1
|
Castro-Núñez GM, Tanomaru-Filho M, Chávez-Andrade GM, Torres FFE, Bosso-Martelo R, Guerreiro-Tanomaru JM. Physicochemical properties and antibiofilm activity of mineral trioxide aggregate associated with farnesol. Braz Oral Res 2024; 38:e066. [PMID: 39109763 PMCID: PMC11376616 DOI: 10.1590/1807-3107bor-2024.vol38.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/14/2024] [Indexed: 09/20/2024] Open
Abstract
This study assessed the physicochemical and antibiofilm properties of white mineral trioxide aggregate (MTA) associated with 1 or 2% of farnesol. Setting time was evaluated based on ISO 6876/2012. Radiopacity was evaluated by radiographic analysis. pH was assessed after time intervals of 1, 3, 7, 14, 21, and 28 days. Solubility (% mass loss) and volumetric change (by micro-CT) of the cements were evaluated after immersion in distilled water. The presence of voids inside the materials was assessed by using micro-CT. Antibiofilm activity against Enterococcus faecalis was evaluated by crystal violet assay and the modified direct contact test performed with biofilm previously formed on bovine root dentin for 14 days. Data were submitted to ANOVA/Tukey tests with 5% significance level. The incorporation of farnesol into MTA increased its setting time, but decreased its solubility at 30 days and its volumetric loss in all periods (p < 0.05). Radiopacity and solubility after 7 days were similar among the materials (p > 0.05). The association of farnesol showed the highest pH value after 1 and 3 days (p < 0.05). The association of farnesol with MTA promoted a decrease in the presence of voids, and increased the antimicrobial activity on biofilm biomass of E. faecalis (p < 0.05). In conclusion, the addition of farnesol can be suggested to improve the antimicrobial properties and the consistency of MTA.
Collapse
Affiliation(s)
| | - Mário Tanomaru-Filho
- Universidade Estadual Paulista - UNESP, School of Dentistry, Department of Restorative Dentistry, Araraquara, SP, Brazil
| | | | | | - Roberta Bosso-Martelo
- Universidade Federal da Bahia - UFBA, School of Dentistry, Department of Dentistry, Salvador, BA, Brazil
| | | |
Collapse
|
2
|
Dar OA, Hashmi AA, Al-Bogami AS, Ahmad A, Wani MY. Heteroleptic cobalt complex augments antifungal activity with fluconazole and causes membrane disruption in Candida albicans. Dalton Trans 2024; 53:11720-11735. [PMID: 38932585 DOI: 10.1039/d4dt01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Heteroleptic metal complexes containing CuII, CoII, and ZnII, incorporating curcumin and a Schiff base ligand (L), were synthesized and characterized, and their antifungal activity was evaluated. Their antifungal activities were investigated individually and in combination with fluconazole. Utilizing various analytical techniques such as UV-Vis, FT-IR, NMR, ESI-MS, TGA-DTG, elemental analyses, conductance, and magnetic susceptibility measurements, complex C1 ([Cu(Cur)LCl(H2O)]) was assigned a distorted octahedral geometry, while complexes C2 ([Co(Cur)LCl(H2O)]) and C3 ([Zn(Cur)LCl(H2O)]) were assigned octahedral geometries. Among these complexes, C2 exhibited the highest inhibitory activity against both FLC-susceptible and resistant strains of Candida albicans. Furthermore, C2 demonstrated candidicidal activity and synergistic interactions with fluconazole, effectively inhibiting the growth and survival of both FLC-resistant and FLC-sensitive C. albicans strains. The complex displayed a dose-dependent inhibition of drug efflux pumps in FLC-resistant C. albicans strains, indicating its potential to disrupt the cell membrane of these strains. The significant role of membrane efflux transporters in the development of antifungal drug resistance within Candida species has been extensively documented and our findings indicate that complex C2 specifically targets this crucial factor, thereby playing a pivotal role in mitigating drug resistance in C. albicans.
