1
|
Herrero-García G, Pérez-Sancho M, Barroso P, Herranz-Benito C, Relimpio D, García-Seco T, Perelló A, Díez-Guerrier A, Pozo P, Balseiro A, Domínguez L, Gortázar C. One Health Farming: Noninvasive monitoring reveals links between farm vertebrate richness and pathogen markers in outdoor hoofstock. One Health 2024; 19:100924. [PMID: 39554755 PMCID: PMC11565532 DOI: 10.1016/j.onehlt.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Outdoor farming contributes to biodiversity conservation and enhances animal welfare, but also raises biosafety concerns due to livestock contact with potentially infected wildlife. Thus, there is a need to assess the balance between vertebrate species richness on farms, visits by wildlife species posing a biosafety risk, and pathogen circulation in open-air farming systems. We explored these links in a pilot study involving 15 open-air hoofstock farms (6 cattle, 5 small ruminant, and 4 pig farms), where we conducted interviews and risk point inspections and used two noninvasive tools: short-term camera trap (CT) deployment and environmental nucleic acid detection (ENAD). CTs were deployed to assess the richness of birds and mammals, as well as to determine the percentage of CTs detecting defined risk species. We also collected livestock feces and used sponges to sample surfaces for environmental DNA (eDNA), testing for nine pathogen markers. Total vertebrate richness ranged from 18 to 42 species, with waterholes significantly contributing to farm vertebrate richness, since 48.2 % of all wild vertebrates were detected at waterbodies, and 28.6 % were exclusively detected at waterholes. Pathogen markers detected at risk points correlated with those detected in livestock samples. Notably, the frequency of uidA marker detection correlated with the total number of pathogen markers detected per farm. Overall marker richness, an indicator of pathogen diversity, varied between farms, being higher in small ruminant farms compared to cattle or pig farms. At the farm level, wild vertebrate richness was negatively correlated with the richness of pathogen markers detected at risk points. Additionally, risk points with a higher probability of detecting more pathogen markers had lower vertebrate richness. Although CT-based assessments of vertebrate richness and ENAD-based pathogen marker detection are only indicators of actual biodiversity and farm health, respectively, our findings suggest that farmland vertebrate communities provide important ecosystem services and may help limit the circulation of multi-host pathogens.
Collapse
Affiliation(s)
- Gloria Herrero-García
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León 24071, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid 28040, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid 28040, Spain
| | - Patricia Barroso
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León 24071, Spain
| | - Carmen Herranz-Benito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid 28040, Spain
| | - David Relimpio
- SaBio Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ciudad Real 13071, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid 28040, Spain
| | - Alberto Perelló
- SaBio Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ciudad Real 13071, Spain
| | - Alberto Díez-Guerrier
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid 28040, Spain
| | - Pilar Pozo
- SaBio Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ciudad Real 13071, Spain
| | - Ana Balseiro
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad de León, León 24071, Spain
- Department of Animal Health, Mountain Livestock Institute (IGM, CSIC-ULE), Finca Marzanas, Grulleros, León 24346, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid 28040, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid 28040, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ciudad Real 13071, Spain
| |
Collapse
|
2
|
Ferreira EM, Cunha MV, Duarte EL, Mira A, Pinto D, Mendes I, Pereira AC, Pinto T, Acevedo P, Santos SM. Mapping high-risk areas for Mycobacterium tuberculosis complex bacteria transmission: Linking host space use and environmental contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176053. [PMID: 39244050 DOI: 10.1016/j.scitotenv.2024.176053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In many Mediterranean ecosystems, animal tuberculosis (TB), caused by Mycobacterium bovis, an ecovar of Mycobacterium tuberculosis complex (MTBC), is maintained by multi-host communities. It is hypothesised that interspecies transmission is mainly indirect via shared contaminated environments. Therefore, identifying spatial areas where MTBC bacteria occur and quantifying space use by susceptible hosts might help predict the spatial likelihood of transmission across the landscape. Here, we aimed to evaluate the transmission risk of MTBC in a multi-host system involving wildlife (ungulates and carnivores) and cattle (Bos taurus). We collected eighty-nine samples from natural substrates (water, soil, and mud) at 38 sampling sites in a TB endemic area within a Mediterranean agroforestry system in Portugal. These samples were analysed by real-time PCR to detect MTBC DNA. Additionally, host-specific space use intensity maps were obtained through camera-trapping covering the same sampling sites. Results evidenced that a significant proportion of samples were positive for MTBC DNA (49 %), suggesting that the contamination is widespread in the area. Moreover, they showed that the probability of MTBC occurrence in the environment was significantly influenced by topographic features (i.e., slope), although other non-significant predictor related with soil conditions (SMI: soil moisture index) incorporated the MTBC contamination model. The integration of host space use intensity maps with the spatial detection of MTBC showed that the red deer (Cervus elaphus) and wild boar (Sus scrofa) exhibited the highest percentages of high-risk areas for MTBC transmission. Furthermore, when considering the co-occurrence of multiple hosts, transmission risk analyses revealed that 26.5 % of the study area represented high-risk conditions for MTBC transmission, mainly in forest areas.
