1
|
Zeng Z, Vadivel CK, Gluud M, Namini MRJ, Yan L, Ahmad S, Hansen MB, Coquet J, Mustelin T, Koralov SB, Bonefeld CM, Woetmann A, Geisler C, Guenova E, Kamstrup MR, Litman T, Gjerdrum LMR, Buus TB, Ødum N. Keratinocytes Present Staphylococcus aureus Enterotoxins and Promote Malignant and Nonmalignant T Cell Proliferation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00377-4. [PMID: 38762064 DOI: 10.1016/j.jid.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Blood Bank, Department of Clinical Immunology, State University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Coquet
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Mustelin
- Department of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuella Guenova
- University Hospital Lausanne (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise-Mette R Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Roskilde, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
- August-Witte Feentved Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Rodríguez Baeza D, Bejarano Antonio L, González de Arriba M, Picó-Monllor JA, Cañueto J, Navarro-Lopez V. Cutaneous T-Cell Lymphoma and Microbiota: Etiopathogenesis and Potential New Therapeutic Targets. Dermatol Res Pract 2024; 2024:9919225. [PMID: 38435536 PMCID: PMC10904680 DOI: 10.1155/2024/9919225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Objective To review the scientific literature related to human microbiota and cutaneous T-cell lymphoma. Methodology. An exploratory and systematic review of the articles retrieved from the bibliographic databases MEDLINE (PubMed), Embase, The Cochrane Library, and Scopus, published in the last 10 years with the following descriptors: "lymphoma, T-cell, cutaneous," "microbiota," "Mycosis Fungoides," "Sézary Syndrome," "lymphoma, primary cutaneous anaplastic large cell," "Lymphomatoid Papulosis" and "Microbiota," "microbiota," "Microbial Community," and "Microbial Communities." Results Of the 87 references retrieved, after applying the inclusion and exclusion criteria, 21 articles were selected. Most studies linking cutaneous T-cell lymphoma and the microbiota focus on the cutaneous microbiome, with Staphylococcus aureus being the main related agent. Skin colonization by this bacterium could be involved in the hyperactivation of the STAT3 inflammatory pathway and in the overproduction of IL-17, both of which are widely related to the development of more aggressive and advanced forms of cutaneous T-cell lymphoma. We also found evidence of a possible relationship between intestinal dysbiosis and the development of cutaneous T-cell lymphoma, observing a decrease in taxonomic variability and an increase in certain genera such as Prevotella in the intestinal microbiome of patients with cutaneous T-cell lymphoma. The possible etiopathogenic mechanism underlying this relationship could be explained by an increase in systemic cytokine release, promoting the hyperactivation of STAT3 at the skin level. Conclusion There appears to be a relationship between cutaneous T-cell lymphoma and the cutaneous and intestinal microbiome, as well as a possible pathophysiological pathway involved. The possible modulation of the cutaneous and intestinal microbiome or the action on the signaling inflammatory pathway, using pharmacological tools such as JAK inhibitors or IL-17 inhibitors in the latter case, could open the possibility for future therapeutic studies for cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Daniel Rodríguez Baeza
- Dermatology Service, Rio Hortega University Hospital, Calle Dulzaina, 2, Valladolid 47012, Spain
- MiBioPath Research Group, Medicine Faculty, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, Murcia 30107, Spain
| | - Lía Bejarano Antonio
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
| | - Marta González de Arriba
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
| | - José Antonio Picó-Monllor
- Faculty of Pharmacy, Department of Pharmacology, Pediatrics and Organic Chemistry, Miguel Hernández University of Elche, Ctra. Alicante-Valencia N 332, 03550 Sant Joan Alacant, Alicante, Spain
| | - Javier Cañueto
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
- IBSAL, Institute of Biomedical Research of Salamanca, P.º de San Vicente, 182, Salamanca 37007, Spain
| | - Vicente Navarro-Lopez
- MiBioPath Research Group, Medicine Faculty, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, Murcia 30107, Spain
- Clinical Microbiology and Infectious Disease Unit, Vinalopó University Hospital, c/Tonico Sansano Mora, 14, Elche 03293, Spain
| |
Collapse
|
4
|
Pallesen EMH, Gluud M, Vadivel CK, Buus TB, de Rooij B, Zeng Z, Ahmad S, Willerslev-Olsen A, Röhrig C, Kamstrup MR, Bay L, Lindahl L, Krejsgaard T, Geisler C, Bonefeld CM, Iversen L, Woetmann A, Koralov SB, Bjarnsholt T, Frieling J, Schmelcher M, Ødum N. Endolysin Inhibits Skin Colonization by Patient-Derived Staphylococcus Aureus and Malignant T-Cell Activation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2023; 143:1757-1768.e3. [PMID: 36889662 DOI: 10.1016/j.jid.2023.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 03/08/2023]
Abstract
Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.
Collapse
Affiliation(s)
- Emil M H Pallesen
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, the Netherlands
| | - Ziao Zeng
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Diagnosis and management of cutaneous lymphomas and lymphoid proliferations in children, adolescents and young adults (CAYA). Best Pract Res Clin Haematol 2023; 36:101448. [PMID: 36907638 DOI: 10.1016/j.beha.2023.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous lymphomas and lymphoid proliferations (LPD) in children, adolescents, and young adults (CAYA) are a heterogeneous group of lymphoid neoplasms that present formidable diagnostic challenges to clinicians and pathologists alike. Although rare overall, cutaneous lymphomas/LPD occur in real-world settings and awareness of the differential diagnosis, potential complications, and various therapeutic approaches will help ensure the optimal diagnostic work-up and clinical management. Lymphomas/LPD involving the skin can occur as primary cutaneous disease in a patient that characteristically has lymphoma/LPD confined to the skin, or as secondary involvement in patients with systemic disease. This review will comprehensively summarize both primary cutaneous lymphomas/LPD that occur in the CAYA population as well as those CAYA systemic lymphomas/LPD with propensity for secondary cutaneous involvement. Focus on the most common primary entities occurring in CAYA will include lymphomatoid papulosis, primary cutaneous anaplastic large cell lymphoma, mycosis fungoides, subcutaneous panniculitis-like T-cell lymphoma, and hydroa vacciniforme lymphoproliferative disorder.