Collapse
Affiliation(s)
- Ovas Ahmad Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Athar Adil Hashmi
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Wani MY, Srivastava V, El-Said WA, Al-Bogami AS, Ahmad A. Inhibition of apoptosis and biofilm formation in Candida auris by click-synthesized triazole-bridged quinoline derivatives. RSC Adv 2024; 14:21190-21202. [PMID: 38966810 PMCID: PMC11223670 DOI: 10.1039/d4ra03728f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Candida auris, a recent addition to the Candida species, poses a significant threat with its association to numerous hospital outbreaks globally, particularly affecting immunocompromised individuals. Given its resistance to existing antifungal therapies, there is a pressing need for innovative treatments. In this study, novel triazole bridged quinoline derivatives were synthesized and evaluated for their antifungal activity against C. auris. The most promising compound, QT7, demonstrated exceptional efficacy with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 0.12 μg mL-1 and 0.24 μg mL-1, respectively. Additionally, QT7 effectively disrupted mature biofilms, inhibiting them by 81.98% ± 8.51 and 89.57 ± 5.47 at MFC and 2× MFC values, respectively. Furthermore, QT7 induced cellular apoptosis in a dose-dependent manner, supported by various apoptotic markers such as phosphatidylserine externalization, mitochondrial depolarization, and reduced cytochrome c and oxidase activity. Importantly, QT7 exhibited low hemolytic activity, highlighting its potential for further investigation. Additionally, the physicochemical properties of this compound suggest its potential as a lead drug candidate, warranting further exploration in drug discovery efforts against Candida auris infections.
Collapse
Affiliation(s)
- Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
| | - Waleed Ahmed El-Said
- Department of Chemistry, College of Science, University of Jeddah 21589 Jeddah Saudi Arabia
| | | | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center Pittsburgh PA 15213 USA
| |
Collapse
|
4
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
5
|
Jin M, Trick AY, Totten M, Lee PW, Zhang SX, Wang TH. Streamlined instrument-free lysis for the detection of Candida auris. Sci Rep 2023; 13:21848. [PMID: 38071216 PMCID: PMC10710429 DOI: 10.1038/s41598-023-47220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The continued spread of Candida auris in healthcare facilities has increased the demand for widely available screening to aid in containment and inform treatment options. Current methods of detection can be unreliable and require bulky and expensive instruments to lyse and identify fungal pathogens. Here, we present a quick, low-cost, instrument-free method for lysis of C. auris suitable for streamlined sample processing with polymerase chain reaction (PCR) detection. Chemical, thermal, and bead beating lysis techniques were evaluated for lysis performance and compatibility with nucleic acid extraction and downstream PCR reactions. Using only 10 s of manual shaking with glass beads, this method demonstrated a limit of detection (LOD) of C. auris at 500 colony forming units per mL, a 20-fold improvement compared to the LOD without manual shaking, and a 60-fold reduction in time compared to common fungal lysis kits, all while maintaining repeatability and reproducibility across multiple users. This work highlights a simple method for increasing sensitivity and reducing turnaround time of PCR-based C. auris detection and exhibits promise for integration into point-of-care platforms towards real-time triage of colonized patients.
Collapse
Affiliation(s)
- Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Marissa Totten
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean X Zhang
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Singh P, Srivastava S, Malhotra R, Mathur P. Identification of Candida auris by PCR and assessment of biofilm formation by crystal violet assay. Indian J Med Microbiol 2023; 46:100421. [PMID: 37945115 DOI: 10.1016/j.ijmmb.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Candida auris is a notorious pathogen capable of forming biofilms on devices as well as host tissues, often culminating in infections. We evaluated characteristics of infections and the methods to diagnose C. auris over a period of three years in a tertiary care hospital. METHODS Patients admitted between 2018 and 2020, who had candidemia due to C. auris were included in the study. Identification was performed using HiCrome™ Candida Differential Agar, Vitek 2 (BioMérieux, Inc., Marcy-l'Etoile, France) and MALDI-TOF, Vitek-MS. Identification was confirmed by detection of rDNA region covering part of 5.8S, entire of ITS2, and part of 28S by polymerase chain reaction (PCR). Biofilm formation was assessed by crystal violet staining. RESULTS Presence of central line and broad spectrum antimicrobials were noted in all patients whereas total parenteral nutrition was given in 82.1% of these patients. Identification by Vitek2 v8.1 correlated with MALDI-TOF MS. PCR products of length 163 bp were obtained in all isolates as visualized by agarose gel electrophoresis. The biofilm quantity measured as A560 of the twenty-eight C. auris isolates ranged from 0.16 to 0.80 compared to C. albicans. CONCLUSIONS C. auris can be identified by PCR targeting specific rDNA region. Biofilm formation and quantification can be achieved by growing C. auris isolates in Mueller-Hinton broth over a duration of 48 h.