Collapse
Affiliation(s)
- Eduardo M Ferreira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa L Duarte
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Departamento de Medicina Veterinária, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal.
| | - António Mira
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Inês Mendes
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Pinto
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.
| | - Sara M Santos
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, University of Évora, Mitra, 7006-554 Évora, Portugal; IIFA - Institute for Advanced Studies and Research, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002 - 554 Évora, Portugal; Conservation Biology Lab, Department of Biology, University of Évora, Évora, Portugal.
| |
Collapse
|
3
|
Pereira AC, Pinto D, Cunha MV. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal-environment interface. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134473. [PMID: 38703681 DOI: 10.1016/j.jhazmat.2024.134473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Pereira AC, Lourenço J, Themudo G, Botelho A, Cunha MV. Population structure and history of Mycobacterium bovis European 3 clonal complex reveal transmission across ecological corridors of unrecognized importance in Portugal. Microbiol Spectr 2024; 12:e0382923. [PMID: 38771094 PMCID: PMC11218495 DOI: 10.1128/spectrum.03829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Lourenço
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Themudo
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Botelho
- INIAV, I.P.—National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Fareed Z, Rana A, Hadi SA, Geluk A, Hope JC, Khalid H. A one health-focused literature review on bovine and zoonotic tuberculosis in Pakistan from the past two decades: challenges and way forward for control. One Health 2024; 18:100763. [PMID: 38846704 PMCID: PMC11153871 DOI: 10.1016/j.onehlt.2024.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is a globally prevalent zoonotic infectious disease. World Organization for Animal Health (WOAH) estimates indicate that up to 10% of the total human TB cases in developing countries are attributed to M. bovis. Pakistan ranks 4th in global milk production with a livestock population of over 212 million animals. Over 8 million families are involved in raising these animals as a means of livelihood. To date, there is an absence of national-level data on the prevalence of bTB and an effective control program is still lacking. The multifaceted impacts and substantial economic losses render addressing bTB a daunting, but highly important challenge. In this review, we summarise all the freely available literature on M. bovis infection from Pakistan using Google scholar and PubMed databases. A total of 40 animal studies were identified using search terms: "bovine tuberculosis in Pakistan, bTB, Pakistan, Mycobacterium bovis in Pakistan, M. bovis in Pakistan"; while seven human studies were identified using the terms: zoonotic tuberculosis in Pakistan', 'M. bovis in humans Pakistan', 'zTB in TB patients in Pakistan". We have summarized all these studies to identify critical risk factors involved in transmission of bTB among animals and humans. Despite lack of comprehensive and geographically representative studies, the literature suggests a varying prevalence of bTB in animals, ranging from as low as 2% to as high as 19%. Regarding zTB prevalence in humans, estimates range from 1.5% to 13% in high-risk group of farm and abattoir workers, with notably higher percentages in extra-pulmonary TB cases. The review also addresses the challenges that Pakistan faces in formulating an effective policy for the control and eradication of bTB. We conclude with one-health based recommendations as a way forward for controlling TB caused by M. bovis in cattle and humans.
