1
|
Madhana Priya N, Archana Pai P, Thirumal Kumar D, Gnanasambandan R, Magesh R. Elucidating the functional impact of G137V and G144R variants in Maroteaux Lamy's Syndrome by Molecular Dynamics Simulation. Mol Divers 2024; 28:2049-2063. [PMID: 37458922 DOI: 10.1007/s11030-023-10694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 10/05/2024]
Abstract
Mucopolysaccharidoses VI (Maroteaux Lamy syndrome) is a metabolic disorder due to the loss of enzyme activity of N-acetyl galactosamine-4-sulphatase arising from mutations in the ARSB gene. The mutated ARSB is the origin for the accumulation of GAGs within the lysosome leading to severe growth deformities, causing lysosomal storage disease. The main focus of this study is to identify the deleterious variants by applying bioinformatics tools to predict the conservation, pathogenicity, stability, and effect of the ARSB variants. We examined 170 missense variants, of which G137V and G144R were the resultant variants predicted detrimental to the progression of the disease. The native along with G137V and G144R structures were fixed as the receptors and subjected to Molecular docking with the small molecule Odiparcil to analyze the binding efficiency and the varied interactions of the receptors towards the drug. The interaction resulted in similar docking scores of - 7.3 kcal/mol indicating effective binding and consistent interactions of the drug with residues CYS117, GLN118, THR182, and GLN517 for native, along with G137V and G144R structures. Molecular Dynamics were conducted to validate the stability and flexibility of the native and variant structures on ligand binding. The overall study indicates that the drug has similar therapeutic towards the native and variant based on the higher binding affinity and also the complexes show stability with an average of 0.2 nm RMS value. This can aid in the future development therapeutics for the Maroteaux Lamy syndrome.
Collapse
Affiliation(s)
- N Madhana Priya
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India
| | - P Archana Pai
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India
| | - D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education, Chennai, India
| | - R Gnanasambandan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Vellore, India
| | - R Magesh
- Department of Biotechnology, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|
2
|
Chen TY, Lin SP, Huang DF, Huang HS, Tsai FC, Lee LJ, Lin HY, Huang HP. Mature neurons from iPSCs unveil neurodegeneration-related pathways in mucopolysaccharidosis type II: GSK-3β inhibition for therapeutic potential. Cell Death Dis 2024; 15:302. [PMID: 38684682 PMCID: PMC11058230 DOI: 10.1038/s41419-024-06692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Mucopolysaccharidosis (MPS) type II is caused by a deficiency of iduronate-2-sulfatase and is characterized by the accumulation of glycosaminoglycans (GAGs). Without effective therapy, the severe form of MPS II causes progressive neurodegeneration and death. This study generated multiple clones of induced pluripotent stem cells (iPSCs) and their isogenic controls (ISO) from four patients with MPS II neurodegeneration. MPS II-iPSCs were successfully differentiated into cortical neurons with characteristic biochemical and cellular phenotypes, including axonal beadings positive for phosphorylated tau, and unique electrophysiological abnormalities, which were mostly rescued in ISO-iPSC-derived neurons. RNA sequencing analysis uncovered dysregulation in three major signaling pathways, including Wnt/β-catenin, p38 MAP kinase, and calcium pathways, in mature MPS II neurons. Further mechanistic characterization indicated that the dysregulation in calcium signaling led to an elevated intracellular calcium level, which might be linked to compromised survival of neurons. Based on these dysregulated pathways, several related chemicals and drugs were tested using this mature MPS II neuron-based platform and a small-molecule glycogen synthase kinase-3β inhibitor was found to significantly rescue neuronal survival, neurite morphology, and electrophysiological abnormalities in MPS II neurons. Our results underscore that the MPS II-iPSC-based platform significantly contributes to unraveling the mechanisms underlying the degeneration and death of MPS II neurons and assessing potential drug candidates. Furthermore, the study revealed that targeting the specific dysregulation of signaling pathways downstream of GAG accumulation in MPS II neurons with a well-characterized drug could potentially ameliorate neuronal degeneration.