Collapse
Affiliation(s)
- Parul Singh
- Department of Microbiology, Trauma Centre, AIIMS, New Delhi, India.
| | | | - Rajesh Malhotra
- Department of Orthopaedics & Chief, Trauma Centre, AIIMS, New Delhi, India.
| | - Purva Mathur
- Department of Laboratory Medicine, Trauma Centre, AIIMS, New Delhi, India.
| |
Collapse
|
7
|
Zeng H, Stadler M, Abraham WR, Müsken M, Schrey H. Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in Candida albicans and Candida auris. J Fungi (Basel) 2023; 9:726. [PMID: 37504715 PMCID: PMC10381533 DOI: 10.3390/jof9070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wolf-Rainer Abraham
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Sawant S, Baldwin TC, Metryka O, Rahman A. Evaluation of the Effect of Plectranthus amboinicus L. Leaf Extracts on the Bacterial Antioxidant System and Cell Membrane Integrity of Pseudomonas aeruginosa PA01 and Staphylococcus aureus NCTC8325. Pathogens 2023; 12:853. [PMID: 37375543 DOI: 10.3390/pathogens12060853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plectranthus amboinicus (Indian borage) has been extensively studied for its medicinal properties, which can be exploited to develop new antimicrobial therapeutics. The current study investigated the effect of Plectranthus amboinicus leaf extracts on the catalase activity, reactive oxygen species, lipid peroxidation, cytoplasmic membrane permeability, and efflux pump activity in S. aureus NCTC8325 and P. aeruginosa PA01. As the enzyme catalase protects bacteria against oxidative stress, disruption of its activity creates an imbalance in reactive oxygen species (ROS) levels, which subsequently oxidizes lipid chains, leading to lipid peroxidation. In addition, bacterial cell membranes are a potential target for new antibacterial agents, as efflux pump systems play a crucial role in antimicrobial resistance. Upon exposure of the microorganisms to Indian borage leaf extracts, the observed catalase activity decreased by 60% and 20% in P. aeruginosa and S. aureus, respectively. The generation of ROS can cause oxidation reactions to occur within the polyunsaturated fatty acids of the lipid membranes and induce lipid peroxidation. To investigate these phenomena, the increase in ROS activity in P. aeruginosa and S. aureus was studied using H2DCFDA, which is oxidized to 2',7'-dichlorofluorescein (DCF) by ROS. Furthermore, the concentration of lipid peroxidation product (malondialdehyde) was assessed using the Thiobarbituric acid assay and was shown to increase by 42.4% and 42.5% in P. aeruginosa and S. aureus, respectively. The effect of the extracts on the cell membrane permeability was monitored using diSC3-5 dye and it was observed that the cell membrane permeability of P. aeruginosa increased by 58% and of S. aureus by 83%. The effect on efflux pump activity was investigated using Rhodamine-6-uptake assay, which displayed a decrease in efflux activity of 25.5% in P. aeruginosa and 24.2% in S. aureus after treatment with the extracts. This combination of different methods to study various bacterial virulence factors provides a more robust, mechanistic understanding of the effect of P. amboinicus extracts on P. aeruginosa and S. aureus. This study thus represents the first report of the assessment of the effect of Indian borage leaf extracts on bacterial antioxidant systems and bacterial cell membranes, and can facilitate the future development of bacterial resistance modifying agents derived from P. amboinicus.
