro-inflammatory gene expression. Together, our study identifies verteporfin as a novel regulator of foam cell lipid metabolism and inflammation and a potential compound for intervention in atherosclerosis.
Collapse
Affiliation(s)
- Nicholas Hoeffner
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA
| | - Antoni Paul
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA
| | - Young-Hwa Goo
- Molecular and Cellular Physiology Department, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Lim YC, Jung JI, Hong IK. A Novel Method for Human Adipose-Derived Stem Cell Isolation and Cryopreservation. Cell Reprogram 2023; 25:171-179. [PMID: 37590008 DOI: 10.1089/cell.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are isolated from abundant adipose tissue and have the capacity to differentiate into multiple cell lineages. ADSCs have raised big interest in therapeutic applications in regenerative medicine and demonstrated to fulfill the criteria for a successful cell therapy. There are several methods for isolation of ADSCs from adipose tissue and cryopreservation of ADSCs. Here, novel methods for the isolation and cryopreservation of ADSCs are presented and focused. Microscopic pieces of adipose tissue were placed on transwell inserts, and the ADSCs were induced to migrate to the lower wells for 1 week. We compared the properties of our ADSCs with those isolated by enzymatic digestion and enzyme-free method of culture plate, and our ADSCs were found to be more stable and healthier. In addition, we proposed a novel cryoprotectant solution (FNCP) containing pectin and L-alanine, which was compared with standard cryoprotectant solution. Overall, our methods proved more useful for ADSCs isolation than other methods and did not require consideration of "minimal manipulation" by the U.S. Food and Drug Administration (FDA). Furthermore, our FNCP did not contain dimethyl sulfoxide and fetal bovine serum, therefore stable storage is possible in xeno-free and animal-free cryopreservation solutions.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| | - Jung-Il Jung
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| | - In-Kee Hong
- Bio Lab. Efficacy Research Team, Frombio. Co., Ltd, Yongin-si, Republic of Korea
| |
Collapse
|
8
|
Pelosi AC, Fernandes AMAP, Maciel LF, Silva AAR, Mendes GC, Bueno LF, Silva LMF, Bredariol RF, Santana MG, Porcari AM, Priolli DG. Liquid chromatography coupled to high-resolution mass spectrometry metabolomics: A useful tool for investigating tumor secretome based on a three-dimensional co-culture model. PLoS One 2022; 17:e0274623. [PMID: 36129929 PMCID: PMC9491614 DOI: 10.1371/journal.pone.0274623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/31/2022] [Indexed: 01/01/2023] Open
Abstract
Three-dimensional (3D) cell culture technologies, which more closely mimic the complex microenvironment of tissue, are being increasingly evaluated as a tool for the preclinical screening of clinically promising new molecules, and studying of tissue metabolism. Studies of metabolites released into the extracellular space (secretome) allow understanding the metabolic dynamics of tissues and changes caused by therapeutic interventions. Although quite advanced in the field of proteomics, studies on the secretome of low molecular weight metabolites (< 1500 Da) are still very scarce. We present an untargeted metabolomic protocol based on the hybrid technique of liquid chromatography coupled with high-resolution mass spectrometry for the analysis of low-molecular-weight metabolites released into the culture medium by 3D cultures and co-culture (secretome model). For that we analyzed HT-29 human colon carcinoma cells and 3T3-L1 preadipocytes in 3D-monoculture and 3D-co-culture. The putative identification of the metabolites indicated a sort of metabolites, among them arachidonic acid, glyceric acid, docosapentaenoic acid and beta-Alanine which are related to cancer and obesity. This protocol represents a possibility to list metabolites released in the extracellular environment in a comprehensive and untargeted manner, opening the way for the generation of metabolic hypotheses that will certainly contribute to the understanding of tissue metabolism, tissue-tissue interactions, and metabolic responses to the most varied interventions. Moreover, it brings the potential to determine novel pathways and accurately identify biomarkers in cancer and other diseases. The metabolites indicated in our study have a close relationship with the tumor microenvironment in accordance with the literature review.
Collapse
Affiliation(s)
- Andrea C. Pelosi
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Anna Maria A. P. Fernandes
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Leonardo F. Maciel
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Alex A. R. Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Giulia C. Mendes
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Luísa F. Bueno
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Lívia Maria F. Silva
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Rafael F. Bredariol
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Maycon G. Santana
- Multiprofessional Nursing Residency Program in Oncology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Denise G. Priolli
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Wu ZE, Kruger MC, Cooper GJS, Sequeira IR, McGill AT, Poppitt SD, Fraser K. Dissecting the relationship between plasma and tissue metabolome in a cohort of women with obesity: Analysis of subcutaneous and visceral adipose, muscle, and liver. FASEB J 2022; 36:e22371. [PMID: 35704337 DOI: 10.1096/fj.202101812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Untargeted metabolomics of blood samples has become widely applied to study metabolic alterations underpinning disease and to identify biomarkers. However, understanding the relevance of a blood metabolite marker can be challenging if it is unknown whether it reflects the concentration in relevant tissues. To explore this field, metabolomic and lipidomic profiles of plasma, four sites of adipose tissues (ATs) from peripheral or central depot, two sites of muscle tissue, and liver tissue from a group of nondiabetic women with obesity who were scheduled to undergo bariatric surgery (n = 21) or other upper GI surgery (n = 5), were measured by liquid chromatography coupled with mass spectrometry. Relationships between plasma and tissue profiles were examined using Pearson correlation analysis subject to Benjamini-Hochberg correction. Plasma metabolites and lipids showed the highest number of significantly positive correlations with their corresponding concentrations in liver tissue, including lipid species of ceramide, mono- and di-hexosylceramide, sphingomyelin, phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine, dimethyl phosphatidylethanolamine, ether-linked PC, ether-linked PE, free fatty acid, cholesteryl ester, diacylglycerol and triacylglycerol, and polar metabolites linked to several metabolic functions and gut microbial metabolism. Plasma also showed significantly positive correlations with muscle for several phospholipid species and polar metabolites linked to metabolic functions and gut microbial metabolism, and with AT for several triacylglycerol species. In conclusion, plasma metabolomic and lipidomic profiles were reflective more of the liver profile than any of the muscle or AT sites examined in the present study. Our findings highlighted the importance of taking into consideration the metabolomic relationship of various tissues with plasma when postulating plasma metabolites marker to underlying mechanisms occurring in a specific tissue.
