1
|
Sadek M, Stover KR, Liu X, Reed MA, Weaver DF, Reid AY. IDO-1 inhibition improves outcome after fluid percussion injury in adult male rats. J Neurosci Res 2024; 102:e25338. [PMID: 38706427 DOI: 10.1002/jnr.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.
Collapse
Affiliation(s)
- Marawan Sadek
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaojing Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
3
|
Liljedahl E, Konradsson E, Linderfalk K, Gustafsson E, Petersson K, Ceberg C, Redebrandt HN. Comparable survival in rats with intracranial glioblastoma irradiated with single-fraction conventional radiotherapy or FLASH radiotherapy. Front Oncol 2024; 13:1309174. [PMID: 38322292 PMCID: PMC10845047 DOI: 10.3389/fonc.2023.1309174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Background Radiotherapy increases survival in patients with glioblastoma. However, the prescribed dose is limited by unwanted side effects on normal tissue. Previous experimental studies have shown that FLASH radiotherapy (FLASH-RT) can reduce these side effects. Still, it is important to establish an equal anti-tumor efficacy comparing FLASH-RT to conventional radiotherapy (CONV-RT). Methods Fully immunocompetent Fischer 344 rats with the GFP-positive NS1 intracranial glioblastoma model were irradiated with CONV-RT or FLASH-RT in one fraction of 20 Gy, 25 Gy or 30 Gy. Animals were monitored for survival and acute dermal side effects. The brains were harvested upon euthanasia and tumors were examined post mortem. Results Survival was significantly increased in animals irradiated with CONV-RT and FLASH-RT at 20 Gy and 25 Gy compared to control animals. The longest survival was reached in animals irradiated with FLASH-RT and CONV-RT at 25 Gy. Irradiation at 30 Gy did not lead to increased survival, despite smaller tumors. Tumor size correlated inversely with irradiation dose, both in animals treated with CONV-RT and FLASH-RT. Acute dermal side effects were mild, but only a small proportion of the animals were alive for evaluation of those side effects. Conclusion The dose response was similar for CONV-RT and FLASH-RT in the present model. Tumor size upon the time of euthanasia correlated inversely with the irradiation dose.
Collapse
Affiliation(s)
- Emma Liljedahl
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Linderfalk
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
5
|
Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Osther K, Ceberg C, Redebrandt HN. Combined anti-C1-INH and radiotherapy against glioblastoma. BMC Cancer 2023; 23:106. [PMID: 36717781 PMCID: PMC9887755 DOI: 10.1186/s12885-023-10583-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A more effective immune response against glioblastoma is needed in order to achieve better tumor control. Radiotherapy can induce anti-tumor mediated immune reactions, in addition to its dose response effects. The complement system can function as a bridge between innate and adaptive immune responses. Combining radiotherapy and complement activating therapy is theoretically interesting. METHODS Radiotherapy at 8 Gy × 2 was combined with treatment against C1-inhibitor (C1-INH), a potent inhibitor of activation of the classical pathway of the complement system. Anti-C1-INH was delivered as intratumoral injections. Fully immunocompetent Fischer 344 rats with NS1 glioblastoma tumors were treated. Survival was monitored as primary outcome. Models with either intracranial or subcutaneous tumors were evaluated separately. RESULTS In the intracranial setting, irradiation could prolong survival, but there was no additional survival gain as a result of anti-C1-INH treatment. In animals with subcutaneous tumors, combined radio-immunotherapy with anti-C1-INH and irradiation at 8 Gy × 2 significantly prolonged survival compared to control animals, whereas irradiation or anti-C1-INH treatment as single therapies did not lead to significantly increased survival compared to control animals. CONCLUSIONS Anti-C1-INH treatment could improve the efficacy of irradiation delivered at sub-therapeutic doses and delay tumor growth in the subcutaneous tumor microenvironment. In the intracranial setting, the doses of anti-C1-INH were not enough to achieve any survival effect in the present setting.