Collapse
Affiliation(s)
- Sheeba Sawant
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Timothy C Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Ayesha Rahman
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
- School of Healthcare, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
9
|
Rather IA, Wani MY, Kamli MR, Sabir JSM, Hakeem KR, Firoz A, Park YH, Hor YY. Limosilactobacillus fermentum KAU0021 Abrogates Mono- and Polymicrobial Biofilms Formed by Candida albicans and Staphylococcus aureus. Pharmaceutics 2023; 15:pharmaceutics15041079. [PMID: 37111565 PMCID: PMC10145238 DOI: 10.3390/pharmaceutics15041079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated infections. In the present study, we investigated the antimicrobial potential of Lactobacillus metabolite extracts (LMEs) purified from cell-free supernatant of four Lactobacillus strains (KAU007, KAU0010, KAU0021, and Pro-65). Furthermore, LME obtained from the strain KAU0021 (LMEKAU0021), being the most effective, was analyzed for its anti-biofilm property against mono- and polymicrobial biofilms formed by C. albicans and S. aureus. The impact of LMEKAU0021 on membrane integrity in single and mixed culture conditions was also evaluated using propidium iodide. The MIC values recorded for LMEKAU0021 was 406 µg/mL, 203 µg/mL, and 406 µg/mL against planktonic cells of C. albicans SC5314, S. aureus and polymicrobial culture, respectively. The LMEKAU0021 at sub-MIC values potentially abrogates both biofilm formation as well as 24 h mature mono- and polymicrobial biofilms. These results were further validated using different microscopy and viability assays. For insight mechanism, LMEKAU0021 displayed a strong impact on cell membrane integrity of both pathogens in single and mixed conditions. A hemolytic assay using horse blood cells at different concentrations of LMEKAU0021 confirmed the safety of this extract. The results from this study correlate the antimicrobial and anti-biofilm properties of lactobacilli against bacterial and fungal pathogens in different conditions. Further in vitro and in vivo studies determining these effects will support the aim of discovering an alternative strategy for combating serious polymicrobial infections caused by C. albicans and S. aureus.
Collapse
|
10
|
Gong X, Srivastava V, Naicker P, Khan A, Ahmad A. Candida parapsilosis Cell Wall Proteome Characterization and Effectiveness against Hematogenously Disseminated Candidiasis in a Murine Model. Vaccines (Basel) 2023; 11:vaccines11030674. [PMID: 36992262 DOI: 10.3390/vaccines11030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Candida parapsilosis poses huge treatment challenges in the clinical settings of South Africa, and often causes infections among immunocompromised patients and underweight neonates. Cell wall proteins have been known to play vital roles in fungal pathogenesis, as these are the first points of contact toward environments, the host, and the immune system. This study characterized the cell wall immunodominant proteins of pathogenic yeast C. parapsilosis and evaluated their protective effects in mice, which could add value in vaccine development against the rising C. parapsilosis infections. Among different clinical strains, the most pathogenic and multidrug-resistant C. parapsilosis isolate was selected based on their susceptibility towards antifungal drugs, proteinase, and phospholipase secretions. Cell wall antigens were prepared by β-mercaptoethanol/ammonium bicarbonate extraction from selected C. parapsilosis strains. Antigenic proteins were identified using LC–MS/MS, where 933 proteins were found, with 34 being immunodominant. The protective effect of the cell wall immunodominant proteins was observed by immunizing BALB/c mice with cell wall protein extracts. After the immunization and booster, the BALC/c mice were challenged with a lethal dose of C. parapsilosis. In vivo results demonstrated increased survival rates and lower fungal burden in vital organs in the immunized mice compared to the unimmunized mice, thereby confirming the immunogenic property of cell wall-associated proteins of C. parapsilosis. Therefore, these results advocated the potential of these cell wall proteins to act as biomarkers for the development of diagnostic assays and/or vaccines against infections caused by C. parapsilosis.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Previn Naicker
- NextGen Health, Council for Scientific and Industrial Research, Pretoria 0184, South Africa
| | - Amber Khan
- The Scintillon Institute, 6404 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
11
|
Characterization of Defensin-like Protein 1 for Its Anti-Biofilm and Anti-Virulence Properties for the Development of Novel Antifungal Drug against Candida auris. J Fungi (Basel) 2022; 8:jof8121298. [PMID: 36547631 PMCID: PMC9786216 DOI: 10.3390/jof8121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris has emerged as a pan-resistant pathogenic yeast among immunocompromised patients worldwide. As this pathogen is involved in biofilm-associated infections with serious medical manifestations due to the collective expression of pathogenic attributes and factors associated with drug resistance, successful treatment becomes a major concern. In the present study, we investigated the candidicidal activity of a plant defensin peptide named defensin-like protein 1 (D-lp1) against twenty-five clinical strains of C. auris. Furthermore, following the standard protocols, the D-lp1 was analyzed for its anti-biofilm and anti-virulence properties. The impact of these peptides on membrane integrity was also evaluated. For cytotoxicity determination, a hemolytic assay was conducted using horse blood. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values ranged from 0.047-0.78 mg/mL and 0.095-1.56 mg/mL, respectively. D-lp1 at sub-inhibitory concentrations potentially abrogated both biofilm formation and 24-h mature biofilms. Similarly, the peptide severely impacted virulence attributes in the clinical strain of C. auris. For the insight mechanism, D-lp1 displayed a strong impact on the cell membrane integrity of the test pathogen. It is important to note that D-lp1 at sub-inhibitory concentrations displayed minimal hemolytic activity against horse blood cells. Therefore, it is highly useful to correlate the anti-Candida property of D-lp1 along with anti-biofilm and anti-virulent properties against C. auris, with the aim of discovering an alternative strategy for combating serious biofilm-associated infections caused by C. auris.
