1
|
Molinaro DD, Scherpereel KL, Schonhaut EB, Evangelopoulos G, Shepherd MK, Young AJ. Task-agnostic exoskeleton control via biological joint moment estimation. Nature 2024; 635:337-344. [PMID: 39537888 DOI: 10.1038/s41586-024-08157-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Lower-limb exoskeletons have the potential to transform the way we move1-14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability.
Collapse
Affiliation(s)
- Dean D Molinaro
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
- Boston Dynamics AI Institute, Cambridge, MA, USA.
| | - Keaton L Scherpereel
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
- Skip Innovations, San Francisco, CA, USA
| | - Ethan B Schonhaut
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Max K Shepherd
- College of Engineering, Bouvé College of Health Sciences, and Institute for Experiential Robotics, Northeastern University, Boston, MA, USA
| | - Aaron J Young
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Jin Y, Alvarez JT, Suitor EL, Swaminathan K, Chin A, Civici US, Nuckols RW, Howe RD, Walsh CJ. Estimation of joint torque in dynamic activities using wearable A-mode ultrasound. Nat Commun 2024; 15:5756. [PMID: 38982087 PMCID: PMC11233567 DOI: 10.1038/s41467-024-50038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
The human body constantly experiences mechanical loading. However, quantifying internal loads within the musculoskeletal system remains challenging, especially during unconstrained dynamic activities. Conventional measures are constrained to laboratory settings, and existing wearable approaches lack muscle specificity or validation during dynamic movement. Here, we present a strategy for estimating corresponding joint torque from muscles with different architectures during various dynamic activities using wearable A-mode ultrasound. We first introduce a method to track changes in muscle thickness using single-element ultrasonic transducers. We then estimate elbow and knee torque with errors less than 7.6% and coefficients of determination (R2) greater than 0.92 during controlled isokinetic contractions. Finally, we demonstrate wearable joint torque estimation during dynamic real-world tasks, including weightlifting, cycling, and both treadmill and outdoor locomotion. The capability to assess joint torque during unconstrained real-world activities can provide new insights into muscle function and movement biomechanics, with potential applications in injury prevention and rehabilitation.
Collapse
Affiliation(s)
- Yichu Jin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Elizabeth L Suitor
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Krithika Swaminathan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Andrew Chin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Umut S Civici
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Richard W Nuckols
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Robert D Howe
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ostraich B, Riemer R. Rethinking Exoskeleton Simulation-Based Design: The Effect of Using Different Cost Functions. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2153-2164. [PMID: 38833397 DOI: 10.1109/tnsre.2024.3409633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Designing an exoskeleton that can improve user capabilities is a challenging task, and most designs rely on experiments to achieve this goal. A different approach is to use simulation-based designs to determine optimal device parameters. Most of these simulations use full trajectory tracking limb kinematics during a natural gait as a reference. However, exoskeletons typically change the natural gait kinematics of the user. Other types of simulations assume that human gait is optimized for a cost function that combines several objectives, such as the cost of transport, injury prevention, and stabilization. In this study, we use a 2D OpenSim model consisting of 10 degrees of freedom and considering 18 muscles, together with the Moco optimization tool, to investigate the differences between these two approaches with respect to running with a passive knee exoskeleton. Utilizing this model, we test the effect of a full trajectory tracking objective with different weights (representing the importance of the objective in the optimization cost function) and show that when using weights that are typically used in the literature, there is no deviation from the experimental data. Next, we develop a multi-objective cost function with foot clearance term based on peak knee angle during swing, that achieves trajectories similar (RMSE=7.4 deg) to experimental running data. Finally, we investigate the effect of different parameters in the design of a clutch-based passive knee exoskeleton (1.5 kg at each leg) and find that a design that utilizes a 2.5 Nm/deg spring achieves an improvement of up to 8% in net metabolic energy. Our results show that tracking objectives in the cost function, even with a low weight, hinders the simulation's ability to change the gait trajectory. Thus, there is a need for other predictive simulation methods for exoskeletons.
Collapse
|
4
|
Teater RH, Zelik KE, McDonald KA. Biomechanical effects of adding an articulating toe joint to a passive foot prosthesis for incline and decline walking. PLoS One 2024; 19:e0295465. [PMID: 38758923 PMCID: PMC11101096 DOI: 10.1371/journal.pone.0295465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Walking on sloped surfaces is challenging for many lower limb prosthesis users, in part due to the limited ankle range of motion provided by typical prosthetic ankle-foot devices. Adding a toe joint could potentially benefit users by providing an additional degree of flexibility to adapt to sloped surfaces, but this remains untested. The objective of this study was to characterize the effect of a prosthesis with an articulating toe joint on the preferences and gait biomechanics of individuals with unilateral below-knee limb loss walking on slopes. Nine active prosthesis users walked on an instrumented treadmill at a +5° incline and -5° decline while wearing an experimental foot prosthesis in two configurations: a Flexible toe joint and a Locked-out toe joint. Three participants preferred the Flexible toe joint over the Locked-out toe joint for incline and decline walking. Eight of nine participants went on to participate in a biomechanical data collection. The Flexible toe joint decreased prosthesis Push-off work by 2 Joules during both incline (p = 0.008; g = -0.63) and decline (p = 0.008; g = -0.65) walking. During incline walking, prosthetic limb knee flexion at toe-off was 3° greater in the Flexible configuration compared to the Locked (p = 0.008; g = 0.42). Overall, these results indicate that adding a toe joint to a passive foot prosthesis has relatively small effects on joint kinematics and kinetics during sloped walking. This study is part of a larger body of work that also assessed the impact of a prosthetic toe joint for level and uneven terrain walking and stair ascent/descent. Collectively, toe joints do not appear to substantially or consistently alter lower limb mechanics for active unilateral below-knee prosthesis users. Our findings also demonstrate that user preference for passive prosthetic technology may be both subject-specific and task-specific. Future work could investigate the inter-individual preferences and potential benefits of a prosthetic toe joint for lower-mobility individuals.