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - De-Fong Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Sohn YB, Wang R, Ashworth J, Broqua P, Tallandier M, Abitbol JL, Jozwiak E, Pollard L, Wood TC, Aslam T, Harmatz PR. Biomarkers of Glycosaminoglycans (GAG) accumulation in patients with mucopolysaccharidosis type VI-LeukoGAG, Corneal Opacification (COM) and Carotid Intima Media Thickening (CIMT). Mol Genet Metab Rep 2024; 38:101041. [PMID: 38234862 PMCID: PMC10792263 DOI: 10.1016/j.ymgmr.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal storage disorder characterized by deficient activity of arylsulfatase B enzyme (ASB) resulting in cellular accumulation of dermatan sulfate (DS) and chondroitin sulfate (CS) that leads to cell injury. Urinary glycosaminoglycans (GAG) are often used as a biomarker in MPS diseases for diagnosis and to monitor treatment efficacy. This study evaluated leukocyte GAGs (leukoGAG) and skin GAGs as alternate biomarkers representing intracellular GAG changes in patients with MPS VI and treated with enzyme replacement therapy (ERT). In addition, we evaluated corneal opacification measurements (COM) and carotid intima media thickness (CIMT) as indicators of GAG accumulation and tissue injury. The study was performed in a serial two-step design in a single center. A quantitative method to measure leukoGAG levels in leukocytes was developed in Study 1 to compare the GAG levels between MPS VI patients and a control group and to assess correlations between leukoGAG and urineGAG. Study 2 validated the leukoGAG measurement, assessed the effect of ERT infusion on leukoGAG and ASB activity in leukocytes, identified correlations between leukoGAG and other biomarkers, and assessed differences in GAG accumulation between MPS VI patients and control subjects. In Study 1, leukoCS and leukoDS levels were significantly higher in the MPS VI group than the control group (leukoCS: 37.9 ± 10.2 and 2.9 ± 1.5 μg/μg protein, respectively, p = 0.005; leukoDS: 0.26 ± 0.2 and 0.0 ± 0.0 μg/μg protein, respectively, p = 0.028) with positive correlations between leukoCS and urine CS and leukoDS and urineDS. In Study 2, leukoCS (32.0 ± 11.8 vs 6.9 ± 3.1 μg/mg protein, p = 0.005) and leukoDS (0.4 ± 0.1 and 0.2 ± 0.1 μg/mg protein, p = 0.020) were significantly higher compared with control subjects. Thus, these results highlight the potential of leukoGAG as a new biomarker representing intracellular GAG accumulation in MPS VI patients and may be valuable for patient management.
Collapse
Affiliation(s)
- Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Raymond Wang
- Children's Hospital of Orange County, Orange, CA, USA
| | | | | | | | | | - Erin Jozwiak
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | - Timothy C. Wood
- Section of Genetics and Metabolism, University of Colorado/Children's Hospital of Colorado, Aurora, CO, USA
| | | | | |
Collapse
|
4
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
5
|
Tuyaa-Boustugue P, Jantzen I, Zhang H, Young SP, Broqua P, Tallandier M, Entchev E. Reduction of lysosome abundance and GAG accumulation after odiparcil treatment in MPS I and MPS VI models. Mol Genet Metab Rep 2023; 37:101011. [PMID: 38053941 PMCID: PMC10694777 DOI: 10.1016/j.ymgmr.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/07/2023] Open
Abstract
Deficiencies of lysosomal enzymes responsible for the degradation of glycosaminoglycans (GAG) cause pathologies commonly known as the mucopolysaccharidoses (MPS). Each type of MPS is caused by a deficiency in a specific GAG-degrading enzyme and is characterized by an accumulation of disease-specific GAG species. Previously, we have shown the potential of the beta-D-xyloside, odiparcil, as an oral GAG clearance therapy for Maroteaux-Lamy syndrome (MPS VI), an MPS characterized by an accumulation of chondroitin sulphate (CS) and dermatan sulphate (DS). This work suggested that odiparcil acts via diverting the synthesis of CS and DS into odiparcil-bound excretable GAG. Here, we investigated the effect of odiparcil on lysosomal abundance in fibroblasts from patients with MPS I and MPS VI. In MPS VI fibroblasts, odiparcil reduced the accumulation of a lysosomal-specific lysotracker dye. Interestingly, a reduction of the lysotracker dye was also observed in odiparcil-treated fibroblasts from patients with MPS I, a disorder characterized by an accumulation of DS and heparan sulphate (HS). Furthermore, odiparcil was shown to be effective in reducing CS, DS, and HS concentrations in liver and eye, as representative organs, in MPS VI and MPS I mice treated with 3 doses of odiparcil over 3 and 9 months, respectively. In conclusion, our data demonstrates odiparcil efficiently reduced lysosome abundance and tissue GAG concentrations in in vitro and in vivo models of MPS VI and MPS I and has potential as a treatment for these disorders.