Collapse
|
12
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
13
|
Dekkerová J, Černáková L, Kendra S, Borghi E, Ottaviano E, Willinger B, Bujdáková H. Farnesol Boosts the Antifungal Effect of Fluconazole and Modulates Resistance in Candida auris through Regulation of the CDR1 and ERG11 Genes. J Fungi (Basel) 2022; 8:jof8080783. [PMID: 35893151 PMCID: PMC9332773 DOI: 10.3390/jof8080783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is considered a serious fungal pathogen frequently exhibiting a high resistance to a wide range of antifungals. In this study, a combination of the quorum-sensing molecule farnesol (FAR) and fluconazole (FLU) was tested on FLU-resistant C. auris isolates (C. auris S and C. auris R) compared to the susceptible C. auris H261. The aim was to assess the possible synergy between FAR and FLU, by reducing the FLU minimal inhibitory concentration, and to determine the mechanism underlying the conjunct effect. The results confirmed a synergic effect between FAR and FLU with a calculated FIC index of 0.75 and 0.4 for C. auris S and C. auris R, respectively. FAR modulates genes involved in azole resistance. When FAR was added to the cells in combination with FLU, a significant decrease in the expression of the CDR1 gene was observed in the resistant C. auris isolates. FAR seems to block the Cdr1 efflux pump triggering a restoration of the intracellular content of FLU. These results were supported by observed increasing accumulation of rhodamine 6G by C. auris cells. Moreover, C. auris treated with FAR showed an ERG11 gene down-regulation. Overall, these results suggest that FAR is an effective modulator of the Cdr1 efflux pump in C. auris and, in combination with FLU, enhances the activity of this azole, which might be a promising strategy to control infections caused by azole-resistant C. auris.
Collapse
Affiliation(s)
- Jaroslava Dekkerová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
| | - Elisa Borghi
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Via A. di Rudini 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (J.D.); (L.Č.); (S.K.)
- Correspondence: ; Tel.: +421-2-9014-9436
| |
Collapse
|
14
|
Kamli MR, Alzahrani EA, Albukhari SM, Ahmad A, Sabir JSM, Malik MA. Combination Effect of Novel Bimetallic Ag–Ni Nanoparticles with Fluconazole against Candida albicans. J Fungi (Basel) 2022; 8:jof8070733. [PMID: 35887488 PMCID: PMC9316949 DOI: 10.3390/jof8070733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing frequency of antifungal drug resistance among pathogenic yeast “Candida” has posed an immense global threat to the public healthcare sector. The most notable species of Candida causing most fungal infections is Candida albicans. Furthermore, recent research has revealed that transition and noble metal combinations can have synergistic antimicrobial effects. Therefore, a one-pot seedless biogenic synthesis of Ag-Ni bimetallic nanoparticles (Ag–Ni NPs) using Salvia officinalis aqueous leaf extract is described. Various techniques, such as UV–vis, FTIR, XRD, SEM, EDX, and TGA, were used to validate the production of Ag-Ni NPs. The antifungal susceptibility of Ag-Ni NPs alone and in combination with fluconazole (FLZ) was tested against FLZ-resistant C. albicans isolate. Furthermore, the impacts of these NPs on membrane integrity, drug efflux pumps, and biofilms formation were evaluated. The MIC (1.56 μg/mL) and MFC (3.12 μg/mL) results indicated potent antifungal activity of Ag-Ni NPs against FLZ-resistant C. albicans. Upon combination, synergistic interaction was observed between Ag-Ni NPs and FLZ against C. albicans 5112 with a fractional inhibitory concentration index (FICI) value of 0.31. In-depth studies revealed that Ag-Ni NPs at higher concentrations (3.12 μg/mL) have anti-biofilm properties and disrupt membrane integrity, as demonstrated by scanning electron microscopy results. In comparison, morphological transition was halted at lower concentrations (0.78 μg/mL). From the results of efflux pump assay using rhodamine 6G (R6G), it was evident that Ag-Ni NPs blocks the efflux pumps in the FLZ-resistant C. albicans 5112. Targeting biofilms and efflux pumps using novel drugs will be an alternate approach for combatting the threat of multi-drug resistant (MDR) stains of C. albicans. Therefore, this study supports the usage of Ag-Ni NPs to avert infections caused by drug resistant strains of C. albicans.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elham A. Alzahrani
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Soha M. Albukhari
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.R.K.); (J.S.M.S.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.A.A.); (S.M.A.)