Collapse
Affiliation(s)
- Zahid Fareed
- Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Aysha Rana
- Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Syeda Anum Hadi
- Consultant-Technical Coordinator, Health Security Partners, Islamabad, Pakistan
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jayne C. Hope
- Division of Immunology, The Roslin Institute, University of Edinburgh, EH25 9RG, UK
| | - Hamza Khalid
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Division of Immunology, The Roslin Institute, University of Edinburgh, EH25 9RG, UK
- Center for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
6
|
Pozo P, Isla J, Asiain A, Navarro D, Gortázar C. Contribution of herd management, biosecurity, and environmental factors to the risk of bovine tuberculosis in a historically low prevalence region. Animal 2024; 18:101105. [PMID: 38417216 DOI: 10.1016/j.animal.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Eradication of bovine tuberculosis (bTB) in certain historically low-prevalence regions remains elusive. A complete characterisation of the husbandry practices, biosecurity, and environment where farms are located is crucial to implement targeted in-farm risk mitigation protocols. Here, a detailed survey performed in 94 dairy cattle farms located in Navarra, a low-prevalence region of Spain between 2016 and 2020 was carried out. Data on 73 biosecurity, farm-, and environmental-level factors potentially associated with the risk of bTB occurrence were evaluated using an ordinal logistic regression model: farms were classified based on their prevalence index, a score linked to each farm to account for the severity and recurrence of bTB cases: 22.3% of the farms had a score of 1, 21.3% a score of 2, 26.6% a score of ≥ 3, and 29.8% were negative herds. A statistically significant association between a higher prevalence index and the frequency of badger sightings along with the lease of pastures to sheep during Winter was identified. Farms that detected badgers on a monthly to daily basis in the surroundings and those that leased pastures for sheep flocks during Winter were four [odds ratio, 95% CI (4.3; 1.1-17.5)] and three (3.1; 1.0-9.9) times more likely to have the highest prevalence index, respectively (predicted probabilityprevalence index≥3 = 0.7; 95% CI 0.3-0.9). Conversely, farms that used a vehicle to transport animals from holdings to pastures were less likely (0.1; <0.1-0.3) to present higher levels of prevalence index compared with farms that used none (on foot). Results suggested that the combined effect of farm- and environmental-level risk factors identified here may be hampering disease eradication in Navarra, highlighting the need to implement targeted protocols on farms and grazing plots. An increased awareness of monitoring sheep and wildlife in direct or indirect contact with cattle herds in historically low bTB prevalence areas should be raised.
Collapse
Affiliation(s)
- P Pozo
- Grupo SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC. CSIC-UCLM, 13071 Ciudad Real, Spain.
| | - J Isla
- Sabiotec. Edificio Polivalente UCLM, local 1.22, UCLM, 13005 Ciudad Real, Spain
| | - A Asiain
- Sección de Sanidad Animal. Departamento de Desarrollo Rural y Medio Ambiente. Gobierno de Navarra, 31002 Pamplona, Spain
| | - D Navarro
- Negociado de Epizootiología-Servicio de Ganadería. Departamento de Desarrollo Rural y Medio Ambiente. Gobierno de Navarra, 31002 Pamplona, Spain
| | - C Gortázar
- Grupo SaBio. Instituto de Investigación en Recursos Cinegéticos, IREC. CSIC-UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
7
|
Gortázar C, de la Fuente J, Perelló A, Domínguez L. Will we ever eradicate animal tuberculosis? Ir Vet J 2023; 76:24. [PMID: 37737206 PMCID: PMC10515422 DOI: 10.1186/s13620-023-00254-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Two characteristics of the Mycobacterium tuberculosis complex (MTC) are particularly relevant for tuberculosis (TB) epidemiology and control, namely the ability of this group of pathogens to survive in the environment and thereby facilitate indirect transmission via water or feed, and the capacity to infect multiple host species including human beings, cattle, wildlife, and domestic animals other than cattle. As a consequence, rather than keeping the focus on certain animal species regarded as maintenance hosts, we postulate that it is time to think of complex and dynamic multi-host MTC maintenance communities where several wild and domestic species and the environment contribute to pathogen maintenance. Regarding the global situation of animal TB, many industrialized countries have reached the Officially Tuberculosis Free status. However, infection of cattle with M. bovis still occurs in most countries around the world. In low- and middle-income countries, human and animal TB infection is endemic and bovine TB control programs are often not implemented because standard TB control through testing and culling, movement control and slaughterhouse inspection is too expensive or ethically unacceptable. In facing increasingly complex epidemiological scenarios, modern integrated disease control should rely on three main pillars: (1) a close involvement of farmers including collaborative decision making, (2) expanding the surveillance and control targets to all three host categories, the environment, and their interactions, and (3) setting up new control schemes or upgrading established ones switching from single tool test and cull approaches to integrated ones including farm biosafety and vaccination.
Collapse
Affiliation(s)
- Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK USA
| | - Alberto Perelló
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
- Sabiotec, Camino de Moledores s/n. 13003, Ciudad Real, 13071 Spain
| | - Lucas Domínguez
- VISAVET and Department of Animal Health-Faculty of Veterinary Medicine, Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
8
|
Bezos J, Sáez-Llorente JL, Álvarez J, Romero B, Díez-Guerrier A, Domínguez L, de Juan L. Bovine tuberculosis in Spain, is it really the final countdown? Ir Vet J 2023; 76:13. [PMID: 37491275 PMCID: PMC10369685 DOI: 10.1186/s13620-023-00241-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Bovine tuberculosis (bTB) is a severe zoonotic disease that has major impacts on both health and the economy, and which has been subjected to specific eradication programmes in many countries for decades. This manuscript highlights the relevance of this disease in the context of the European Union (EU) and summarizes the epidemiological situation and the main tools (e.g. antemortem diagnostic tests, slaughterhouse surveillance, laboratories, comprehensive databases, etc.) used to control and eradicate bTB in the various EU countries with a focus on the situation in Spain. A comprehensive description of the specific bTB epidemiological situation in Spain is provided, together with an assessment of the evolution of different epidemiological indicators throughout the last decades. Moreover, the main features of the Spanish bTB eradication programme and its control tools are described, along with the studies carried out in Spain that have allowed the updating of and improvement to the programme over the years with the aim of eradication, which has been established for 2030.
