1
|
Phillips CJC. Zoonotic Disease Risks of Live Export of Cattle and Sheep, with a Focus on Australian Shipments to Asia and the Middle East. Animals (Basel) 2022; 12:3425. [PMID: 36496946 PMCID: PMC9738783 DOI: 10.3390/ani12233425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The growing human and livestock populations in the world today and increased international transport of livestock is increasing the risk of both emerging and endemic zoonotic diseases. This review focuses on the potential for the live export trade to transmit zoonotic diseases. Both cattle and sheep are exposed to major stresses during the transport process, which are described, together with the impact of these stresses on the immune function of transported animals. Heat stress, overcrowding, inanition, ship and vehicle motion and accumulation of noxious gases are analysed for their ability to potentiate infectious diseases. The major zoonoses are described: pustular dermatitis, pneumonia, salmonellosis, as well as some common conditions, such as conjunctivitis, with specific reference to stressors associated with each disorder. Historical precedents exist for restriction of the trade based on disease risks. Finally, the economic and regulatory frameworks are considered to evaluate ways in which the spread of zoonotic diseases can be controlled.
Collapse
Affiliation(s)
- Clive J. C. Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia;
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Kent St., Bentley, WA 6102, Australia
| |
Collapse
|
2
|
Meta-analysis of seroprevalence and zoonotic infections of Middle East respiratory syndrome coronavirus (MERS-CoV): A one-health perspective. One Health 2022; 15:100436. [PMID: 36168446 PMCID: PMC9502441 DOI: 10.1016/j.onehlt.2022.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
The zoonotic Middle East respiratory syndrome (MERS) is caused by an emerging beta-coronavirus (CoV). The majority of MERS studies have included scattered data from sub-Saharan Africa and the Middle East, and these data have not been analyzed collectively. In this work, a meta-analysis of these studies was conducted to coalesce these results, determine the prevalence and seroprevalence of MERS-CoV in camels and humans, and examine how zoonotic infection rates in dromedary camels are related to human infection rates. After extracting the collected data, the prevalence and seroprevalence at a 95% confidence interval (CI) using a fixed-effects inverse-variance meta-analysis was conducted. Thirteen studies were included. Eight studies included 2905 samples from dromedary camels, of which 1108 (38.14%) were positive for the virus. The prevalence was 8.75[−13.47, 30.98] at 95% CI in dromedary camels and 0.03[−35.23, 35.28] at 95% CI in humans. Ten studies included 7176 serum samples, 5788 (80.66%) of which were positive. The seroprevalence was 20.69[−4.60, 45.99] at 95% CI. The prevalence of MERS-CoV was moderate to high, but the seroprevalence was high. Despite the high prevalence of the virus in camel herds, zoonotic transmissions were not widespread. Further longitudinal and cross-sectional follow-up studies are recommended to provide solid control of MERS-CoV transmission.
Collapse
|
3
|
Alharbi NK, Aljamaan F, Aljami HA, Alenazi MW, Albalawi H, Almasoud A, Alharthi FJ, Azhar EI, Barhoumi T, Bosaeed M, Gilbert SC, Hashem AM. Immunogenicity of High-Dose MVA-Based MERS Vaccine Candidate in Mice and Camels. Vaccines (Basel) 2022; 10:vaccines10081330. [PMID: 36016218 PMCID: PMC9413082 DOI: 10.3390/vaccines10081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime–boost vaccinations in mice and camels. Methods: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. Results: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). Conclusions: MVA-MERS vaccine, administered in a homologous prime–boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Correspondence:
| | - Fahad Aljamaan
- Animal Facilities, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Haya A. Aljami
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Mohammed W. Alenazi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Hind Albalawi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Fatima J. Alharthi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Esam I. Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Tlili Barhoumi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Mohammad Bosaeed
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh 12746, Saudi Arabia
| | | | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
4
|
Salam SP, Sabo Nok Kia G, Oladayo FO, Ugochukwu ICI. Serosurvey for Middle East respiratory syndrome coronavirus antibody in dromedary camels and human patients at a secondary care hospital, Illela, Northwest Nigeria. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:537-546. [PMID: 35506144 PMCID: PMC9050177 DOI: 10.1007/s00580-022-03351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Middle East respiratory syndrome (MERS) is a serious emerging zoonosis. It is characterized by severe infection of the respiratory tract in humans. Dromedary camels are considered to be the most probable origin of the pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). This cross-sectional survey was carried out to ascertain the seroprevalence of MERS-CoV in dromedary camels at Illela border and human patients in a secondary care hospital in Illela, Sokoto State, Nigeria from November 2016 to January 2017. Serum samples from 74 camels and 39 human patients were collected while a data form was administered to the camel handlers (40) and human patients to obtain information on zoographic characteristics of dromedary camels, demographic characteristics of camel handlers and human patients and some practices of both groups which are likely to predispose to MERS-CoV infection. The serum samples were analyzed for antibodies against MERS-CoV using the indirect Enzyme-Linked Immuno-Sorbent Assay (ELISA). All the camels sampled were seropositive against MERS-CoV and 74% of the human patients had antibodies against MERS. All handlers treated their camels without consulting veterinarians and there was little or no biosecurity measures undertaken. Age, sex, and occupation were not significant determinants for the presence of MERS-CoV antibody in human patients sampled. This study serves as a baseline for similar researches and due to the high seroprevalence obtained in this study for both camels and humans, there is need for trained personnel, surveillance and diagnostic tools at our border posts and animal markets. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00580-022-03351-3.