Collapse
Affiliation(s)
- Rachel H. Teater
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Karl E. Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, United States of America
| | - Kirsty A. McDonald
- School of Health Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
AminiAghdam S, Rode C. Posture-induced modulation of lower-limb joint powers in perturbed running. PLoS One 2024; 19:e0302867. [PMID: 38743754 PMCID: PMC11093285 DOI: 10.1371/journal.pone.0302867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
Despite evidence on trunk flexion's impact on locomotion mechanics, its role in modulating lower-limb energetics during perturbed running remains underexplored. Therefore, we investigated posture-induced power redistribution in the lower-limb joints (hip, knee, and ankle), along with the relative contribution from each joint to total lower-limb average positive and negative mechanical powers (i.e., over time) during perturbed running. Twelve runners (50% female) ran at self-selected (~15°) and three more sagittal trunk inclinations (backward, ~0°; low forward, ~20°; high forward, ~25°) on a custom-built runway, incorporating both a level surface and a 10 cm visible drop-step positioned midway, while simultaneously recording three-dimensional kinematics and kinetics. We used inverse dynamics analysis to determine moments and powers in lower-limb joints. Increasing the trunk forward inclination yielded the following changes in lower-limb mechanics: a) an elevation in total positive power with a distoproximal shift and a reduction in total negative power; b) systematic increases in hip positive power, coupled with decreased and increased contribution to total negative (during level-step) and positive (during drop-step) powers, respectively; c) reductions in both negative and positive knee powers, along with a decrease in its contribution to total positive power. Regardless of the trunk posture, accommodating drop-steps while running demands elevated total limb negative and positive powers with the ankle as a primary source of energy absorption and generation. Leaning the trunk more forward induces a distoproximal shift in positive power, whereas leaning backward exerts an opposing influence on negative power within the lower-limb joints.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Department of Motion Science, Institute of Sport Science, Friedrich-Schiller-University, Jena, Germany
| | - Christian Rode
- Department of Motion Science, Institute of Sport Science, Friedrich-Schiller-University, Jena, Germany
- Department of Biomechanics, Institute of Sport Science, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Hirschman CE, Montgomery JR, Grabowski AM. The contribution of lower-limb joint quasi-stiffness to theoretical leg stiffness during level, uphill and downhill running at different speeds. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231133. [PMID: 38633349 PMCID: PMC11021939 DOI: 10.1098/rsos.231133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 04/19/2024]
Abstract
Humans change joint quasi-stiffness (k joint) and leg stiffness (kleg) when running at different speeds on level ground and during uphill and downhill running. These mechanical properties can inform device designs for running such as footwear, exoskeletons and prostheses. We measured kinetics and kinematics from 17 runners (10 M; 7 F) at three speeds on 0°, ±2°, ±4° and ±6° slopes. We calculated ankle and knee k joint, the quotient of change in joint moment and angular displacement, and theoretical leg stiffness (klegT) based on the joint external moment arms and k joint. Runners increased k ankle at faster speeds (p < 0.01). Runners increased and decreased the ankle and knee contributions to klegT, respectively, by 2.89% per 1° steeper uphill slope (p < 0.01) during the first half of stance. Runners decreased and increased ankle and knee joint contributions to klegT, respectively, by 3.68% during the first half and 0.86% during the second half of stance per 1° steeper downhill slope (p < 0.01). Thus, biomimetic devices require stiffer k ankle for faster speeds, and greater ankle contributions and greater knee contributions to klegT during the first half of stance for steeper uphill and downhill slopes, respectively.
Collapse
Affiliation(s)
| | - Jana R. Montgomery
- Applied Biomechanics Lab, University of Colorado Boulder, Boulder, CO, USA
| | - Alena M. Grabowski
- Applied Biomechanics Lab, University of Colorado Boulder, Boulder, CO, USA
- VA Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
7
|
Molinaro DD, Kang I, Young AJ. Estimating human joint moments unifies exoskeleton control, reducing user effort. Sci Robot 2024; 9:eadi8852. [PMID: 38507475 DOI: 10.1126/scirobotics.adi8852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community.
Collapse
Affiliation(s)
- Dean D Molinaro
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Inseung Kang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron J Young
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Manzoori AR, Malatesta D, Primavesi J, Ijspeert A, Bouri M. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization. Front Bioeng Biotechnol 2024; 12:1324587. [PMID: 38532879 PMCID: PMC10963600 DOI: 10.3389/fbioe.2024.1324587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Efficient gait assistance by augmentative exoskeletons depends on reliable control strategies. While numerous control methods and their effects on the metabolic cost of walking have been explored in the literature, the use of different exoskeletons and dissimilar protocols limit direct comparisons. In this article, we present and compare two controllers for hip exoskeletons with different synchronization paradigms. Methods: The implicit-synchronization-based approach, termed the Simple Reflex Controller (SRC), determines the assistance as a function of the relative loading of the feet, resulting in an emerging torque profile continuously assisting extension during stance and flexion during swing. On the other hand, the Hip-Phase-based Torque profile controller (HPT) uses explicit synchronization and estimates the gait cycle percentage based on the hip angle, applying a predefined torque profile consisting of two shorter bursts of assistance during stance and swing. We tested the controllers with 23 naïve healthy participants walking on a treadmill at 4 km ⋅ h-1, without any substantial familiarization. Results: Both controllers significantly reduced the metabolic rate compared to walking with the exoskeleton in passive mode, by 18.0% (SRC, p < 0.001) and 11.6% (HPT, p < 0.001). However, only the SRC led to a significant reduction compared to walking without the exoskeleton (8.8%, p = 0.004). The SRC also provided more mechanical power and led to bigger changes in the hip joint kinematics and walking cadence. Our analysis of mechanical powers based on a whole-body analysis suggested a reduce in ankle push-off under this controller. There was a strong correlation (Pearson's r = 0.778, p < 0.001) between the metabolic savings achieved by each participant with the two controllers. Conclusion: The extended assistance duration provided by the implicitly synchronized SRC enabled greater metabolic reductions compared to the more targeted assistance of the explicitly synchronized HPT. Despite the different assistance profiles and metabolic outcomes, the correlation between the metabolic reductions with the two controllers suggests a difference in individual responsiveness to assistance, prompting more investigations to explore the person-specific factors affecting assistance receptivity.