- Correspondence:
| |
Collapse
|
15
|
Rather IA, Sabir JSM, Asseri AH, Wani MY, Ahmad A. Triazole Derivatives Target 14α-Demethylase (LDM) Enzyme in Candida albicans Causing Ergosterol Biosynthesis Inhibition. J Fungi (Basel) 2022; 8:jof8070688. [PMID: 35887444 PMCID: PMC9323696 DOI: 10.3390/jof8070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is the most dominant and prevalent cause of fungal infections in humans. Azoles are considered as first-line drugs for the treatment of these infections. However, their prolonged and insistent use has led to multidrug resistance and treatment failures. To overcome this, modification or derivatization of the azole ring has led to the development of new and effective antifungal molecules. In a previous study, we reported on the development of new triazole-based molecules as potential antifungal agents against Candida auris. In this study, the most potent molecules from the previous study were docked and simulated with lanosterol 14-alpha demethylase enzyme. These compounds were further evaluated for in vitro susceptibility testing against C. albicans. In silico results revealed favorable structural dynamics of the compounds, implying that the compounds would be able to effectively bind to the target enzyme, which was further manifested by the strong interaction of the test compounds with the amino acid residues of the target enzyme. In vitro studies targeting quantification of ergosterol content revealed that pta1 was the most active compound and inhibited ergosterol production by >90% in both drug-susceptible and resistant C. albicans isolates. Furthermore, RT-qPCR results revealed downregulation of ERG11 gene when C. albicans cells were treated with the test compound, which aligns with the decreased ergosterol content. In addition, the active triazole derivatives were also found to be potent inhibitors of biofilm formation. Both in silico and in vitro results indicate that these triazole derivatives have the potential to be taken to the next level of antifungal drug development.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (M.Y.W.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (M.Y.W.); (A.A.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa
- Academic Hospital, National Health Laboratory Service, Infection Control Unit, Charlotte Maxeke Johannesburg, Johannesburg 2193, South Africa
- Correspondence: (I.A.R.); (M.Y.W.); (A.A.)
| |
Collapse
|
16
|
Lee PW, Totten M, Chen L, Chen FE, Trick AY, Shah K, Ngo HT, Jin M, Hsieh K, Zhang SX, Wang TH. A Portable Droplet Magnetofluidic Device for Point-of-Care Detection of Multidrug-Resistant Candida auris. Front Bioeng Biotechnol 2022; 10:826694. [PMID: 35425764 PMCID: PMC9003015 DOI: 10.3389/fbioe.2022.826694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen that can cause severe and deadly infections. To date, C. auris has spurred outbreaks in healthcare settings in thirty-three countries across five continents. To control and potentially prevent its spread, there is an urgent need for point-of-care (POC) diagnostics that can rapidly screen patients, close patient contacts, and surveil environmental sources. Droplet magnetofluidics (DM), which leverages nucleic acid-binding magnetic beads for realizing POC-amenable nucleic acid detection platforms, offers a promising solution. Herein, we report the first DM device—coined POC.auris—for POC detection of C. auris. As part of POC.auris, we have incorporated a handheld cell lysis module that lyses C. auris cells with 2 min hands-on time. Subsequently, within the palm-sized and automated DM device, C. auris and control DNA are magnetically extracted and purified by a motorized magnetic arm and finally amplified via a duplex real-time quantitative PCR assay by a miniaturized rapid PCR module and a miniaturized fluorescence detector—all in ≤30 min. For demonstration, we use POC.auris to detect C. auris isolates from 3 major clades, with no cross reactivity against other Candida species and a limit of detection of ∼300 colony forming units per mL. Taken together, POC.auris presents a potentially useful tool for combating C. auris.