Collapse
Affiliation(s)
| | | | - Haoyue Zhang
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
| | - Sarah P. Young
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke School of Medicine, Durham, NC, USA
| | - Pierre Broqua
- Inventiva Pharma, 50 Rue de Dijon, Daix 21121, France
| | | | | |
Collapse
|
6
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
8
|
Hosoba K. Generation of a novel disease model mouse for mucopolysaccharidosis type VI via c. 252T>C human ARSB mutation knock-in. Biochem Biophys Rep 2022; 31:101321. [PMID: 36032399 PMCID: PMC9399948 DOI: 10.1016/j.bbrep.2022.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a mutation in the ARSB gene, which encodes arylsulfatase B (ARSB), and is characterized by glycosaminoglycan accumulation. Some pathogenic mutations have been identified in or near the substrate-binding pocket of ARSB, whereas many missense mutations present far from the substrate-binding pocket. Each MPS VI patient shows different severity of clinical symptoms. To understand the relationship between mutation patterns and the severity of MPS VI clinical symptoms, mutations located far from the substrate-binding pocket must be investigated using mutation knock-in mice. Here, I generated a knock-in mouse model of human ARSB Y85H mutation identified in Japanese MPS VI patients using a CRISPR-Cas9-mediated approach. The generated mouse model exhibited phenotypes similar to those of MPS VI patients, including facial features, mucopolysaccharide accumulation, and smaller body size, suggesting that this mouse will be a valuable model for understanding MPS VI pathology. We generated a mouse model of the Y85H ARSB mutation in humans using CRISPR-Cas9. The knock-in mice exhibited phenotypes similar to those of MPS VI patients. The mice showed facial features, mucopolysaccharide build-up, and smaller bodies. The model could successfully show the correlation between genotype and phenotype. These mice could serve as a useful model for novel therapeutic approaches.
Collapse
|
9
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
10
|
Guffon N, Chowdary P, Teles EL, Hughes D, Hennermann JB, Huot-Marchand P, Faudot-Vernier E, Lacombe O, Fiquet A, Richard MP, Abitbol JL, Tallandier M, Hendriksz CJ. Oral treatment for mucopolysaccharidosis VI: Outcomes of the first phase IIa study with odiparcil. J Inherit Metab Dis 2022; 45:340-352. [PMID: 34910312 DOI: 10.1002/jimd.12467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Mucopolysaccharidosis (MPS) disorders are a group of rare, progressive lysosomal storage diseases characterized by the accumulation of glycosaminoglycans (GAGs) and classified according to the deficient enzyme. Enzyme replacement therapy (ERT) of MPS VI has limited effects on ophthalmic, cardiovascular, and skeletal systems. Odiparcil is an orally available small molecule that results in the synthesis of odiparcil-linked GAGs facilitating their excretion and reducing cellular and tissue GAG accumulation. Improve MPS treatment was a Phase 2a study of the safety, pharmacokinetics/pharmacodynamics, and efficacy of two doses of odiparcil in patients with MPS VI. The core study was a 26-week, randomized, double-blind, placebo-controlled trial in patients receiving ERT and an open-label, noncomparative, single-dose cohort not receiving ERT. Patients aged ≥ 16 years receiving ERT were randomized to odiparcil 250 or 500 mg twice daily or placebo. Patients without ERT received odiparcil 500 mg twice daily. Of 20 patients enrolled, 13 (65.0%) completed the study. Odiparcil increased total urine GAGs (uGAGs), chondroitin sulfate, and dermatan sulfate concentrations. A linear increase in uGAG levels and odiparcil exposure occurred with increased odiparcil dose. Odiparcil demonstrated a good safety and tolerability profile. Individual analyses found more improvements in pain, corneal clouding, cardiac, vascular, and respiratory functions in the odiparcil groups vs placebo. This study confirmed the mechanism of action and established the safety of odiparcil with clinical beneficial effects after only a short treatment duration in an advanced stage of disease. Further assessment of odiparcil in younger patients is needed.