Collapse
Affiliation(s)
- Zhanxuan E Wu
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,School of Health Sciences, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ivana R Sequeira
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anne-Thea McGill
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Jensterle M, Kravos NA, Dolžan V, Goričar K, Herman R, Rizzo M, Janež A. Glucose transporter 4 mRNA expression in subcutaneous adipose tissue of women with PCOS remains unchanged despite metformin withdrawal: is there a cellular metabolic treatment legacy effect? Endocrine 2022; 75:804-813. [PMID: 34761355 DOI: 10.1007/s12020-021-02934-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Metformin induces GLUT-4 mRNA expression in insulin target tissues in PCOS. It is unclear how long this impact is sustained after withdrawal of metformin. We aimed to compare the effect of metformin withdrawal on GLUT-4 mRNA expression in subcutaneous adipose tissue after prior short (ST, 1 year, N = 11) and long term (LT, at least 3 years, N = 13) treatment in obese PCOS women. METHODS At baseline and 6 months after withdrawal, biopsy of subcutaneous adipose tissue followed by quantitative PCR analysis was performed to determine GLUT-4 mRNA expression. RESULTS We found no time/effect differences in GLUT-4 mRNA expression in ST (2-dCt at baseline 0.42 (0.16-0.48) vs 2-dCt after 6 months 0.31 (0.22-0.56), p = 0.594) and no time/effect difference in LT group (2-dCt at baseline 0.24 (0.14-0.39) vs 2-dCt after 6 months 0.25 (0.20-0.38), p = 0.382). There was also no difference in GLUT-4 mRNA expression between both groups at baseline and after 6 months. CONCLUSIONS In summary, 6 months after metformin withdrawal, GLUT-4 mRNA expression in subcutaneous adipose tissue remained stable, regardless of the prior treatment duration.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Nika Aleksandra Kravos
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, 90133, Italy
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
11
|
Palavicini JP, Chavez-Velazquez A, Fourcaudot M, Tripathy D, Pan M, Norton L, DeFronzo RA, Shannon CE. The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Front Physiol 2021; 12:784391. [PMID: 34925073 PMCID: PMC8674727 DOI: 10.3389/fphys.2021.784391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-sensitizer pioglitazone exerts its cardiometabolic benefits in type 2 diabetes (T2D) through a redistribution of body fat, from ectopic and visceral areas to subcutaneous adipose depots. Whereas excessive weight gain and lipid storage in obesity promotes insulin resistance and chronic inflammation, the expansion of subcutaneous adipose by pioglitazone is associated with a reversal of these immunometabolic deficits. The precise events driving this beneficial remodeling of adipose tissue with pioglitazone remain unclear, and whether insulin-sensitizers alter the lipidomic composition of human adipose has not previously been investigated. Using shotgun lipidomics, we explored the molecular lipid responses in subcutaneous adipose tissue following 6months of pioglitazone treatment (45mg/day) in obese humans with T2D. Despite an expected increase in body weight following pioglitazone treatment, no robust effects were observed on the composition of storage lipids (i.e., triglycerides) or the content of lipotoxic lipid species (e.g., ceramides and diacylglycerides) in adipose tissue. Instead, pioglitazone caused a selective remodeling of the glycerophospholipid pool, characterized by a decrease in lipids enriched for arachidonic acid, such as plasmanylethanolamines and phosphatidylinositols. This contributed to a greater overall saturation and shortened chain length of fatty acyl groups within cell membrane lipids, changes that are consistent with the purported induction of adipogenesis by pioglitazone. The mechanism through which pioglitazone lowered adipose tissue arachidonic acid, a major modulator of inflammatory pathways, did not involve alterations in phospholipase gene expression but was associated with a reduction in its precursor linoleic acid, an effect that was also observed in skeletal muscle samples from the same subjects. These findings offer important insights into the biological mechanisms through which pioglitazone protects the immunometabolic health of adipocytes in the face of increased lipid storage.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alberto Chavez-Velazquez
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcel Fourcaudot
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Meixia Pan
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luke Norton
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ralph A. DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Christopher E. Shannon
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|