Collapse
Affiliation(s)
- Javier Bezos
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | | | - Julio Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Romero
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Díez-Guerrier
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucía de Juan
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Preite L, Barroso P, Romero B, Balseiro A, Gortázar C. Struggling to improve farm biosecurity: Do free advice and subsidies hit the target? Prev Vet Med 2023; 212:105839. [PMID: 36638609 DOI: 10.1016/j.prevetmed.2023.105839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Biosafety measures (BSMs) often aim at reducing the likelihood of cross-species interactions at the wildlife-livestock interface. Examples include means to segregate wild ungulates from cattle at waterholes or at feeders. Subsidies or incentives for BSM implementation are expected to contribute to improved BSM acceptance. However, several recent experiences led us to write a cautionary commentary on the variable success of incentives in farm biosafety promotion. We list examples where, after offering farm-specific biosecurity action plans for free or subsidizing 100% of the cost of a given BSM, 25-40% of the farmers remained unwilling to invest efforts in farm biosafety and BSM maintenance. We suggest seeking a better understanding of farmers' motivations through social science research, to train farm veterinarians on biosecurity and on how to tailor biosafety communication, and to set up formal regional risk mitigation programs including financial, logistical, and educational assistance, as well as monitoring plans, through public-private collaboration.
Collapse
Affiliation(s)
- Ludovica Preite
- SaBio Instituto de Investigación en Recursos Cinegéticos (UCLM & CSIC), Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Patricia Barroso
- SaBio Instituto de Investigación en Recursos Cinegéticos (UCLM & CSIC), Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy.
| | - Beatriz Romero
- VISAVET Health Surveillance Centre and Animal Health Department (Veterinary Faculty), Complutense University of Madrid, Madrid 28040, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain; Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-ULE), 24346 León, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos (UCLM & CSIC), Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
10
|
Barroso-Arévalo S, Díaz-Frutos M, Kosowska A, Pérez-Sancho M, Domínguez L, Sánchez-Vizcaíno JM. A useful tool for the safe diagnosis and control of the two main pandemics of the XXI century: COVID-19 and African Swine Fever disease. PLoS One 2023; 18:e0282632. [PMID: 36877705 PMCID: PMC9987814 DOI: 10.1371/journal.pone.0282632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
The COVID-19 pandemic and the disease triggered by the African Swine Fever virus are currently two of the main problems regarding public and animal health, respectively. Although vaccination seems to be the ideal tool for controlling these diseases, it has several limitations. Therefore, early detection of the pathogen is critical in order to apply preventive and control measures. Real-time PCR is the main technique used for the detection of both viruses, which requires previous processing of the infectious material. If the potentially infected sample is inactivated at the time of sampling, the diagnosis will be accelerated, impacting positively on the diagnosis and control of the disease. Here, we evaluated the inactivation and preservation properties of a new surfactant liquid for non-invasive and environmental sampling of both viruses. Our results demonstrated that the surfactant liquid effectively inactivates SARS-CoV-2 and African Swine Fever virus in only five minutes, and allows for the preservation of the genetic material for long periods even at high temperatures such as 37°C. Hence, this methodology is a safe and useful tool for recovering SARS-CoV-2 and African Swine Fever virus RNA/DNA from different surfaces and skins, which has significant applied relevance in the surveillance of both diseases.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Fernández de Mera IG, Granda C, Villanueva F, Sánchez‐Sánchez M, Moraga‐Fernández A, Gortázar C, de la Fuente J. HEPA filters of portable air cleaners as a tool for the surveillance of SARS-CoV-2. INDOOR AIR 2022; 32:e13109. [PMID: 36168219 PMCID: PMC9538271 DOI: 10.1111/ina.13109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 05/20/2023]
Abstract
Studies about the identification of SARS-CoV-2 in indoor aerosols have been conducted in hospital patient rooms and to a lesser extent in nonhealthcare environments. In these studies, people were already infected with SARS-CoV-2. However, in the present study, we investigated the presence of SARS-CoV-2 in HEPA filters housed in portable air cleaners (PACs) located in places with apparently healthy people to prevent possible outbreaks. A method for detecting the presence of SARS-CoV-2 RNA in HEPA filters was developed and validated. The study was conducted for 13 weeks in three indoor environments: school, nursery, and a household of a social health center, all in Ciudad Real, Spain. The environmental monitoring of the presence of SARS-CoV-2 was conducted in HEPA filters and other surfaces of these indoor spaces for a selective screening in asymptomatic population groups. The objective was to limit outbreaks at an early stage. One HEPA filter tested positive in the social health center. After analysis by RT-PCR of SARS-CoV-2 in residents and healthcare workers, one worker tested positive. Therefore, this study provides direct evidence of virus-containing aerosols trapped in HEPA filters and the possibility of using these PACs for environmental monitoring of SARS-CoV-2 while they remove airborne aerosols and trap the virus.