Collapse
Affiliation(s)
- Emma Liljedahl
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Elise Konradsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Karolina Förnvik Jonsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Jill K. Olofsson
- grid.5254.60000 0001 0674 042XDepartment for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Osther
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Crister Ceberg
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Pagni RL, Souza PDC, Pegoraro R, Porchia BFMM, da Silva JR, Aps LRDMM, Silva MDO, Rodrigues KB, Sales NS, Ferreira LCDS, Moreno ACR. Interleukin-6 and indoleamine-2,3-dioxygenase as potential adjuvant targets for Papillomavirus-related tumors immunotherapy. Front Immunol 2022; 13:1005937. [PMID: 36405719 PMCID: PMC9668887 DOI: 10.3389/fimmu.2022.1005937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
High-risk Human papillomavirus (HPV) infections represent an important public health issue. Nearly all cervical malignancies are associated with HPV, and a range of other female and male cancers, such as anogenital and oropharyngeal. Aiming to treat HPV-related tumors, our group developed vaccines based on the genetic fusion of the HSV-1 glycoprotein D (gD) with the HPV-16 E7 oncoprotein (gDE7 vaccines). Despite the promising antitumor results reached by gDE7 vaccines in mice, combined therapies may increase the therapeutic effects by improving antitumor responses and halting immune suppressive mechanisms elicited by tumor cells. Considering cancer immunosuppressive mechanisms, indoleamine-2,3-dioxygenase (IDO) enzyme and interleukin-6 (IL-6) stand out in HPV-related tumors. Since IL-6 sustained the constitutive IDO expression, here we evaluated the therapeutic outcomes achieved by the combination of active immunotherapy based on a gDE7 protein-based vaccine with adjuvant treatments involving blocking IDO, either by use of IDO inhibitors or IL-6 knockout mice. C57BL/6 wild-type (WT) and transgenic IL-6-/- mice were engrafted with HPV16-E6/E7-expressing TC-1 cells and treated with 1-methyl-tryptophan isoforms (D-1MT and DL-1MT), capable to inhibit IDO. In vitro, the 1MT isoforms reduced IL-6 gene expression and IL-6 secretion in TC-1 cells. In vivo, the multi-targeted treatment improved the antitumor efficacy of the gDE7-based protein vaccine. Although the gDE7 immunization achieves partial tumor mass control in combination with D-1MT or DL-1MT in WT mice or when administered in IL-6-/- mice, the combination of gDE7 and 1MT in IL-6-/- mice further enhanced the antitumor effects, reaching total tumor rejection. The outcome of the combined therapy was associated with an increased frequency of activated dendritic cells and decreased frequencies of intratumoral polymorphonuclear myeloid-derived suppressor cells and T regulatory cells. In conclusion, the present study demonstrated that IL-6 and IDO negatively contribute to the activation of immune cells, particularly dendritic cells, reducing gDE7 vaccine-induced protective immune responses and, therefore, opening perspectives for the use of combined strategies based on inhibition of IL-6 and IDO as immunometabolic adjuvants for immunotherapies against HPV-related tumors.
Collapse
Affiliation(s)
- Roberta Liberato Pagni
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia da Cruz Souza
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Pegoraro
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Felício Milazzotto Maldonado Porchia
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
- ImunoTera Soluções Terapêuticas Ltda., São Paulo, Brazil
| | - Jamile Ramos da Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Luana Raposo de Melo Moraes Aps
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
- ImunoTera Soluções Terapêuticas Ltda., São Paulo, Brazil
| | - Mariângela de Oliveira Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Karine Bitencourt Rodrigues
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Natiely Silva Sales
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina Ramos Moreno
- Laboratório de Desenvolvimento de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
7
|
Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Ceberg C, Redebrandt HN. Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Sci Rep 2022; 12:12285. [PMID: 35853933 PMCID: PMC9296533 DOI: 10.1038/s41598-022-16612-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy can induce an immunological response. One limiting factor is side effects on normal tissue. Using FLASH radiotherapy, side effects could possibly be reduced. The efficacy of FLASH in relation to conventional radiotherapy (CONV-RT) has not been extensively explored in fully immunocompetent animals. Fully immunocompetent Fischer 344 rats were inoculated with NS1 glioblastoma cells subcutaneously or intracranially. Radiotherapy was delivered with FLASH or CONV-RT at 8 Gy × 2 (subcutaneous tumors) and 12.5 Gy × 2 (intracranial tumors). Cured animals were re-challenged in order to explore long-term anti-tumor immunity. Serum analytes and gene expression were explored. The majority of animals with subcutaneous tumors were cured when treated with FLASH or CONV-RT at 8 Gy × 2. Cured animals could reject tumor re-challenge. TIMP-1 in serum was reduced in animals treated with FLASH 8 Gy × 2 compared to control animals. Animals with intracranial tumors survived longer when treated with FLASH or CONV-RT at 12.5 Gy × 2, but cure was not reached. CONV-RT and FLASH were equally effective in fully immunocompetent animals with glioblastoma. Radiotherapy was highly efficient in the subcutaneous setting, leading to cure and long-term immunity in the majority of the animals.