Collapse
Affiliation(s)
| | - Davide Malatesta
- Institute of Sport Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Julia Primavesi
- Institute of Sport Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Mohamed Bouri
- Biorobotics Laboratory, EPFL, Lausanne, Switzerland
- Translational Neural Engineering Laboratory, EPFL, Lausanne, Switzerland
| |
Collapse
|
9
|
Ármannsdóttir AL, Lecomte C, Lemaire E, Brynjólfsson S, Briem K. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series. Gait Posture 2024; 108:354-360. [PMID: 38227995 DOI: 10.1016/j.gaitpost.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Prosthetic foot stiffness, which is typically invariable for commercially available prosthetic feet, needs to be considered when prescribing a prosthetic foot. While a biological foot adapts its function according to the movement task, an individual with lower limb amputation may be limited during more functionally demanding gait tasks by their conventional energy storing and return prosthetic foot. RESEARCH QUESTION How do changes in prosthetic foot stiffness during incline walking affect biomechanical measures as well as perception of participants. METHODS Kinetic and kinematic data were collected during incline walking, for five participants with trans-tibial amputation. A mixed model analysis of variance was used to analyse the effects of changing the stiffness during incline walking, using a novel variable-stiffness unit built on a commercially available prosthetic foot. Biomechanical results were also analysed on an individual level alongside the participant feedback, for a better understanding of the various strategies and perceptions exhibited during incline walking. RESULTS Statistically significant effects were only observed on the biomechanical parameters directly related to prosthetic ankle kinematics and kinetics (i.e., peak prosthetic ankle dorsiflexion, peak prosthetic ankle power, dynamic joint stiffness during controlled dorsiflexion). Participant perception during walking was affected by changes in stiffness. Individual analyses revealed varied perceptions and varied biomechanical responses among participants. SIGNIFICANCE While changes in prosthesis mechanical properties influenced the amputee's experience, minimal immediate effects were found with the overall gait pattern. The reported inter-participant variability may be due to the person's physical characteristics or habitual gait pattern, which may influence prosthesis function. The ability to vary prosthetic foot stiffness during the assessment phase of setting up a prosthesis could provide useful information to guide selection of the appropriate prosthetic device for acceptable performance across a range of activities.
Collapse
Affiliation(s)
- Anna Lára Ármannsdóttir
- Research Centre of Movement Science, University of Iceland, Reykjavík, Iceland; Össur hf., Grjótháls 5, 110 Reykjavik, Iceland.
| | - Christophe Lecomte
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland; Össur hf., Grjótháls 5, 110 Reykjavik, Iceland
| | - Edward Lemaire
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Kristín Briem
- Research Centre of Movement Science, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
10
|
Zhang H, Shen Q, Zheng P, Wang H, Zou R, Zhang Z, Pan Y, Zhi JY, Xiang ZR. Harvesting Inertial Energy and Powering Wearable Devices: A Review. SMALL METHODS 2024; 8:e2300771. [PMID: 37853661 DOI: 10.1002/smtd.202300771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Amidst the swift progression of microelectronics and Internet of Things technology, wearable devices are gradually gaining ground in the domains of human health monitoring. Recently, human bioenergy harvesting has emerged as a plausible alternative to batteries. This paper delves into harvesting human inertial energy that stimulates inertial masses through human motion and then transmutes the motion of the inertial masses into electrical energy. The inertial energy harvester is better suited for low-frequency and irregular human motion. This review first identifies the sources of human motion excitation that are compatible with inertial energy harvesters and then provides a summary of the operating principles and the comparisons of the commonly used energy conversion mechanisms, including electromagnetic, piezoelectric, and triboelectric transducers. The review thoroughly summarizes the latest advancements in human inertial energy-harvesting technology that are categorized and grouped based on their excitation sources and mechanical modulation methods. In addition, the review outlines the applications of inertial energy harvesters in powering wearable devices, medical health monitoring, and as mobile power sources. Finally, the challenges faced by inertial energy-harvesting technologies are discussed, and the review provides a perspective on the potential developments in the field.
Collapse
Affiliation(s)
- Hexiang Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 64000, P. R. China
| | - Qianhui Shen
- School of Design, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Peng Zheng
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 64000, P. R. China
| | - Hao Wang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin, 64000, P. R. China
| | - Rui Zou
- School of Design, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yajia Pan
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin-Yi Zhi
- School of Design, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ze-Rui Xiang
- School of Design, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
11
|
Coifman I, Kram R, Riemer R. Joint kinematic and kinetic responses to added mass on the lower extremities during running. APPLIED ERGONOMICS 2024; 114:104050. [PMID: 37633815 DOI: 10.1016/j.apergo.2023.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 08/28/2023]
Abstract
AIM We analyzed the biomechanical response (joint angles, moments, and powers) to running with added leg mass. These data may help guide the design of wearable locomotor assistive devices (i.e., exoskeletons), which are becoming more prevalent. METHODS 15 participants (7 females, 8 males) completed treadmill running trials (3m•s-1) normally and with lead mass (300-1350 g) attached to the thigh, shank, or foot, bilaterally. We quantified the lower limb biomechanics combining motion capture and ground reaction force data using standard inverse dynamics analysis. RESULTS Only moderate kinematic changes occurred in response to the distal added limb mass. Maximum hip flexion and maximum knee flexion angles during swing phase increased by approximately 9% and 6% respectively for each 1 kg added to each foot. However, adding even small masses made dramatic changes to the joint moments and powers, mostly during the swing phase. For example, adding 1 kg to each foot increased maximum joint moments by as much as 40% (knee extension in late swing) and maximum joint power by as much as 50% (hip generation in late swing). CONCLUSION Leg joint kinematics were largely conserved in response to adding mass to the legs. Adding mass to the leg distally increased joint power mainly at the knee and hip joints during the swing phase, whereas adding mass proximally mainly affected the ankle joint mechanics during the stance phase. These changes have implications for shoe designs, people who run with added mass on their legs for sport/strength training and for the design of wearable devices.