Collapse
Affiliation(s)
- Isabel G. Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (UCLM‐CSIC‐JCCM)Ronda de ToledoCiudad RealSpain
| | - Carmen Granda
- Residencias CADIG Guadiana I y IICentro de Salud Ciudad Real ISpain
| | - Florentina Villanueva
- Instituto de Investigación en Combustión y Contaminación AtmosféricaUniversidad de Castilla‐La ManchaCiudad RealSpain
- Parque Científico y Tecnológico de Castilla‐La ManchaPaseo de la Innovación 1AlbaceteSpain
| | - Marta Sánchez‐Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (UCLM‐CSIC‐JCCM)Ronda de ToledoCiudad RealSpain
| | - Alberto Moraga‐Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (UCLM‐CSIC‐JCCM)Ronda de ToledoCiudad RealSpain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (UCLM‐CSIC‐JCCM)Ronda de ToledoCiudad RealSpain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (UCLM‐CSIC‐JCCM)Ronda de ToledoCiudad RealSpain
- Department of Veterinary Pathobiology, Center for Veterinary Health SciencesOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
12
|
Rebollada-Merino A, Pérez-Sancho M, Rodríguez-Bertos A, García N, Martínez I, Navarro A, Domínguez L, García-Seco T. Environment and Offspring Surveillance in Porcine Brucellosis. Front Vet Sci 2022; 9:915692. [PMID: 35799841 PMCID: PMC9253667 DOI: 10.3389/fvets.2022.915692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine brucellosis, caused by Brucella suis (B. suis), is a notifiable disease causing significant economic losses in production systems. Most infected pigs may act as carriers and shed B. suis even if asymptomatic. This can contribute to environmental persistence, thus hindering control efforts. Here, the environment and the offspring were investigated during and after a B. suis outbreak at a sow breeding farm. The diagnosis of B. suis in sows (n = 1,140) was performed by culture and polymerase chain reaction (PCR) from vaginal swabs, indirect enzyme-linked immunosorbent assay (I-ELISA) from sera, and brucellin skin test (BST). B. suis diagnosis in post-weaning pigs (n = 899) was performed by I-ELISA in sera and BST. The environmental surveillance programme was implemented by placing gauze sponges (n = 175) pre-hydrated in a surfactant and inactivating liquid for Brucella DNA detection by PCR in different farm areas. Our results showed that the offspring of infected sows reacted to in vivo techniques for B. suis. Furthermore, the offspring born during the outbreak displayed higher seropositivity (I-ELISA) and reactivity (BST) than those pigs born after. Brucella DNA was detected in pregnant sow areas, boxes, boots, and post-weaning pig areas. In addition, Brucella DNA environmental detection was higher during the B. suis outbreak than the post B. suis outbreak. The environmental approach has proven to be a simple, practical, valuable, and safe method to detect and monitor B. suis. These results suggest a role of the environment and the offspring that should be considered in porcine brucellosis surveillance and control programmes.
Collapse
Affiliation(s)
- Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Marta Pérez-Sancho
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Nerea García
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Irene Martínez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Navarro
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Evaluation of the clinical evolution and transmission of SARS-CoV-2 infection in cats by simulating natural routes of infection. Vet Res Commun 2022; 46:837-852. [PMID: 35243589 PMCID: PMC8893356 DOI: 10.1007/s11259-022-09908-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current pandemic disease denominated as Coronavirus Disease 2019 (COVID-19). Several studies suggest that the original source of this virus was a spillover from an animal reservoir and its subsequent adaptation to humans. Of all the different animals affected, cats are one of the most susceptible species. Moreover, several cases of natural infection in domestic and stray cats have been reported in the last few months. Although experimental infection assays have demonstrated that cats are successfully infected and can transmit the virus to other cats by aerosol, the conditions used for these experiments have not been specified in terms of ventilation. We have, therefore, evaluated the susceptibility of cats using routes of infection similar to those expected under natural conditions (exposure to a sneeze, cough, or contaminated environment) by aerosol and oral infection. We have also evaluated the transmission capacity among infected and naïve cats using different air exchange levels. Despite being infected using natural routes and shed virus for a long period, the cats did not transmit the virus to contact cats when air renovation features were employed. The infected animals also developed gross and histological lesions in several organs. These outcomes confirm that cats are at risk of infection when exposed to infected people, but do not transmit the virus to other cats with high rates of air renovation.