Collapse
Affiliation(s)
- Nathalie Guffon
- Centre de Référence des Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Lyon, France
| | | | | | | | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Entchev E, Antonelli S, Mauro V, Cimbolini N, Jantzen I, Roussey A, Germain JM, Zhang H, Luccarrini JM, Lacombe O, Young SP, Feraille L, Tallandier M. MPS VI associated ocular phenotypes in an MPS VI murine model and the therapeutic effects of odiparcil treatment. Mol Genet Metab 2022; 135:143-153. [PMID: 34417096 DOI: 10.1016/j.ymgme.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023]
Abstract
Maroteaux - Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is a lysosomal storage disease resulting from insufficient enzymatic activity for degradation of the specific glycosaminoglycans (GAG) chondroitin sulphate (CS) and dermatan sulphate (DS). Among the most pronounced MPS VI clinical manifestations caused by cellular accumulation of excess CS and DS are eye disorders, in particular those that affect the cornea. Ocular manifestations are not treated by the current standard of care, enzyme replacement therapy (ERT), leaving patients with a significant unmet need. Using in vitro and in vivo models, we previously demonstrated the potential of the β-D-xyloside, odiparcil, as an oral GAG clearance therapy for MPS VI. Here, we characterized the eye phenotypes in MPS VI arylsulfatase B deficient mice (Arsb-) and studied the effects of odiparcil treatment in early and established disease models. Severe levels of opacification and GAG accumulation were detected in the eyes of MPS VI Arsb- mice. Histological examination of MPS VI Arsb- eyes showed an aggregate of corneal phenotypes, including reduction in the corneal epithelium thickness and number of epithelial cell layers, and morphological malformations in the stroma. In addition, colloidal iron staining showed specifically GAG accumulation in the cornea. Orally administered odiparcil markedly reduced GAG accumulation in the eyes of MPS VI Arsb- mice in both disease models and restored the corneal morphology (epithelial layers and stromal structure). In the early disease model of MPS VI, odiparcil partially reduced corneal opacity area, but did not affect opacity area in the established model. Analysis of GAG types accumulating in the MPS VI Arsb- eyes demonstrated major contribution of DS and CS, with some increase in heparan sulphate (HS) as well and all were reduced with odiparcil treatment. Taken together, we further reveal the potential of odiparcil to be an effective therapy for eye phenotypes associated with MPS VI disease.