Collapse
Affiliation(s)
- Itay Coifman
- Industrial Engineering and Management Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, CO, USA
| | - Raziel Riemer
- Industrial Engineering and Management Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Grimmer M, Zeiss J, Weigand F, Zhao G. Joint power, joint work and lower limb muscle activity for transitions between level walking and stair ambulation at three inclinations. PLoS One 2023; 18:e0294161. [PMID: 37972031 PMCID: PMC10653464 DOI: 10.1371/journal.pone.0294161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
To enhance human mobility, training interventions and assistive lower limb wearable robotic designs must draw insights from movement tasks from daily life. This study aimed to analyze joint peak power, limb and joint work, and muscle activity of the lower limb during a series of stair ambulation conditions. We recruited 12 subjects (25.4±4.5 yrs, 180.1±4.6 cm, 74.6±7.9 kg) and studied steady gait and gait transitions between level walking, stair ascent and stair descent for three staircase inclinations (low 19°, normal 30.4°, high 39.6°). Our analysis revealed that joint peak power, limb and joint work, and muscle activity increased significantly compared to level walking and with increasing stair inclination for most of the conditions analyzed. Transition strides had no increased requirements compared to the maxima found for steady level walking and steady stair ambulation. Stair ascent required increased lower limb joint positive peak power and work, while stair descent required increased lower limb joint negative peak power and work compared to level walking. The most challenging condition was high stair inclination, which required approximately thirteen times the total lower limb joint positive and negative net work during ascent and descent, respectively. These findings suggest that training interventions and lower limb wearable robotic designs must consider the major increases in lower limb joint and muscle effort during stair ambulation, with specific attention to the demands of ascent and descent, to effectively improve human mobility.
Collapse
Affiliation(s)
- Martin Grimmer
- Institute for Sports Science, Technical University of Darmstadt, Hesse, Darmstadt, Germany
| | - Julian Zeiss
- Institute of Automatic Control and Mechatronics, Technical University of Darmstadt, Hesse, Darmstadt, Germany
| | - Florian Weigand
- Institute of Automatic Control and Mechatronics, Technical University of Darmstadt, Hesse, Darmstadt, Germany
| | - Guoping Zhao
- Institute for Sports Science, Technical University of Darmstadt, Hesse, Darmstadt, Germany
| |
Collapse
|
13
|
Papachatzis N, Takahashi KZ. Mechanics of the human foot during walking on different slopes. PLoS One 2023; 18:e0286521. [PMID: 37695795 PMCID: PMC10495022 DOI: 10.1371/journal.pone.0286521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 09/13/2023] Open
Abstract
When humans walk on slopes, the ankle, knee, and hip joints modulate their mechanical work to accommodate the mechanical demands. Yet, it is unclear if the foot modulates its work output during uphill and downhill walking. Therefore, we quantified the mechanical work performed by the foot and its subsections of twelve adults walked on five randomized slopes (-10°, -5°, 0°, +5°, +10°). We estimated the work of distal-to-hindfoot and distal-to-forefoot structures using unified deformable segment analysis and the work of the midtarsal, ankle, knee, and hip joints using a six-degree-of-freedom model. Further, using a geometric model, we estimated the length of the plantar structures crossing the longitudinal arch while accounting for the first metatarsophalangeal wrapping length. We hypothesized that compared to level walking, downhill walking would increase negative and net-negative work magnitude, particularly at the early stance phase, and uphill walking would increase the positive work, particularly at the mid-to-late stance phase. We found that downhill walking increased the magnitude of the foot's negative and net-negative work, especially during early stance, highlighting its capacity to absorb impacts when locomotion demands excessive energy dissipation. Notably, the foot maintained its net dissipative behavior between slopes; however, the ankle, knee, and hip shifted from net energy dissipation to net energy generation when changing from downhill to uphill. Such results indicate that humans rely more on joints proximal to the foot to modulate the body's total mechanical energy. Uphill walking increased midtarsal's positive and distal-to-forefoot negative work in near-equal amounts. That coincided with the prolonged lengthening and delayed shortening of the plantar structures, resembling a spring-like function that possibly assists the energetic demands of locomotion during mid-to-late stance. These results broaden our understanding of the foot's mechanical function relative to the leg's joints and could inspire the design of wearable assistive devices that improve walking capacity.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut, United States of America
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
14
|
Zhang H, Wang H, Zhang Z, Pan Y, Luo X. A negative-work knee energy harvester based on homo-phase transfer for wearable monitoring devices. iScience 2023; 26:107011. [PMID: 37389177 PMCID: PMC10300368 DOI: 10.1016/j.isci.2023.107011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 07/01/2023] Open
Abstract
Wearable health monitoring devices can effectively capture human body information and are widely used in health monitoring, but battery life is an important bottleneck in its development. A full negative-work energy harvester based on the homo-phase transfer mechanism by analyzing human motion characteristics was proposed in this paper. The system was designed based on the homo-phase transfer mechanism, including a motion input module, gear acceleration module, energy conversion module, and electric energy storage module. The output performance in three human-level, downhill, and running states was tested, respectively. Finally, we have evaluated the feasibility of an energy harvester powering wearable health monitoring devices, and the harvester can generate 17.40 J/day power, which can satisfy the normal operation of a typical health monitoring device. This study has certain promoting significance for the development of a new generation of human health monitoring.