Collapse
|
14
|
Kosowska A, Barasona JA, Barroso-Arévalo S, Rivera B, Domínguez L, Sánchez-Vizcaíno JM. A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Sci Rep 2021; 11:21560. [PMID: 34732758 PMCID: PMC8566511 DOI: 10.1038/s41598-021-00552-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is currently the most dangerous disease for the global pig industry, causing huge economic losses, due to the lack of effective vaccine or treatment. Only the early detection of ASF virus (ASFV) and proper biosecurity measures are effective to reduce the viral expansion. One of the most widely recognized risks as regards the introduction ASFV into a country is infected animals and contaminated livestock vehicles. In order to improve ASF surveillance, we have assessed the capacity for the detection and inactivation of ASFV genome by using Dry-Sponges (3 M) pre-hydrated with a new surfactant liquid. We sampled different surfaces in ASFV-contaminated facilities, including animal skins, and the results were compared to those obtained using a traditional sampling method. The surfactant liquid successfully inactivated the virus, while ASFV DNA was well preserved for the detection. This is an effective method to systematically recover ASFV DNA from different surfaces and skin, which has a key applied relevance in surveillance of vehicles transporting live animals and greatly improves animal welfare. This method provides an important basis for the detection of ASFV genome that can be assessed without the biosafety requirements of a BSL-3 laboratory at least in ASF-affected countries, which may substantially speed up the early detection of the pathogen.
Collapse
Affiliation(s)
- Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Barroso-Arévalo S, Barneto A, Ramos ÁM, Rivera B, Sánchez R, Sánchez-Morales L, Pérez-Sancho M, Buendía A, Ferreras E, Ortiz-Menéndez JC, Moreno I, Serres C, Vela C, Risalde MÁ, Domínguez L, Sánchez-Vizcaíno JM. Large-scale study on virological and serological prevalence of SARS-CoV-2 in cats and dogs in Spain. Transbound Emerg Dis 2021; 69:e759-e774. [PMID: 34724350 PMCID: PMC8661836 DOI: 10.1111/tbed.14366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
The disease produced by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is currently one of the primary concerns worldwide. Knowing the zoonotic origin of the disease and that several animal species, including dogs and cats, are susceptible to viral infection, it is critical to assess the relevance of pets in this pandemic. Here, we performed a large-scale study on SARS-CoV-2 serological and viral prevalence in cats and dogs in Spain in order to elucidate their role and susceptibility. Samples from animals in contact with COVID-19 positive people and/or compatible symptoms (n = 492), as well as from random animals (n = 1024), were taken. Despite the large number of animals analyzed, only 12 animals (eight dogs and four cats), which represents 0.79% of the total analyzed animals (n = 1516), were positive for viral SARS-CoV-2 RNA detection by reverse transcription quantitative PCR (RT-qPCR) in which viral isolation was possible in four animals. We detected neutralizing antibodies in 34 animals, four of them were also positive for PCR. This study evidences that pets are susceptible to SARS-CoV-2 infection in natural conditions but at a low level, as evidenced by the low percentage of positive animals detected, being infected humans the main source of infection. However, the inclusion of animals in the surveillance of COVID-19 is still recommended.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | | | - Ángel Manuel Ramos
- Interdisciplinary Mathematics Institute, Complutense University of Madrid, Madrid, Spain.,Department of Applied Mathematics and Mathematical Analysis, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Rocío Sánchez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Morales
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aránzazu Buendía
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Elisa Ferreras
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | | | - Inmaculada Moreno
- Microbial Immunology Unit, National Center for Microbiology, Carlos III Health Institute, Madrid, Spain
| | - Consuelo Serres
- Department of Animal Medicine and Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | | | - María Ángeles Risalde