Collapse
Affiliation(s)
- Emma Liljedahl
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karolina Förnvik Jonsson
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jill K Olofsson
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Department of Neurosurgery, Skåne University Hospital, Rausing Laboratory, Lund University, BMC D10, 221 84, Lund, Sweden.
| |
Collapse
|
8
|
Hosseinalizadeh H, Mahmoodpour M, Samadani AA, Roudkenar MH. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies. Med Oncol 2022; 39:130. [PMID: 35716323 PMCID: PMC9206138 DOI: 10.1007/s12032-022-01724-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). While IDO1 is generally not expressed at appreciable levels in the adult central nervous system, it is rapidly stimulated and highly expressed in response to ongoing immune surveillance in cancer. Increased levels of immune surveillance in cancer are thus related to higher intratumoral IDO expression levels and, as a result, a worse OS in GBM patients. Conversion of the important amino acid tryptophan into downstream catabolite known as kynurenines is the major function of IDO. Decreasing tryptophan and increasing the concentration of immunomodulatory tryptophan metabolites has been shown to induce T-cell apoptosis, increase immunosuppressive programming, and death of tumor antigen-presenting dendritic cells. This observation supported the immunotherapeutic strategy, and the targeted molecular therapy that suppresses IDO1 activity. We review the current understanding of the role of IDO1 in tumor immunological escape in brain tumors, the immunomodulatory effects of its primary catabolites, preclinical research targeting this enzymatic pathway, and various issues that need to be overcome to increase the prospective immunotherapeutic relevance in the treatment of GBM malignancy.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Parastar St., 41887-94755, Rasht, Iran.
| |
Collapse
|
9
|
Zeng Y, Tan P, Ren C, Gao L, Chen Y, Hu S, Tang N, Chen C, Du S. Comprehensive Analysis of Expression and Prognostic Value of MS4As in Glioma. Front Genet 2022; 13:795844. [PMID: 35734424 PMCID: PMC9207330 DOI: 10.3389/fgene.2022.795844] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/25/2022] [Indexed: 12/27/2022] Open
Abstract
Glioma is the most common malignancy of the nervous system with high mortality rates. The MS4A family members have been reported as potential prognostic biomarkers in several cancers; however, the relationship between the MS4A family and glioma has not been clearly confirmed. In our study, we explored the prognostic value of MS4As as well as their potential pro-cancer mechanisms of glioma. Using bioinformatics analysis methods based on the data from public databases, we found that the expression of MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B was significantly overexpressed in glioma tissues compared with that of normal tissues. The Kaplan–Meier method and Cox proportional hazards models revealed that high levels of MS4As can be associated with a poorer prognosis; TMEM176A, TMEM176B, age, WHO grade, and IDH status were identified as independent prognostic factors. Enrichment analysis predicted that MS4As were related to tumor-related pathways and immune response, which might regulate the process of MS4As promoting tumorigenesis. Additionally, we analyzed the correlations of MS4A expression with immune cells and immune inhibitory molecules. Finally, data from the cell culture suggested that knockdown of the TMEM176B gene contributes to the decreased proliferation and migration of glioma cells. In conclusion, MS4A4A, MS4A4E, MS4A6A, MS4A7, TMEM176A, and TMEM176B may act as potential diagnostic or prognostic biomarkers in glioma and play a role in forming the immune microenvironment in gliomas.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peixin Tan
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chen Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxuan Gao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulei Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shushu Hu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Du
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Shasha Du,
| |
Collapse
|
10
|
Bekker RA, Kim S, Pilon-Thomas S, Enderling H. Mathematical modeling of radiotherapy and its impact on tumor interactions with the immune system. Neoplasia 2022; 28:100796. [PMID: 35447601 PMCID: PMC9043662 DOI: 10.1016/j.neo.2022.100796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/01/2022]
Abstract
Radiotherapy is a primary therapeutic modality widely utilized with curative intent. Traditionally tumor response was hypothesized to be due to high levels of cell death induced by irreparable DNA damage. However, the immunomodulatory aspect of radiation is now widely accepted. As such, interest into the combination of radiotherapy and immunotherapy is increasing, the synergy of which has the potential to improve tumor regression beyond that observed after either treatment alone. However, questions regarding the timing (sequential vs concurrent) and dose fractionation (hyper-, standard-, or hypo-fractionation) that result in improved anti-tumor immune responses, and thus potentially enhanced tumor inhibition, remain. Here we discuss the biological response to radiotherapy and its immunomodulatory properties before giving an overview of pre-clinical data and clinical trials concerned with answering these questions. Finally, we review published mathematical models of the impact of radiotherapy on tumor-immune interactions. Ranging from considering the impact of properties of the tumor microenvironment on the induction of anti-tumor responses, to the impact of choice of radiation site in the setting of metastatic disease, these models all have an underlying feature in common: the push towards personalized therapy.