Collapse
Affiliation(s)
- Hexiang Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Hao Wang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Yajia Pan
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiao Luo
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| |
Collapse
|
15
|
Kao PC, Lomasney C, Gu Y, Clark JP, Yanco HA. Effects of induced motor fatigue on walking mechanics and energetics. J Biomech 2023; 156:111688. [PMID: 37339542 DOI: 10.1016/j.jbiomech.2023.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Lower-body robotic exoskeletons can be used to reduce the energy demand of locomotion and increase the endurance of wearers. Understanding how motor fatigue affects walking performance may lead to better exoskeleton designs to support the changing physical capacity of an individual due to motor fatigue. The purpose of this study was to investigate the effects of motor fatigue on walking mechanics and energetics. Treadmill walking with progressively increased incline gradient was used to induce motor fatigue. Twenty healthy young participants walked on an instrumented treadmill at 1.25 m/s and 0° of incline for 5 min before (PRE) and after (POST) motor fatigue. We examined lower-limb joint mechanics, metabolic cost, and the efficiency of positive mechanical work (η+work). Compared to PRE, participants had increased net metabolic power by ∼14% (p < 0.001) during POST. Participants also had increased total-limb positive mechanical power (Total P+mech) by ∼4% during POST (p < 0.001), resulting in a reduced η+work by ∼8% (p < 0.001). In addition, the positive mechanical work contribution of the lower-limb joints during POST was shifted from the ankle to the knee while the negative mechanical work contribution was shifted from the knee to the ankle (all p < 0.017). Although greater knee positive mechanical power was generated to compensate for the reduction in ankle positive power after motor fatigue, the disproportionate increase in metabolic cost resulted in a reduced walking efficiency. The findings of this study suggest that powering the ankle joint may help delay the onset of the lower-limb joint work redistribution observed during motor fatigue.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, USA; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Colin Lomasney
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, USA; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, USA
| | - Yan Gu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Janelle P Clark
- New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, USA; School of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA
| | - Holly A Yanco
- New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, USA; School of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
16
|
Raju V, Koorata PK. Computational assessment on the impact of collagen fiber orientation in cartilages on healthy and arthritic knee kinetics/kinematics. Med Eng Phys 2023; 117:103997. [PMID: 37331751 DOI: 10.1016/j.medengphy.2023.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The inhomogeneous distribution of collagen fiber in cartilage can substantially influence the knee kinematics. This becomes vital for understanding the mechanical response of soft tissues, and cartilage deterioration including osteoarthritis (OA). Though the conventional computational models consider geometrical heterogeneity along with fiber reinforcements in the cartilage model as material heterogeneity, the influence of fiber orientation on knee kinetics and kinematics is not fully explored. This work examines how the collagen fiber orientation in the cartilage affects the healthy (intact knee) and arthritic knee response over multiple gait activities like running and walking. METHODS A 3D finite element knee joint model is used to compute the articular cartilage response during the gait cycle. A fiber-reinforced porous hyper elastic (FRPHE) material is used to model the soft tissue. A split-line pattern is used to implement the fiber orientation in femoral and tibial cartilage. Four distinct intact cartilage models and three OA models are simulated to assess the impact of the orientation of collagen fibers in a depth wise direction. The cartilage models with fibers oriented in parallel, perpendicular, and inclined to the articular surface are investigated for multiple knee kinematics and kinetics. FINDINGS The comparison of models with fiber orientation parallel to articulating surface for walking and running gait has the highest elastic stress and fluid pressure compared with inclined and perpendicular fiber-oriented models. Also, the maximum contact pressure is observed to be higher in the case of intact models during the walking cycle than for OA models. In contrast, the maximum contact pressure is higher during running in OA models than in intact models. Additionally, parallel-oriented models produce higher maximum stresses and fluid pressure for walking and running gait than proximal-distal-oriented models. Interestingly, during the walking cycle, the maximum contact pressure with intact models is approximately three times higher than on OA models. In contrast, the OA models exhibit higher contact pressure during the running cycle. INTERPRETATION Overall, the study indicates that collagen orientation is crucial for tissue responsiveness. This investigation provides insights into the development of tailored implants.
Collapse
Affiliation(s)
- Vaishakh Raju
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India
| | - Poornesh Kumar Koorata
- Applied Solid Mechanics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| |
Collapse
|
17
|
Papachatzis N, Ray SF, Takahashi KZ. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? J Exp Biol 2023; 226:jeb245113. [PMID: 37092255 PMCID: PMC10226764 DOI: 10.1242/jeb.245113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Samuel F. Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Farris DJ, Harris DJ, Rice HM, Campbell J, Weare A, Risius D, Armstrong N, Rayson MP. A systematic literature review of evidence for the use of assistive exoskeletons in defence and security use cases. ERGONOMICS 2023; 66:61-87. [PMID: 35348442 DOI: 10.1080/00140139.2022.2059106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Advances in assistive exoskeleton technology, and a boom in related scientific literature, prompted a need to review the potential use of exoskeletons in defence and security. A systematic review examined the evidence for successful augmentation of human performance in activities deemed most relevant to military tasks. Categories of activities were determined a priori through literature scoping and Human Factors workshops with military stakeholders. Workshops identified promising opportunities and risks for integration of exoskeletons into military use cases. The review revealed promising evidence for exoskeletons' capacity to assist with load carriage, manual lifting, and working with tools. However, the review also revealed significant gaps in exoskeleton capabilities and likely performance levels required in the use case scenarios. Consequently, it was recommended that a future roadmap for introducing exoskeletons to military environments requires development of performance criteria for exoskeletons that can be used to implement a human-centred approach to research and development.
Collapse
Affiliation(s)
- Dominic J Farris
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - David J Harris
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Hannah M Rice
- Sport & Health Sciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Debbie Risius
- Defence Science and Technology Laboratory, Salisbury, UK
| | - Nicola Armstrong
- Defence Science and Technology Laboratory, Salisbury, UK
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mark P Rayson
- Human Social Sciences Research Capability Framework, BAE Systems, London, UK
| |
Collapse
|
19
|
Koginov G, Sternberg K, Wolf P, Schmidt K, Duarte JE, Riener R. An algorithm to reduce human-robot interface compliance errors in posture estimation in wearable robots. WEARABLE TECHNOLOGIES 2022; 3:e30. [PMID: 38486900 PMCID: PMC10936310 DOI: 10.1017/wtc.2022.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 03/17/2024]
Abstract
Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (n = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.
Collapse
Affiliation(s)
- Gleb Koginov
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Zürich, Switzerland
- MyoSwiss AG, Zürich, Switzerland
| | - Kanako Sternberg
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | | | | | - Robert Riener
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems, Zürich, Switzerland
- Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, Medical Faculty, University of Zurich, Zürich, Switzerland
| |
Collapse
|
20
|
Moll I, Essers JMN, Marcellis RGJ, Senden RHJ, Janssen-Potten YJM, Vermeulen RJ, Meijer K. Lower limb muscle fatigue after uphill walking in children with unilateral spastic cerebral palsy. PLoS One 2022; 17:e0278657. [PMID: 36473000 PMCID: PMC9725134 DOI: 10.1371/journal.pone.0278657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Fatigue during walking is a common complaint in cerebral palsy (CP). The primary purpose of this study is to investigate muscle fatigue from surface electromyography (sEMG) measurements after a treadmill-based fatigue protocol with increasing incline and speed in children with CP with drop foot. The secondary purpose is to investigate whether changes in sagittal kinematics of hip, knee and ankle occur after fatigue. Eighteen subjects with unilateral spastic CP performed the protocol while wearing their ankle-foot orthosis and scored their fatigue on the OMNI scale of perceived exertion. The median frequency (MF) and root mean square (RMS) were used as sEMG measures for fatigue and linear mixed effects model were applied. The MF was significantly decreased in fatigued condition, especially in the affected leg and in the tibialis anterior and peroneus longus muscle. The RMS did not change significantly in fatigued condition, while the OMNI fatigue score indicated patients felt really fatigued. No changes in sagittal kinematics of hip, knee and ankle were found using statistical non-parametric mapping. In conclusion, the current fatigue protocol seems promising in inducing fatigue in a population with CP with drop foot and it could be used to expand knowledge on muscle fatigue during walking in CP.