Collapse
Affiliation(s)
| | - Grace Sabo Nok Kia
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | - Faleke Olufemi Oladayo
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sokoto State, Nigeria
| | | |
Collapse
|
5
|
Orynbayev MB, Hitch AT, Kerimbayev AA, Nissanova RK, Sultankulova KT, Rystayeva RA, Omarova ZD, Kassenov MM, Tailakova ET, Smith GJD, Mendenhall IH. Serological exposure in Bactrian and dromedary camels in Kazakhstan to a MERS or MERS-like coronavirus. Transbound Emerg Dis 2022; 69:e1374-e1381. [PMID: 35106948 DOI: 10.1111/tbed.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a camel-borne zoonotic virus endemic across Eastern Africa and the Middle East, with evidence of circulation in Bangladesh and Mongolia. To determine if MERS-CoV was present in Kazakhstan, in 2017-2018 we collected swabs and sera from Bactrian camels (n = 3124) and dromedary (n = 5083). The total seropositivity was 0.54% in Bactrian camels and 0.24% in dromedaries, however we did not detect MERS-CoV RNA in swab samples. There was no difference in the probability of infection between species or sex, but younger camels had a higher probability of being seropositive, suggesting a recent introduction of the virus to Kazakhstan. The infection of both camel species indicates that they both may play a role as natural reservoirs. These results reinforce the need for continual surveillance, especially at the camel-human interface to understand the risk of zoonotic exposure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mukhit B Orynbayev
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Alan T Hitch
- Museum of Wildlife and Fish Biology, Department of Wildlife, Fish and Conservation Biology, University of California at Davis, Davis, CA, 95616
| | - Aslan A Kerimbayev
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Raikhan K Nissanova
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Kulyaisan T Sultankulova
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Rashida A Rystayeva
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Zamira D Omarova
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Markhabat M Kassenov
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Elmira T Tailakova
- Research Institute for Biological Safety Problems, 080409, Gvardeiskiy, Kordaiskiy Rayon, Zhambylskaya oblast, Republic of Kazakhstan
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
6
|
Ebrahim SH, Maher AD, Kanagasabai U, Alfaraj SH, Alzahrani NA, Alqahtani SA, Assiri AM, Memish ZA. MERS-CoV Confirmation among 6,873 suspected persons and relevant Epidemiologic and Clinical Features, Saudi Arabia - 2014 to 2019. EClinicalMedicine 2021; 41:101191. [PMID: 34805807 PMCID: PMC8590843 DOI: 10.1016/j.eclinm.2021.101191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Of the three lethal coronaviruses, in addition to the ongoing pandemic-causing SARS-CoV 2, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) remains in circulation. Information on MERS-CoV has relied on small sample of patients. We updated the epidemiology, laboratory and clinical characteristics, and survival patterns of MERS-CoV retrospectively with the largest sample of followed patients. METHODS We conducted a retrospective review of line-listed records of non-random, continuously admitted patients who were suspected (6,873) or confirmed with MERS-CoV (501) admitted to one of the four MERS-CoV referral hospitals in Saudi Arabia, 2014-2019. FINDINGS Of the 6,873 MERS-CoV suspected persons, the majority were male (56%) and Saudi nationals (83%) and 95% had no known history that increased their risk of exposure to MERS-CoV patients or vectors (95%). More confirmed cases reported history that increased their risk of MERS-CoV infection (41%). Among the suspected, MERS-CoV confirmation (7.4% overall) was independently associated with being male, known transmission link to MERS-CoV patients or vectors, fever, symptoms for 7 days, admission through intensive care unit, and diabetes. Among persons with confirmed MERS-CoV, single symptoms were reported by 20%, 3-symptom combinations (fever, cough and dyspnea) reported by 21% and 2-symptom combinations (fever, cough) reported by 16%. Of the two-thirds (62%) of MERS-CoV confirmed patients who presented with co-morbidity, 32% had 2-"comorbidities (diabetes, hypertension). More than half of the MERS-CoV patents showed abnormal chest X-ray, elevated aspartate aminotransferase, and creatinine kinase. About a quarter of MERS-CoV patients had positive cultures on blood, urine, or respiratory secretions. During an average hospital stay of 18 days (range 11 to 30), 64% developed complications involving liver, lungs, or kidneys. Ventilation requirement (29% of MERS-CoV cases) was independently associated with abnormal chest X-ray, viremia (Ct value <30), elevated creatinine, and prothrombin time. Death (21% overall) was independently associated with older age, dyspnea and abnormal chest X-ray on admission, and low hemoglobulin levels. INTERPRETATIONS With two-thirds of the symptomatic persons developing multiorgan complications MERS-CoV remains the coronavirus with the highest severity (29%) and case fatality rate (21%) among the three lethal coronaviruses. Metabolic abnormalities appear to be an independent risk factor for sustained MERS-CoV transmission. The poorly understood transmission dynamics and non-specific clinical and laboratory features call for high index of suspicion among respiratory disease experts to help early detection of outbreaks. We reiterate the need for case control studies on transmission. FUNDING No special funding to declare.