Collapse
Affiliation(s)
- Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Marissa Totten
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Y. Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kushagra Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Hoan Thanh Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| | - Sean X. Zhang
- Division of Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kuangwen Hsieh, ; Sean X. Zhang, ; Tza-Huei Wang,
| |
Collapse
|
17
|
Mariita RM, Davis JH, Lottridge MM, Randive RV. Shining light on multi-drug resistant Candida auris: Ultraviolet-C disinfection, wavelength sensitivity, and prevention of biofilm formation of an emerging yeast pathogen. Microbiologyopen 2022; 11:e1261. [PMID: 35212481 PMCID: PMC8767514 DOI: 10.1002/mbo3.1261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Candida auris is an emerging fungal superbug of worldwide interest. It is associated with high mortality rates and exhibits increased resistance to antifungals. Ultraviolet subtype C (UVC) light can be used to disinfect surfaces to mitigate its spread. The objectives of this study were (1) To investigate UVC disinfection performances and wavelength sensitivity of C. auris. (2) To evaluate the UVC dose required for the prevention of biofilm formation on stainless-steel, plastic (polystyrene), and poly-cotton fabric surfaces. C. auris was grown following standard procedures. The study utilized six different UVC LED arrays with wavelengths between 252 and 280 nm. Arrays were set at similar intensities, to obtain doses of 5-40 mJ cm-2 and similar irradiation time. Disinfection performance for each array was determined using log reduction value (LRV) and percentage reduction by comparing the controls against the irradiated treatments. Evaluation of the ability of 267 nm UVC LEDs to prevent C. auris biofilm formation was investigated using stainless-steel, plastic coupons, and poly-cotton fabric. Peak sensitivity to UVC disinfection was between 267 and 270 nm. With 20 mJ cm-2 , the study obtained ≥LRV3. On stainless-steel coupons, 30 mJ cm-2 was sufficient to prevent biofilm formation, while on plastic, this required 10 mJ cm-2 . A dose of 60 mJ cm-2 reduced biofilms on poly-cotton fabric significantly (R2 = 0.9750, p = 0.0002). The study may allow for the design and implementation of disinfection systems.
Collapse
Affiliation(s)
- Richard M. Mariita
- Product Engineering DepartmentCrystal IS Inc., an Asahi Kasei CompanyGreen IslandNew YorkUSA
| | - James H. Davis
- Product Engineering DepartmentCrystal IS Inc., an Asahi Kasei CompanyGreen IslandNew YorkUSA
| | - Michelle M. Lottridge
- Product Engineering DepartmentCrystal IS Inc., an Asahi Kasei CompanyGreen IslandNew YorkUSA
| | - Rajul V. Randive
- Product Engineering DepartmentCrystal IS Inc., an Asahi Kasei CompanyGreen IslandNew YorkUSA
| |
Collapse
|
18
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
19
|
Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021; 32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Candida auris emerges as an important causative agent of fungal infections, with worrisome mortality rates, mainly in immunocompromised individuals. This scenario is worsened by the limited availability of antifungal drugs and the increasing development of resistance to them. Due to the relevance of C. auris infections to public health, several studies aimed to discover new antifungal compounds capable of overcoming this fungus. Nonetheless, these information are decentralized, precluding the understandment of the current status of the search for new anti-C. auris compounds. Thus, this integrative review aimed to summarize information regarding anti-C. auris compounds reported in literature. After using predefined selection criteria, 71 articles were included in this review, and data from a total of 101 substances were extracted. Most of the studies tested synthetic substances, including several azoles. Moreover, drug repurposing emerges as a suitable strategy to discover new anti-C. auris agents. Few studies, however, assessed the mechanism of action and the in vivo antifungal activity of the compounds. Therefore, more studies must be performed to evaluate the usefulness of these substances as anti-C. auris therapies.
Collapse
|
20
|
Abstract
The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid β-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCECandida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward β-oxidation. These results provide definitive explanations for the observed antifungal effects.