Collapse
Affiliation(s)
- I. Moll
- School of Mental Health and Neurosciences (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
- Department of Nutrition and Movement Sciences, FHML, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
- * E-mail:
| | - J. M. N. Essers
- Department of Nutrition and Movement Sciences, FHML, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | | | - R. H. J. Senden
- Department of Physiotherapy, MUMC+, Maastricht, the Netherlands
| | - Y. J. M. Janssen-Potten
- Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, the Netherlands
- Research School CAPHRI, Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands
| | - R. J. Vermeulen
- School of Mental Health and Neurosciences (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - K. Meijer
- Department of Nutrition and Movement Sciences, FHML, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Franks PW, Bryan GM, Reyes R, O'Donovan MP, Gregorczyk KN, Collins SH. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: a Case Series. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2494-2505. [PMID: 35930513 DOI: 10.1109/tnsre.2022.3196665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For exoskeletons to be successful in real-world settings, they will need to be effective across a variety of terrains, including on inclines. While some single-joint exoskeletons have assisted incline walking, recent successes in level-ground assistance suggest that greater improvements may be possible by optimizing assistance of the whole leg. To understand how exoskeleton assistance should change with incline, we used human-in-the-loop optimization to find whole-leg exoskeleton assistance torques that minimized metabolic cost on a range of grades. We optimized assistance for three able-bodied, expert participants on 5 degree, 10 degree, and 15 degree inclines using a hip-knee-ankle exoskeleton emulator. For all assisted conditions, the cost of transport was reduced by at least 50% relative to walking in the device with no assistance, which is a large improvement to walking comparable to the benefits of whole-leg assistance on level-ground (N = 3). Optimized extension torque magnitudes and exoskeleton power increased with incline. Hip extension, knee extension and ankle plantarflexion often grew as large as allowed by comfort-based limits. Applied powers on steep inclines were double the powers applied during level-ground walking, indicating that greater exoskeleton power may be optimal in scenarios where biological powers and costs are higher. Future exoskeleton devices could deliver large improvements in walking performance across a range of inclines if they have sufficient torque and power capabilities.
Collapse
|
22
|
Luo X, Cai G, Ma K, Cai A. Construction and Simulation of Biomechanical Model of Human Hip Joint Muscle-Tendon Assisted by Elastic External Tendon by Hill Muscle Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1987345. [PMID: 35958782 PMCID: PMC9363180 DOI: 10.1155/2022/1987345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Based on the Hill muscle model (HMM), a biomechanical model of human hip muscle tendon assisted by elastic external tendon (EET) was preliminarily established to investigate and analyze the biomechanical transition between the hip joint (HJ) and related muscle tendons. Using the HMM, the optimal muscle fiber length and muscle force scaling variables were introduced by means of constrained optimization problems and were optimized. The optimized HMM was constructed with human parameters of 170 cm and 70 kg. The biomechanical model simulation test of the hip muscle tendon was performed in the automatic dynamic analysis of mechanical systems (ADAMS) software to analyze and optimize the changes in the root mean square error (RMSE), biological moment, muscle moment distribution coefficient (MDC), muscle moment, muscle force, muscle power, and mechanical work of the activation curves of the hip major muscle, iliopsoas muscle, rectus femoris muscle, and hamstring muscle under analyzing the optimized HMM and under different EET auxiliary stiffnesses from the joint moment level, joint level, and muscle level, respectively. It was found that the trends of the output joint moment of the optimized HMM and the biological moment of the human HJ were basically the same, r 2 = 0.883 and RMSE = 0.18 Nm/kg, and the average metabolizable energy consumption of the HJ was (243.77 ± 1.59) J. In the range of 35%∼65% of gait cycle (GC), the auxiliary moment showed a significant downward trend with the increase of EET stiffness, when the EET stiffness of the human body was less than 200 Nm/rad, the biological moment of the human HJ gradually decreased with the increase of EET stiffness, and the MDC of the iliopsoas and hamstring muscles gradually decreased; when the EET stiffness was greater than 200 Nm/rad, the increase of the total moment of the extensor muscles significantly increased, the MDC of the gluteus maximus and rectus muscles gradually increased, and the gluteus maximus and hamstring muscle moments and muscle forces gradually increased; the results show that the optimized muscle model based on Hill can reflect the law of human movement and complete the simulation test of HJ movements, which provides a new idea for the analysis of energy migration in the musculoskeletal system of the lower limb.
Collapse
Affiliation(s)
- Xi Luo
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Guofeng Cai
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kun Ma
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Aiqi Cai
- Department of Medical Genetics, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, Yunnan, China
| |
Collapse
|
23
|
Fang Y, Lerner ZF. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176104 DOI: 10.1109/icorr55369.2022.9896476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graded terrains, like slopes and stairs, are particularly challenging for people with neurological disorders like cerebral palsy (CP) due to increased selective muscle control and muscle strength requirements. Lower-limb exoskeletons may be able to assist individuals with CP when navigating graded terrains. This study sought to determine the effects of untethered ankle exoskeleton assistance on lower-limb joint angles, moments, and muscle activity during up-incline walking and up-stair stepping in CP (n=7). We hypothesized that powered assistance would result in improved ankle mechanics (i.e., increased total ankle moments) across both terrains. During incline walking, we found that peak ankle dorsiflexion angle increased by $7^{\mathrm{o}}$(p=0.006) during walking with ankle assistance compared to walking without the device (Shod). Compared to without the device, the peak total ankle plantarflexor moment increased by 8% (p=0.022) while peak biological ankle plantarflexor moment decreased by 17% (p< 0.001). Incline walking with ankle assistance reduced stance phase muscle activity of the soleus (20%, p=0.010) and vastus lateralis (18%, p=0.004), and swing phase tibialis activity (19%, p=0.028) compared to Shod. During stair ascent with the device, the peak total ankle plantarflexor moment increased by 17% (p=0.011) and the peak knee extensor moment increased by 40% (p=0.018) compared to Shod. These findings provide insight into the biomechanical benefits of ankle exoskeleton assistance during incline and stair walking. This work aims to advance the use of robotic assistive technology to improve mobility for people with CP.
