1
|
Iqbal H, Fernandes Q, Idoudi S, Basineni R, Billa N. Status of Polymer Fused Deposition Modeling (FDM)-Based Three-Dimensional Printing (3DP) in the Pharmaceutical Industry. Polymers (Basel) 2024; 16:386. [PMID: 38337275 DOI: 10.3390/polym16030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Additive manufacturing (AM) or 3D printing (3DP) is arguably a versatile and more efficient way for the production of solid dosage forms such as tablets. Of the various 3DP technologies currently available, fused deposition modeling (FDM) includes unique characteristics that offer a range of options in the production of various types of tablets. For example, amorphous solid dispersions (ASDs), enteric-coated tablets or poly pills can be produced using an appropriate drug/polymer combination during FDM 3DP. The technology offers the possibility of evolving personalized medicines into cost-effective production schemes at pharmacies and hospital dispensaries. In this review, we highlight key FDM features that may be exploited for the production of tablets and improvement of therapy, with emphasis on gastrointestinal delivery. We also highlight current constraints that must be surmounted to visualize the deployment of this technology in the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
- Heba Iqbal
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sourour Idoudi
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Renuka Basineni
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Wang Y, Wang Y, Qiu S, Wang C, Zhang H, Guo J, Wang S, Ma H. 3D-Printed Filters for Efficient Heavy Metal Removal from Water Using PLA@CS/HAP Composites. Polymers (Basel) 2023; 15:4144. [PMID: 37896388 PMCID: PMC10610860 DOI: 10.3390/polym15204144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Chitosan/Hydroxyapatite composites, enriched with relatively active -NH2 and -OH groups, have emerged as promising adsorbents for heavy metal removal. In this study, we harnessed the potential of CS/HAP composites by developing monolithic PLA@CS/HAP filters utilizing 3D printing and freeze-drying techniques. These filters possess both macroscopic and microscopic porous structures, endowing them with exceptional capabilities for removing heavy metals from water. The adsorption properties of CS/HAP composites were explored by varying the dosage, duration, and initial concentrations of copper ions. The maximum adsorption capacity for Cu2+ was determined to be approximately 119+/-1 mg/g at the natural pH and 298 K. Notably, the monolithic PLA@CS/HAP filters demonstrated remarkable efficiency in the removal of copper ions, with 90% of copper ions effectively removed within a mere 2-h period in a cyclic adsorption experiment. Furthermore, the PLA@CS/HAP filters exhibited a robust dynamic Cu2+ removal capacity (80.8% or even better in less than 35 min) in a dynamic adsorption experiment. Importantly, all materials employed in this study were environmentally friendly. In summary, the PLA@CS/HAP filter offers advantages such as ease of preparation, eco-friendliness, versatility, and broad applicability in diverse wastewater treatment scenarios, thereby presenting a significant potential for practical implementation.
Collapse
Affiliation(s)
- Yisu Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Yan Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Shuai Qiu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Chongyang Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Hong Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (S.Q.); (C.W.); (H.Z.); (J.G.)
| | - Shengfa Wang
- DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China
| | - Huixia Ma
- Dalian Research Institute of Petroleum and Petrochemicals, Sinopec, Dalian 116045, China;
| |
Collapse
|
3
|
Fijoł N, Abdelhamid HN, Pillai B, Hall SA, Thomas N, Mathew AP. 3D-printed monolithic biofilters based on a polylactic acid (PLA) - hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium. RSC Adv 2021; 11:32408-32418. [PMID: 35495521 PMCID: PMC9041825 DOI: 10.1039/d1ra05202k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
High flux, monolithic water purification filters based on polylactic acid (PLA) functionalised with fish scale extracted hydroxyapatite (HAp) were prepared by solvent-assisted blending and thermally induced phase separation (TIPS), followed by twin-screw extrusion into filaments and processed via three-dimensional (3D) printing. The printed filters with consistent pore geometry and channel interconnectivity as well as homogenous distribution of HAp in the PLA matrix showed adsorption capabilities towards heavy metals i.e. cadmium (Cd) and lead (Pb) with maximum adsorption capacity of 112.1 mg gHAp−1 and 360.5 mg gHAp−1 for the metal salt of Pb and Cd, respectively. The adsorption was found to be driven by a combination of ion exchange, dissolution and precipitation on HAp and surface complexation. Water purification filters based on polylactic acid functionalised with hydroxyapatite were prepared by solvent-assisted blending and thermally induced phase separation (TIPS), extruded into filaments and processed via three-dimensional (3D) printing.![]()
Collapse
Affiliation(s)
- Natalia Fijoł
- Department of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 106 91 Stockholm Sweden +46 8161256
| | - Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 106 91 Stockholm Sweden +46 8161256.,Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University Assiut 71515 Egypt
| | - Binsi Pillai
- ICAR-Central Institute of Fisheries Technology Matsyapuri, Willington Island Cochin India - 682 029
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University Lund Sweden.,Lund Institute of Advanced Neutron and X-Ray Science Lund Sweden
| | - Nebu Thomas
- Department of Periodontology, Pushpagiri College of Dental Sciences Thiruvalla Kerala India
| | - Aji P Mathew
- Department of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 106 91 Stockholm Sweden +46 8161256
| |
Collapse
|
4
|
Abstract
Polylactic acid (PLA) is the most widely used raw material in extrusion-based three-dimensional (3D) printing (fused deposition modeling, FDM approach) in many areas since it is biodegradable and environmentally friendly, however its utilization is limited due to some of its disadvantages such as mechanical weakness, water solubility rate, etc. FDM is a simple and more cost-effective fabrication process compared to other 3D printing techniques. Unfortunately, there are deficiencies of the FDM approach, such as mechanical weakness of the FDM parts compared to the parts produced by the conventional injection and compression molding methods. Preparation of PLA composites with suitable additives is the most useful technique to improve the properties of the 3D-printed PLA parts obtained by the FDM method. In the last decade, newly developed PLA composites find large usage areas both in academic and industrial circles. This review focuses on the chemistry and properties of pure PLA and also the preparation methods of the PLA composites which will be used as a raw material in 3D printers. The main drawbacks of the pure PLA filaments and the necessity for the preparation of PLA composites which will be employed in the FDM-based 3D printing applications is also discussed in the first part. The current methods to obtain PLA composites as raw materials to be used as filaments in the extrusion-based 3D printing are given in the second part. The applications of the novel PLA composites by utilizing the FDM-based 3D printing technology in the fields of biomedical, tissue engineering, human bone repair, antibacterial, bioprinting, electrical conductivity, electromagnetic, sensor, battery, automotive, aviation, four-dimensional (4D) printing, smart textile, environmental, and luminescence applications are presented and critically discussed in the third part of this review.
Collapse
|
5
|
Hott RC, Magalhães TS, Maia LFO, Santos KSF, Rodrigues GL, Oliveira LCA, Pereira MC, Faria MCS, Carli AP, Souza Alves CC, Rodrigues JL. Purification of arsenic-contaminated water using iron molybdate filters and monitoring of their genotoxic, mutagenic, and cytotoxic effects through bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5714-5730. [PMID: 32968906 DOI: 10.1007/s11356-020-10856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contamination has been a cause of concern worldwide, being aggravated by anthropogenic activities carried out without the correct disposal of toxic products in the various habitats on our planet. In Brazil, mining companies are responsible for the contamination of large river basins with toxic elements from mining activities. Among these elements, arsenic draws attention because it is highly carcinogenic and found in waters in concentrations above those recommended by regulatory agencies. Here, Fe2(MoO4)3 nanoparticles are synthesized and used as a filter medium in water purification systems contaminated with arsenic. The adsorption kinetics of arsenic by Fe2(MoO4)3 nanoparticles is fast, showing pseudo-second-order rate constants of 0.0044, 0.0080, and 0.0106 g mg-1 min-1 for As3+, As5+, and MMA, respectively. The adsorption isotherms are better adjusted with the Langmuir and Redlich-Peterson models, indicating that the arsenic adsorption occurs in monolayers on the Fe2(MoO4)3 surface. The Fe2(MoO4)3 adsorption capacities determined for the As3+, As5+, and MMA species are 16.1, 23.1, and 23.5 mg g-1, respectively. The Fe2(MoO4)3 filter is efficient in purifying arsenic-contaminated water, reducing its initial concentration from 1000 μg L-1 to levels close to zero. Biological tests indicate that Fe2(MoO4)3 nanoparticles and filtered water have no cytotoxic, genotoxic, and mutagenic risks to human life. Those results suggest that the Fe2(MoO4)3 filter can be used as an efficient and safe technology for the purification of water contaminated by arsenic.
Collapse
Affiliation(s)
- Rodrigo C Hott
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Thainá S Magalhães
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Luiz F O Maia
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Kallel S F Santos
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Guilherme L Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Luiz C A Oliveira
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Márcio C Pereira
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Márcia C S Faria
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Alessandra P Carli
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Caio C Souza Alves
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil
| | - Jairo L Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni, Minas Gerais, 39803-371, Brazil.
| |
Collapse
|