Collapse
|
21
|
Garcia-Bustos V, Cabanero-Navalon MD, Ruiz-Saurí A, Ruiz-Gaitán AC, Salavert M, Tormo MÁ, Pemán J. What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms 2021; 9:2177. [PMID: 34683498 PMCID: PMC8538163 DOI: 10.3390/microorganisms9102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Candida auris has unprecedently emerged as a multidrug resistant fungal pathogen, considered a serious global threat due to its potential to cause nosocomial outbreaks and deep-seated infections with staggering transmissibility and mortality, that has put health authorities and institutions worldwide in check for more than a decade now. Due to its unique features not observed in other yeasts, it has been categorised as an urgent threat by the Centers for Disease Control and Prevention and other international agencies. Moreover, epidemiological alerts have been released in view of the increase of healthcare-associated C. auris outbreaks in the context of the COVID-19 pandemic. This review summarises the current evidence on C. auris since its first description, from virulence to treatment and outbreak control, and highlights the knowledge gaps and future directions for research efforts.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Marta D. Cabanero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
| | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Alba C. Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - María Á. Tormo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
22
|
Mould DL, Hogan DA. Intraspecies heterogeneity in microbial interactions. Curr Opin Microbiol 2021; 62:14-20. [PMID: 34034081 DOI: 10.1016/j.mib.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Microbial interactions are increasingly recognized as an integral part of microbial physiology. Cell-cell communication mediated by quorum sensing and metabolite exchange is a formative element of microbial interactions. However, loss-of-function mutations in quorum-sensing components are common across diverse species. Furthermore, quorum sensing is modulated by small molecules and environmental conditions that may be altered in the presence of other microbial species. Recent evidence highlights how strain heterogeneity impacts microbial interactions. There is great potential for microbial interactions to act as selective pressures that influence the emergence of common mutations in quorum-sensing genes across the bacterial and fungal domains.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
23
|
Černáková L, Roudbary M, Brás S, Tafaj S, Rodrigues CF. Candida auris: A Quick Review on Identification, Current Treatments, and Challenges. Int J Mol Sci 2021; 22:4470. [PMID: 33922907 PMCID: PMC8123192 DOI: 10.3390/ijms22094470] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Susana Brás
- Centre of Biological Engineering, LIBRO—‘Laboratório de Investigação em Biofilmes Rosário Oliveira’, University of Minho, 4710-057 Braga, Portugal;
| | - Silva Tafaj
- Microbiology Department, University Hospital “Shefqet Ndroqi”, 1044 Tirana, Albania;
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
24
|
Costa AF, Silva LDC, Amaral AC. Farnesol: An approach on biofilms and nanotechnology. Med Mycol 2021; 59:958-969. [PMID: 33877362 DOI: 10.1093/mmy/myab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Biofilms are important virulence factor in infections caused by microorganisms because of its complex structure, which provide resistance to conventional antimicrobials. Strategies involving the use of molecules capable of inhibiting their formation and also act synergistically with conventional drugs have been explored. Farnesol is a molecule present in essential oils and produced by Candida albicans as a quorum sensing component. This sesquiterpene presents inhibitory properties in the formation of microbial biofilms and synergism with antimicrobials used in clinical practice, and can be exploited even for eradication of biofilms formed by drug-resistant microorganisms. Despite this, farnesol has physical and chemical characteristics that can limit its use, such as high hydrophobicity and volatility. Therefore, nanotechnology may represent an option to improve the efficiency of this molecule in high complex environments such as biofilms. Nanostructured systems present important results in the improvement of treatment with different commercial drugs and molecules with therapeutic or preventive potential. The formation of nanoparticles offers advantages such as protection of the incorporated drugs against degradation, improved biodistribution and residence time in specific treatment sites. The combination of farnesol with nanotechnology may be promising for the development of more effective antibiofilm therapies, as it can improve its solubility, reduce volatility, and increase bioavailability. This review summarizes existing data about farnesol, its action on biofilms, and discusses its encapsulation in nanostructured systems. LAY SUMMARY Farnesol is a natural compound that inhibits the formation of biofilms from different microbial species. The encapsulation of this molecule in nanoparticles is a promising alternative for the development of more effective therapies against biofilms.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biological Science Institute, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil.,Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Lívia do Carmo Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| |
Collapse
|
25
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
26
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
27
|
Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics (Basel) 2020; 9:antibiotics9090568. [PMID: 32887362 PMCID: PMC7558570 DOI: 10.3390/antibiotics9090568] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.
Collapse
|