Collapse
|
24
|
Boynton AM, Carrier DR. The human neck is part of the musculoskeletal core: cervical muscles help stabilize the pelvis during running and jumping. Integr Org Biol 2022; 4:obac021. [PMID: 35854827 PMCID: PMC9280985 DOI: 10.1093/iob/obac021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During locomotion, cervical muscles must be active to stabilize the head as the body accelerates and decelerates. We hypothesized that cervical muscles are also part of the linked chain of axial muscles that provide core stabilization against torques applied to the hip joint by the extrinsic muscles of the legs. To test whether specific cervical muscles play a role in postural stabilization of the head and/or core stabilization of the pelvic girdle, we used surface electromyography to measure changes in muscle activity in response to force manipulations during constant speed running and maximum effort counter-movement jumps. We found that doubling the mass of the head during both running and maximum effort jumping had little or no effect on (1) acceleration of the body and (2) cervical muscle activity. Application of horizontal forward and rearward directed forces at the pelvis during running tripled mean fore and aft accelerations, thereby increasing both the pitching moments on the head and flexion and extension torques applied to the hip. These manipulations primarily resulted in increases in cervical muscle activity that is appropriate for core stabilization of the pelvis. Additionally, when subjects jumped maximally with an applied downward directed force that reduced acceleration and therefore need for cervical muscles to stabilize the head, cervical muscle activity did not decrease. These results suggest that during locomotion, rather than acting to stabilize the head against the effects of inertia, the superficial muscles of the neck monitored in this study help to stabilize the pelvis against torques imposed by the extrinsic muscles of the legs at the hip joint. We suggest that a division of labor may exist between deep cervical muscles that presumably provide postural stabilization of the head versus superficial cervical muscles that provide core stabilization against torques applied to the pelvic and pectoral girdles by the extrinsic appendicular muscles.
Collapse
Affiliation(s)
- Alicia M Boynton
- Division of Biological Science, University of Utah , Salt Lake City, Utah, 84112, USA
| | - David R Carrier
- Division of Biological Science, University of Utah , Salt Lake City, Utah, 84112, USA
| |
Collapse
|
25
|
Golyski PR, Sawicki GS. Which lower limb joints compensate for destabilizing energy during walking in humans? J R Soc Interface 2022; 19:20220024. [PMID: 35642426 PMCID: PMC9156907 DOI: 10.1098/rsif.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
Current approaches to investigating stabilizing responses during locomotion lack measures that both directly relate to perturbation demands and are shared across different levels of description (i.e. joints and legs). Here, we investigated whether mechanical energy could serve as a 'common currency' during treadmill walking with transient unilateral belt accelerations. We hypothesized that by delivering perturbations in either early or late stance, we could elicit net negative or positive work, respectively, from the perturbed leg at the leg/treadmill interface, which would dictate the net demand at the overall leg level. We further hypothesized that of the lower limb joints, the ankle would best reflect changes in overall leg work. On average across all seven participants and 222 perturbations, we found early stance perturbations elicited no change in net work performed by the perturbed leg on the treadmill, but net positive work by the overall leg, which did not support our hypotheses. Conversely, late stance perturbations partially supported our hypotheses by eliciting positive work at the leg/treadmill interface, but no change in net work by the overall leg. In support of our final hypothesis, changes in perturbed ankle work, in addition to contralateral knee work, best reflected changes in overall leg work.
Collapse
Affiliation(s)
- Pawel R. Golyski
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S. Sawicki
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
26
|
Hurt CP, Kuhman DJ, Reed WR, Baumann A, Jiang W, Marsh K. Asymmetric walking on an incline affects aspects of positive mechanical work asymmetrically. J Biomech 2022; 136:111083. [DOI: 10.1016/j.jbiomech.2022.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
27
|
Barnett CT, Hughes LD, Sullivan AE, Strutzenberger G, Levick JL, Bisele M, De Asha AR. Exploring the interaction of knee and ankle component use on mobility test performance in people with unilateral transfemoral amputation. Prosthet Orthot Int 2021; 45:470-476. [PMID: 34538818 DOI: 10.1097/pxr.0000000000000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ankle-foot and knee components are important determinants of mobility for individuals with transfemoral amputation. Individually, advanced ankle-foot and knee components have been shown to benefit mobility in this group of people. However, it is not clear what effect a variety of combinations of ankle-foot and knee components have on mobility test performance. OBJECTIVES To assess whether outcomes from mobility tests in people with unilateral transfemoral amputation are influenced by varying combinations of ankle-foot and knee components. STUDY DESIGNS Repeated measures. METHODS Nine adults with unilateral transfemoral amputation completed the two-minute walk test, the timed up-and-go test, the L-test, and a custom locomotion course in four randomized prosthetic conditions. These conditions were each a combination of an ankle-foot component (rigid, nonarticulating [RIG] or hydraulically articulating [HYD]) and a knee component (non-microprocessor-controlled [NMPK] or microprocessor-controlled [MPK]). The test-retest reliability and concurrent validity of the custom locomotion course were also established. RESULTS The best performance in all mobility tests was associated with the MPK + HYD combination, followed by the MPK + RIG, NMPK + HYD, and NMPK + RIG combinations. This effect was statistically significant for the two-minute walk test (P = 0.01, = 0.36) and on threshold for the L-test (P = 0.05, = 0.36), but not statistically significant for the locomotion course (P = 0.07, = 0.38) or the timed up-and-go test (P = 0.12, = 0.22). Locomotion course performance had good to excellent test-retest reliability and strong concurrent validity. CONCLUSION Using a combination of a HYD ankle-foot and a MPK knee resulted in the highest performance in mobility tests. This was observed in contrast to combinations of prosthetic components that included a rigid ankle-foot component and/or a NMPK knee component.