Collapse
|
6
|
Malignant T cells induce skin barrier defects through cytokine-mediated JAK/STAT signaling in cutaneous T-cell lymphoma. Blood 2023; 141:180-193. [PMID: 36122387 DOI: 10.1182/blood.2022016690] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.
Collapse
|
7
|
Shi R, Koh MJA. Two Histologic Patterns of Lymphomatoid Papulosis Occurring in a Child: A Matter of Timing? J Pediatr Hematol Oncol 2022; 44:e775-e778. [PMID: 34862355 DOI: 10.1097/mph.0000000000002356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
There are several histologic patterns seen in lymphomatoid papulosis, with the possibility of different subtypes occurring in the same patient. We report a case of lymphomatoid papulosis presenting with 2 histologic subtypes (types A and B) occurring concomitantly in a 10-year-old child, and postulate that the different subtypes occur dependent on the age of the lesion biopsied. Incidentally, one of the biopsies also shows a rarely seen pattern of pseudoepitheliomatous hyperplasia in a pediatric lymphomatoid papulosis patient.
Collapse
Affiliation(s)
- Ruoyu Shi
- Department of Pathology and Laboratory Medicine
| | - Mark Jean-Aan Koh
- Dermatology Service, KK Women's & Children's Hospital, Singapore, Singapore
| |
Collapse
|
8
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Pallesen EMH, Gluud M, Bzorek M, Nielsen BS, Kamstrup MR, Rittig AH, Bonefeld CM, Krejsgaard T, Geisler C, Koralov SB, Litman T, Becker JC, Woetmann A, Iversen L, Odum N. Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5‒Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2021; 141:2449-2458. [PMID: 33862068 DOI: 10.1016/j.jid.2021.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Staphylococcal enterotoxins are believed to fuel disease activity in cutaneous T-cell lymphoma. Recent data support this by showing that antibiotics inhibit malignant T cells in skin lesions in mycosis fungoides and Sézary syndrome, the most common forms of cutaneous T-cell lymphoma. Yet, it remains incompletely characterized how staphylococcal enterotoxins fuel disease activity. In this study, we show that staphylococcal enterotoxins induce the expression of the oncogenic microRNA miR-155 in primary malignant T cells. Thus, staphylococcal enterotoxins and Staphyloccocus aureus isolates from lesional skin of patients induce miR-155 expression at least partly through the IL-2Rg‒Jak‒signal transducer and activator of transcription 5 pathway, and the effect is augmented by the presence of nonmalignant T cells. Importantly, mycosis fungoides lesions harbor S. aureus, express Y-phosphorylated signal transducer and activator of transcription 5, and display enhanced miR-155 expression, when compared with nonlesional and healthy skin. Preliminary data show that aggressive antibiotic therapy is associated with decreased Y-phosphorylated signal transducer and activator of transcription 5 and miR-155 expression in lesional skin in two patients with Sézary syndrome. In conclusion, we show that S. aureus and its enterotoxins induce enhanced expression of oncogenic miR-155, providing mechanistic insight into the role of S. aureus in cutaneous T-cell lymphoma. Our findings support that environmental stimuli such as bacteria can fuel disease progression in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emil M H Pallesen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | | | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte M Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jurgen C Becker
- Department of Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital of Essen, Essen, Germany; Deutsches Krebsforschungsinstitut (DKFZ), Heidelberg, Germany
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Wen Y, Sun J, Yi S, Gao Y, Kouttab N, Morgan J, Wang Y, Kadin ME. IL-13 Signaling in CD30 + Cutaneous Lymphoproliferative Disorders. J Invest Dermatol 2020; 141:1360-1363.e3. [PMID: 33049271 DOI: 10.1016/j.jid.2020.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yujie Wen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Shengguo Yi
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Nick Kouttab
- Department of Dermatology, Roger Williams Medical Center and Boston University, Providence, Rhode Island, USA
| | - John Morgan
- Department of Dermatology, Roger Williams Medical Center and Boston University, Providence, Rhode Island, USA
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Marshall E Kadin
- Department of Dermatology, Roger Williams Medical Center and Boston University, Providence, Rhode Island, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
11
|
Westergaard SA, Lechowicz MJ, Harrington M, Elsey J, Arbiser JL, Khan MK. Induction of remission in a patient with end-stage cutaneous T-cell lymphoma by concurrent use of radiation therapy, gentian violet, and mogamulizumab. JAAD Case Rep 2020; 6:761-765. [PMID: 32728607 PMCID: PMC7381503 DOI: 10.1016/j.jdcr.2020.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sarah A Westergaard
- Department of Radiation Therapy, Emory University School of Medicine, Atlanta, Georgia
| | - Mary Jo Lechowicz
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Maggie Harrington
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Justin Elsey
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia.,Veterans Affairs Medical Center, Decatur, Georgia
| | - Mohammad K Khan
- Department of Radiation Therapy, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|