- Research Group in Animal Health and Zoonoses (GISAZ), Department of Anatomy and Comparative Pathology, Faculty of Veterinary, University of Cordoba, Andalusia, Spain.,Infectious Diseases Unit, Clinical Virology and Zoonosis Group, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Andalusia, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Sánchez-Carvajal JM, Galán-Relaño Á, Ruedas-Torres I, Jurado-Martos F, Larenas-Muñoz F, Vera E, Gómez-Gascón L, Cardoso-Toset F, Rodríguez-Gómez IM, Maldonado A, Carrasco L, Tarradas C, Gómez-Laguna J, Luque I. Real-Time PCR Validation for Mycobacterium tuberculosis Complex Detection Targeting IS 6110 Directly From Bovine Lymph Nodes. Front Vet Sci 2021; 8:643111. [PMID: 33981742 PMCID: PMC8109245 DOI: 10.3389/fvets.2021.643111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Rapid and accurate diagnostic tools, such as Real-Time PCR (qPCR), need to be implemented as a confirmatory test in the framework of bovine tuberculosis (bTB) surveillance and control programs, shortening the turnaround time to confirm bTB infection. The present study aimed to evaluate a direct qPCR from fresh tissue samples targeting the insertion sequence IS6110 using individually homogenized bovine lymph nodes compared with microbiological culture. Retropharyngeal, tracheobronchial, and mesenteric lymph nodes fresh tissue samples (n = 687) were collected from 230 different cattle carcasses at the slaughterhouse. Only 23 of the 230 examined animals showed tuberculosis-like lesions, with 62 of 230 considered as positive. Among these 62 animals, 61 resulted as culture-positive, whereas 48 were qPCR-positive. Thus, this qPCR targeting IS6110 showed an apparent diagnostic sensitivity and specificity values of 77.1% [95% confidence interval (CI): 66.5–87.6%] and 99.4% (95% CI: 98.3–100.6%), respectively, and a positive predictive value of 97.9% (95% CI: 93.9–102.0%) and negative predictive value of 92.3% (95% CI: 88.4–96.2%). Positive and negative likelihood ratios were 130.2 and 0.2, respectively, and the agreement between microbiological culture and this qPCR was almost perfect (κ = 0.82). These results highlight this qPCR targeting IS6110 as a suitable complementary method to confirm bTB in animals with either tuberculosis-like lesions or non-tuberculosis-like lesions, decreasing the number of samples subjected to microbiological culture and, hence, its overall associated costs and the turnaround time (under 48 h) to confirm bTB infection. Besides, sampling mesenteric lymph node, which is uncommonly sampled, together with tracheobronchial and retropharyngeal ones, is advisable during postmortem inspection in bTB surveillance programs at the slaughterhouse, especially in areas with a low bTB prevalence scenario.
Collapse
Affiliation(s)
| | | | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, University of Córdoba, Córdoba, Spain
| | | | - Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, University of Córdoba, Córdoba, Spain
| | - Eduardo Vera
- Department of Anatomy and Comparative Pathology and Toxicology, University of Córdoba, Córdoba, Spain.,Department of Animal Health, University of Córdoba, Córdoba, Spain
| | | | | | | | | | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, University of Córdoba, Córdoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, University of Córdoba, Córdoba, Spain
| | | |
Collapse
|
17
|
Kelly DJ, Mullen E, Good M. Bovine Tuberculosis: The Emergence of a New Wildlife Maintenance Host in Ireland. Front Vet Sci 2021; 8:632525. [PMID: 33842575 PMCID: PMC8027074 DOI: 10.3389/fvets.2021.632525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite advances in herd management, tuberculosis (TB) continues to affect ~0. 5% of Ireland's national cattle herd annually. It is clear that any "final" eradication of TB in cattle will need to address all TB maintenance hosts in the same environment. In Ireland and the UK, European Badgers (Meles meles) are a known TB maintenance host, while deer are recognised as spillover hosts. However, deer have been identified as maintenance hosts in other countries and Sika deer, specifically, have been identified with TB in Ireland. We examined the power of cattle, badger and Sika deer densities (at the county level) to predict cattle TB-breakdowns in Ireland, at both the herd and the individual level, using data collected between 2000 and 2018. Our hypothesis was that any positive correlations between deer density and cattle TB-breakdowns would implicate deer as TB maintenance hosts. Using linear multiple regressions, we found positive correlations between deer density and cattle TB-breakdowns at both the herd and individual levels. Since Sika deer in County Wicklow are known to have TB, we ran further regressions against subsets of data which excluded individual Irish counties. Analyses excluding Wicklow data showed much weaker correlations between Sika deer density and cattle TB-breakdowns at both the herd and individual levels, suggesting that these correlations are strongest in County Wicklow. A similar effect for badger density was seen in County Leitrim. While locally high densities of Sika deer persist in Irish counties, we believe they should be considered an integral part of any TB-control programme for those areas.