Collapse
Affiliation(s)
- Cleveland T Barnett
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Liam D Hughes
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amy E Sullivan
- University Hospitals of Derby and Burton NHS Trust, United Kingdom
| | - Gerda Strutzenberger
- Universitätsklinik Balgrist, Zürich, Switzerland
- Department of Sport and Exercise Science, University of Salzburg, Austria
| | - Jodie L Levick
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria Bisele
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan R De Asha
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- C-Motion, Inc., Germantown, Maryland
| |
Collapse
|
28
|
Wang C, Dai L, Shen D, Wu J, Wang X, Tian M, Shi Y, Su C. Design of an Ankle Exoskeleton that Recycles Energy to Assist Propulsion during Human Walking. IEEE Trans Biomed Eng 2021; 69:1212-1224. [PMID: 34665715 DOI: 10.1109/tbme.2021.3120716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractObjective: Active exoskeletons can handle different walking conditions, but require bulky components (e.g., motors) that need a significant source of power to do so. Purely passive exoskeletons are lightweight and energy-neutral, containing energy-recycling mechanisms that capture energy loss during negative power phases and return it as walking assistance. However, they are usually designed for stereotyped gaits (e.g., walking at fixed speed) and thus show poor adaptivity for variable conditions. This study is aimed to overcome these issues. METHODS A quasi-passive ankle exoskeleton is designed to integrate the merits of both active and passive exoskeletons, which captures the heel-strike energy loss and recycles it into propulsion. A novel, lightweight, energy-saving clutch and a heel-strike energy-storage mechanism are developed. They are coupled by a series spring that assists users calf muscles. Six healthy subjects walked with the device on level ground and inclined surfaces to validate its functionality. RESULTS Level ground studies indicate that the energy-storage mechanism enhances the assistance by increasing the output torque of the exoskeleton. Reductions in metabolic cost (6.4 1.3%, p < 0.05) were observed. During uphill walking, the assistance torque decreased compared with that on level ground, but it still reduced overall metabolic cost compared with baseline walking. During downhill walking, the assistance torque increased, but metabolic cost also slightly increased. CONCLUSION These results demonstrate the functionality of the prototype on level ground and its limitations on inclined surfaces. SIGNIFICANCE The proposed device highlights the possibility of widening the potential applications of exoskeletons.
Collapse
|
29
|
Krajewski KT, Allen IT, Johnson CC, Dever DE, Ahamed NU, Flanagan SD, Mi Q, Anderst WJ, Connaboy C. Loaded forced-marching shifts mechanical contributions proximally and disrupts stride-to-stride joint work modulation in recruit aged women. Gait Posture 2021; 88:22-27. [PMID: 33957553 DOI: 10.1016/j.gaitpost.2021.04.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Military personnel in combat roles often perform gait tasks with additional load, which can affect the contributions of joint mechanical work (positive and negative). Furthermore, different locomotion patterns can also affect joint specific work contributions. While mean behavior of joint work is important to understanding gait, changes in joint kinetic modulation, or the regulation/control of stride-to-stride joint work variability is necessary to elucidate locomotor system function. Suboptimal modulation exhibited as a stochastic time-series (large fluctuation followed by an opposite smaller fluctuation) could potentially affect locomotion efficiency and portend injury risk. It remains unclear how the locomotor system responds to a combination of load perturbations and varying locomotion patterns. RESEARCH QUESTION What are the interactive effects of load magnitude and locomotion pattern on joint positive/negative work and joint work modulation in healthy, active, recruit-aged women? METHODS Eleven healthy, active, recruit-aged (18-33 years) women ran and forced-marched (walking at a velocity an individual would typically jog) in bodyweight (BW), an additional 25 % of BW (+25 %BW) and an additional 45 % of BW (+45 %BW) conditions at a velocity above their gait transition velocity. Joint work was calculated as the time integral of joint power. Joint work modulation was assessed with detrended fluctuation analysis (DFA) on consecutive joint work time-series. RESULTS Joint work contributions shifted proximally for forced-marching demonstrated by lesser (p < .001) positive/negative ankle work but greater (p = .001) positive hip work contributions compared to running. Running exhibited optimal positive ankle work modulation compared to forced-marching (p = .040). Knee and ankle negative joint work modulation was adversely impacted compared to the hip during forced-marching (p < .001). SIGNIFICANCE Employing forced-marching gait while under loads of 25 and 45 % of BW reduces the ability of the plantar-flexors and knee extensors to optimally contribute to energy absorption and propulsion in recruit-aged women, potentially reducing metabolic efficiency and increasing injury risk.
Collapse
Affiliation(s)
- Kellen T Krajewski
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ian T Allen
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camille C Johnson
- Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dennis E Dever
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nizam U Ahamed
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Mi
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Anderst
- Biodynamics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chris Connaboy
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Shepertycky M, Burton S, Dickson A, Liu YF, Li Q. Removing energy with an exoskeleton reduces the metabolic cost of walking. Science 2021; 372:957-960. [PMID: 34045349 DOI: 10.1126/science.aba9947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Evolutionary pressures have led humans to walk in a highly efficient manner that conserves energy, making it difficult for exoskeletons to reduce the metabolic cost of walking. Despite the challenge, some exoskeletons have managed to lessen the metabolic expenditure of walking, either by adding or storing and returning energy. We show that the use of an exoskeleton that strategically removes kinetic energy during the swing period of the gait cycle reduces the metabolic cost of walking by 2.5 ± 0.8% for healthy male users while converting the removed energy into 0.25 ± 0.02 watts of electrical power. By comparing two loading profiles, we demonstrate that the timing and magnitude of energy removal are vital for successful metabolic cost reduction.
Collapse
Affiliation(s)
- Michael Shepertycky
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sarah Burton
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Andrew Dickson
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yan-Fei Liu
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Qingguo Li
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
31
|
Affiliation(s)
- Raziel Riemer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Richard W Nuckols
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Gregory S Sawicki
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|