Collapse
Affiliation(s)
| | - Sophie Antonelli
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | - Virginie Mauro
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | - Nicolas Cimbolini
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | | | | | | | - Haoyue Zhang
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA
| | | | | | - Sarah P Young
- Duke University Health System Biochemical Genetics Lab, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke School of Medicine, Durham, NC, USA
| | - Laurence Feraille
- Iris Pharma, Les Nertiéres, Allée Hector Pintus, La Gaude 06610, France
| | | |
Collapse
|
12
|
D’Avanzo F, Zanetti A, De Filippis C, Tomanin R. Mucopolysaccharidosis Type VI, an Updated Overview of the Disease. Int J Mol Sci 2021; 22:ijms222413456. [PMID: 34948256 PMCID: PMC8707598 DOI: 10.3390/ijms222413456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is a rare, autosomal recessive genetic disease, mainly affecting the pediatric age group. The disease is due to pathogenic variants of the ARSB gene, coding for the lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). The enzyme deficit causes a pathological accumulation of the undegraded glycosaminoglycans dermatan-sulphate and chondroitin-sulphate, natural substrates of ASB activity. Intracellular and extracellular deposits progressively take to a pathological scenario, often severe, involving most organ-systems and generally starting from the osteoarticular apparatus. Neurocognitive and behavioral abilities, commonly described as maintained, have been actually investigated by few studies. The disease, first described in 1963, has a reported prevalence between 0.36 and 1.3 per 100,000 live births across the continents. With this paper, we wish to contribute an updated overview of the disease from the clinical, diagnostic, and therapeutic sides. The numerous in vitro and in vivo preclinical studies conducted in the last 10-15 years to dissect the disease pathogenesis, the efficacy of the available therapeutic treatment (enzyme replacement therapy), as well as new therapies under study are here described. This review also highlights the need to identify new disease biomarkers, potentially speeding up the diagnostic process and the monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Concetta De Filippis
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (F.D.); (A.Z.); (C.D.F.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-1264
| |
Collapse
|
13
|
Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2408402. [PMID: 33344633 PMCID: PMC7732385 DOI: 10.1155/2020/2408402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022]
Abstract
Purpose. Mucopolysaccharidoses (MPS) are group of inherited lysosomal storage diseases caused by mutations of enzymes involved in catalyzing different glycosaminoglycans (GAGs). MPS I and MPS II exhibit both somatic and neurological symptoms with a relatively high disease incidence. Hematopoietic stem cell therapy (HSCT) and intravenous enzyme replacement therapy (ERT) have had a significant impact on the treatment and comprehension of disease. This review is aimed at providing a comprehensive evaluation of the pros and cons of HSCT and ERT, as well as an up-to-date knowledge of new drugs under development. In addition, multiple disease management strategies for the uncontrollable manifestations of MPS I and MPS II to improve patients' quality of life are presented. Findings. Natural history of MPS I and MPS II shows that somatic and neurological symptoms occur earlier in severe forms of MPS I than in MPS II. ERT increases life expectancy and alleviates some of the somatic symptoms, but musculoskeletal, ophthalmological, and central nervous system (CNS) manifestations are not controlled. Additionally, life-long treatment burdens and immunogenicity restriction are unintended consequences of ERT application. HSCT, another treatment method, is effective in controlling the CNS symptoms and hence has been adopted as the standard treatment for severe types of MPS I. However, it is ineffective in MPS II, which can be explained by the relatively late diagnosis. In addition, several factors such as transplant age limits or graft-versus-host disease in HSCT have limited its application for patients. Novel therapies, including BBB-penetrable-ERT, gene therapy, and substrate reduction therapy, are under development to control currently unmanageable manifestations. BBB-penetrable-ERT is being studied comprehensively in the hopes of being used in the near future as a method to effectively control CNS symptoms. Gene therapy has the potential to “cure” the disease with a one-time treatment rather than just alleviate symptoms, which makes it an attractive treatment strategy. Several clinical studies on gene therapy reveal that delivering genes directly into the brain achieves better results than intravenous administration in patients with neurological symptoms. Considering new drugs are still in clinical stage, disease management with close monitoring and supportive/palliative therapy is of great importance for the time being. Proper rehabilitation therapy, including physical and occupational therapy, surgical intervention, or medications, can benefit patients with uncontrolled musculoskeletal, respiratory, ophthalmological, and neurological manifestations.
Collapse
|
14
|
Jiang Z, Byers S, Casal ML, Smith LJ. Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 2020; 18:759-773. [PMID: 33064251 PMCID: PMC7736118 DOI: 10.1007/s11914-020-00626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Paediatrics, The University of Adelaide, Adelaide, SA, Australia
- Genetics and Evolution, The University of Adelaide, Adelaide, SA, Australia
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|