Collapse
Affiliation(s)
- Shahul H. Ebrahim
- Adjunct Professor, University of Sciences, Technique and Technology, Bamako
| | - Andrew D. Maher
- Institute for Global Health Sciences, University of California San Francisco, USA
| | | | - Sarah H. Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Nojom A. Alzahrani
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Saleh A. Alqahtani
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia & Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Abdullah M. Assiri
- Infection Prevention and Control, Preventive Health, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Ziad A. Memish
- Research & Innovation Center, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants Circulating in Dromedary Camels in Jordan. Viruses 2021; 13:v13040592. [PMID: 33807288 PMCID: PMC8067259 DOI: 10.3390/v13040592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event.
Collapse
|
8
|
High MERS-CoV seropositivity associated with camel herd profile, husbandry practices and household socio-demographic characteristics in Northern Kenya. Epidemiol Infect 2020; 148:e292. [PMID: 33256863 PMCID: PMC7737118 DOI: 10.1017/s0950268820002939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite high exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), the predictors for seropositivity in the context of husbandry practices for camels in Eastern Africa are not well understood. We conducted a cross-sectional survey to describe the camel herd profile and determine the factors associated with MERS-CoV seropositivity in Northern Kenya. We enrolled 29 camel-owning households and administered questionnaires to collect herd and household data. Serum samples collected from 493 randomly selected camels were tested for anti-MERS-CoV antibodies using a microneutralisation assay, and regression analysis used to correlate herd and household characteristics with camel seropositivity. Households reared camels (median = 23 camels and IQR 16–56), and at least one other livestock species in two distinct herds; a home herd kept near homesteads, and a range/fora herd that resided far from the homestead. The overall MERS-CoV IgG seropositivity was 76.3%, with no statistically significant difference between home and fora herds. Significant predictors for seropositivity (P ⩽ 0.05) included camels 6–10 years old (aOR 2.3, 95% CI 1.0–5.2), herds with ⩾25 camels (aOR 2.0, 95% CI 1.2–3.4) and camels from Gabra community (aOR 2.3, 95% CI 1.2–4.2). These results suggest high levels of virus transmission among camels, with potential for human infection.
Collapse
|
9
|
High Rate of Circulating MERS-CoV in Dromedary Camels at Slaughterhouses in Riyadh, 2019. Viruses 2020; 12:v12111215. [PMID: 33120981 PMCID: PMC7692456 DOI: 10.3390/v12111215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/04/2022] Open
Abstract
MERS-CoV is a zoonotic virus that has emerged in humans in 2012 and caused severe respiratory illness with a mortality rate of 34.4%. Since its appearance, MERS-CoV has been reported in 27 countries and most of these cases were in Saudi Arabia. So far, dromedaries are considered to be the intermediate host and the only known source of human infection. This study was designed to determine the seroprevalence and the infection rate of MERS-CoV in slaughtered food-camels in Riyadh, Saudi Arabia. A total of 171 nasal swabs along with 161 serum samples were collected during the winter; from January to April 2019. Nasal swabs were examined by Rapid test and RT-PCR to detect MERS-CoV RNA, while serum samples were tested primarily using S1-based ELISA Kit to detect MERS-CoV (IgG) antibodies and subsequently by MERS pseudotyped viral particles (MERSpp) neutralization assay for confirmation. Genetic diversity of the positive isolates was determined based on the amplification and sequencing of the spike gene. Our results showed high prevalence (38.6%) of MERS-CoV infection in slaughtered camels and high seropositivity (70.8%) during the time of the study. These data indicate previous and ongoing MERS-CoV infection in camels. Phylogenic analysis revealed relatively low genetic variability among our isolated samples. When these isolates were aligned against published spike sequences of MERS-CoV, deposited in global databases, there was sequence similarity of 94%. High seroprevalence and high genetic stability of MERS-CoV in camels indicating that camels pose a public health threat. The widespread MERS-CoV infections in camels might lead to a risk of future zoonotic transmission into people with direct contact with these infected camels. This study confirms re-infections in camels, highlighting a challenge for vaccine development when it comes to protective immunity.
Collapse
|