Collapse
|
11
|
Xu Y, Zhang H, Sun Q, Geng R, Yuan F, Liu B, Chen Q. Immunomodulatory Effects of Tryptophan Metabolism in the Glioma Tumor Microenvironment. Front Immunol 2021; 12:730289. [PMID: 34659216 PMCID: PMC8517402 DOI: 10.3389/fimmu.2021.730289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common primary malignant tumor in adults’ central nervous system. While current research on glioma treatment is advancing rapidly, there is still no breakthrough in long-term treatment. Abnormalities in the immune regulatory mechanism in the tumor microenvironment are essential to tumor cell survival. The alteration of amino acid metabolism is considered a sign of tumor cells, significantly impacting tumor cells and immune regulation mechanisms in the tumor microenvironment. Despite the fact that the metabolism of tryptophan in tumors is currently discussed in the literature, we herein focused on reviewing the immune regulation of tryptophan metabolism in the tumor microenvironment of gliomas and analyzed possible immune targets. The objective is to identify potential targets for the treatment of glioma and improve the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Kynurenine Monooxygenase Expression and Activity in Human Astrocytomas. Cells 2021; 10:cells10082028. [PMID: 34440798 PMCID: PMC8393384 DOI: 10.3390/cells10082028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.
Collapse
|
13
|
Canine mast cell tumour cells regulate tryptophan catabolism via the expression of indoleamine 2,3-dioxygenase. Res Vet Sci 2021; 137:159-162. [PMID: 33984619 DOI: 10.1016/j.rvsc.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/28/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023]
Abstract
Indoleamine 2,3-deoxygenase (IDO) produced by cancer cells catabolizes tryptophan (TRP) to kynurenine (KYN) in the environment, resulting induction of cancer immune escape through induction of T cell anergy and enhancement of regulatory T cells. Recently, inhibition of IDO has been recognized as one of therapeutic strategies for human neoplastic diseases. However, there have been few reports about IDO-expressing cancers in dogs. In this study, we attempted to examine whether canine mast cell tumour (MCT) cells express IDO and modulate the concentration of TRP and KYN in the environment. BR, MPT-1.2, and MPT-3 cells were used as canine MCT cells. Expression of IDO was examined with RT-PCR and western blotting. Concentrations of TRP and KYN in the culture medium after incubation with canine MCT cells were detected with liquid chromatography-tandem mass spectrometry. The expression of mRNA and protein of IDO were confirmed in all samples extracted from canine MCT cells. TRP concentration in the culture medium was decreased and that of KYN was increased on incubation with canine MCT cells. The ratio of KYN/TRP, widely considered to represent IDO activity, was also significantly elevated. Moreover, treatment with an IDO inhibitor L-1-methyl-tryptophan (L-1MT) clearly diminished the elevation of KYN/TRP ratio induced by the incubation with canine MCT cells. Our results indicate that canine MCT cells could directly regulate the concentrations of TRP and KYN through expressing IDO, suggesting that canine MCT have an immune escape ability. Therefore, inhibition of IDO might be a novel strategy for the treatment of dogs with MCT.
Collapse
|