Collapse
Affiliation(s)
- David J Kelly
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Enda Mullen
- National Parks and Wildlife Service, Department of Housing, Local Government and Heritage, Dublin, Ireland
| | - Margaret Good
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland.,Independent Researcher and Private Consultant, Dun Laoghaire, Co. Dublin, Ireland
| |
Collapse
|
18
|
Allen AR, Ford T, Skuce RA. Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Vet Med Int 2021; 2021:8812898. [PMID: 33628412 PMCID: PMC7880718 DOI: 10.1155/2021/8812898] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine tuberculosis (bTB) is one of the globe's most common, multihost zoonoses and results in substantial socioeconomic costs for governments, farming industries, and tax payers. Despite decades of surveillance and research, surprisingly, little is known about the exact mechanisms of transmission. In particular, as a facultative intracellular pathogen, to what extent does survival of the causative agent, Mycobacterium tuberculosis var. bovis (M. bovis), in the environment constitute an epidemiological risk for livestock and wildlife? Due largely to the classical pathology of cattle cases, the received wisdom was that bTB was spread by direct inhalation and exchange of bioaerosols containing droplets laden with bacteria. Other members of the Mycobacterium tuberculosis complex (MTBC) exhibit differing host ranges, an apparent capacity to persist in environmental fomites, and they favour a range of different transmission routes. It is possible, therefore, that infection from environmental sources of M. bovis could be a disease transmission risk. Recent evidence from GPS-collared cattle and badgers in Britain and Ireland suggests that direct transmission by infectious droplets or aerosols may not be the main mechanism for interspecies transmission, raising the possibility of indirect transmission involving a contaminated, shared environment. The possibility that classical pulmonary TB can be simulated and recapitulated in laboratory animal models by ingestion of contaminated feed is a further intriguing indication of potential environmental risk. Livestock and wildlife are known to shed M. bovis onto pasture, soil, feedstuffs, water, and other fomites; field and laboratory studies have indicated that persistence is possible, but variable, under differing environmental conditions. Given the potential infection risk, it is timely to review the available evidence, experimental approaches, and methodologies that could be deployed to address this potential blind spot and control point. Although we focus on evidence from Western Europe, the concepts are widely applicable to other multihost bTB episystems.
Collapse
Affiliation(s)
- Adrian R. Allen
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Tom Ford
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| | - Robin A. Skuce
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Bacteriology Branch, Stoney Road Stormont, Belfast BT4 3SD, Northern Ireland, UK
| |
Collapse
|
19
|
Fernández-de-Mera IG, Rodríguez Del-Río FJ, de la Fuente J, Pérez-Sancho M, Hervás D, Moreno I, Domínguez M, Domínguez L, Gortázar C. Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain. Transbound Emerg Dis 2020; 68:1487-1492. [PMID: 32894654 DOI: 10.1111/tbed.13817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Since March 2020, Spain (along with many other countries) has been severely affected by the ongoing coronavirus disease 19 (COVID-19) pandemic caused by the rapid spread of a new virus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2). As part of global efforts to improve disease surveillance, we investigated how readily SARS-CoV-2 RNA could be detected in environmental samples collected from an isolated rural community in Spain with a high COVID-19 prevalence (6% of the population of 883 inhabitants). The first diagnosis of COVID-19-compatible symptoms in the village was recorded on 3 March 2020, and the last known active case resolved on 5 June 2020. By 15 May, two months after strict movement constraints were imposed ('lockdown'), and the cumulative number of symptomatic cases had increased to 53. Of those cases, 22 (41%) had been tested and confirmed by RT-PCR. On 13 May and 5 June, samples were collected from high-use surfaces and clothes in the homes of 13 confirmed cases, from surfaces in nine public service sites (e.g. supermarket and petrol station) and from the wastewater of the village sewage system. SARS-CoV-2 RNA was detected in 7 of 57 (12%) samples, including three households and three public sites. While there is not yet sufficient evidence to recommend environmental surveillance as a standard approach for COVID-19 epidemiology, environmental surveillance research may contribute to advance knowledge about COVID-19 by further elucidating virus shedding dynamics and environmental contamination, including the potential identification of animal reservoirs.
Collapse
Affiliation(s)
| | | | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Marta Pérez-Sancho
- VISAVET and Department of Animal Health-Faculty of Veterinary Medicine, Universidad Complutense Madrid, Madrid, Spain
| | - Dolores Hervás
- Local Medical Service Horcajo de los Montes, Ciudad Real, Spain
| | - Inmaculada Moreno
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Domínguez
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucas Domínguez
- VISAVET and Department of Animal Health-Faculty of Veterinary Medicine, Universidad Complutense Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
| |
Collapse
|