1
|
Varveri M, Papageorgiou AG, Tsitsigiannis DI. Evaluation of Biological Plant Protection Products for Their Ability to Induce Olive Innate Immune Mechanisms and Control Colletotrichum acutatum, the Causal Agent of Olive Anthracnose. PLANTS (BASEL, SWITZERLAND) 2024; 13:878. [PMID: 38592906 PMCID: PMC10974188 DOI: 10.3390/plants13060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Olive anthracnose is the most important fungal disease of the olive fruit worldwide, with the fungus Colletotrichum acutatum as the main cause of the disease in Greece. A total of 11 commercial biological plant protection products (bioPPPs) (Amylo-X®, Botector®, FytoSave®, LBG 01F34®, Mevalone®, Polyversum®, Remedier®, Serenade® ASO, Sonata®, Trianum-P®, Vacciplant®), with various modes of action against the fungus C. acutatum, were evaluated by bioassays using detached fruits of two important olive Greek varieties, cv. Koroneiki and cv. Kalamon. Subsequently, the most effective bioPPPs were evaluated for their ability to induce plant defense mechanisms, by determining the expression levels of ten Olea europaea defense genes (Pal, CuaO, Aldh1, Bglu, Mpol, Lox, Phely, CHI-2, PR-10, PR-5). Remedier®, Trianum-P®, Serenade® ASO, Sonata®, and Mevalone® were the most effective in reducing disease severity, and/or inhibiting the conidia production by the fungus at high rates. Post bioPPPs application, high expression levels of several olive plant defense genes were observed. This study provides insights into commercial bioPPPs' effectiveness in controlling olive anthracnose, as well as biocontrol-agents-mediated modulation of olive defense mechanisms.
Collapse
Affiliation(s)
| | | | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.V.); (A.G.P.)
| |
Collapse
|
2
|
Riolo M, Luz C, Santilli E, Meca G, Cacciola SO. Secondary metabolites produced by four Colletotrichum species in vitro and on fruits of diverse olive cultivars. Fungal Biol 2023; 127:1118-1128. [PMID: 37495302 DOI: 10.1016/j.funbio.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
This study was aimed to characterize the secondary metabolites produced by four Colletotrichum species, C. acutatum, C. gloeosporioides, C. godetiae and C. karsti, both in vitro, on potato dextrose agar (PDA) and oatmeal agar (OA), and during the infection process of fruits of four olive cultivars differing in susceptibility to anthracnose, 'Coratina' and 'Ottobratica', both susceptible, 'Frantoio' and 'Leccino', both resistant. The metabolites were extracted from axenic cultures after seven days incubation and from olives inoculated singularly with each Colletotrichum species, at three different times, 1, 3 and 7 days post inoculation (dpi). They were identified using the UHPLC-QTOF-MS analysis method. In total, as many as 45 diverse metabolites were identified. Only 10 metabolites were present in both fruits and axenic cultures while 19 were found exclusively on olives and 16 exclusively in axenic cultures. The identified metabolites comprised fatty acid, phenolics, pyrones, sterols, terpenes and miscellaneous compounds. Each Colletotrichum species produced a different spectrum of metabolites depending on the type of matrices. On artificially inoculated olives the severity of symptoms, the amount of fungal secondary metabolites and their number peaked 7 dpi irrespective of the cultivar susceptibility and the virulence of the Colletotrichum species.
Collapse
Affiliation(s)
- Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy; Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89122, Reggio Calabria, Italy; Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus crops (CREA- OFA), 87036, Rende, Cosenza, Italy.
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Elena Santilli
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus crops (CREA- OFA), 87036, Rende, Cosenza, Italy.
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123, Catania, Italy.
| |
Collapse
|
3
|
Papadopoulou EA, Angelis A, Skaltsounis AL, Aliferis KA. GC/EI/MS and 1H NMR Metabolomics Reveal the Effect of an Olive Tree Endophytic Bacillus sp. Lipopeptide Extract on the Metabolism of Colletotrichum acutatum. Metabolites 2023; 13:metabo13040462. [PMID: 37110121 PMCID: PMC10142168 DOI: 10.3390/metabo13040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
The transition to the Green Deal era requires the discovery of alternative sources of bioactivity and an in-depth understanding of their toxicity to target and non-target organisms. Endophytes have recently emerged as a source of bioactivity of high potential for applications in plant protection, used either per se as biological control agents or their metabolites as bioactive compounds. The olive tree endophytic isolate Bacillus sp. PTA13 produces an array of bioactive lipopeptides (LPs), which additionally exhibit reduced phytotoxicity, features that make them candidates for further research focusing on olive tree plant protection. Here, GC/EI/MS and 1H NMR metabolomics were employed to study the toxicity of a Bacillus sp. PTA13 LP extract on the olive tree pathogen Colletotrichum acutatum, which causes the devastating disease olive anthracnose. The discovery of resistant isolates of the pathogen to the applied fungicides makes the research on the development of improved sources of bioactivity of paramount importance. Analyses revealed that the applied extract affects the metabolism of the fungus by interfering with the biosynthesis of various metabolites and its energy production. LPs had a great impact on the aromatic amino acid metabolism, the energy equilibrium of the fungus and its fatty acid content. Additionally, the applied LPs affected the levels of pathogenesis-related metabolites, a finding that supports their potential for further research as plant protection agents.
Collapse
Affiliation(s)
- Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 157 71 Athens, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| |
Collapse
|
4
|
de Oliveira AA, Ramalho MDO, Moreau CS, Campos AEDC, Harakava R, Bueno OC. Exploring the diversity and potential interactions of bacterial and fungal endophytes associated with different cultivars of olive (Olea europaea) in Brazil. Microbiol Res 2022; 263:127128. [PMID: 35868260 DOI: 10.1016/j.micres.2022.127128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The olive crop has expanded in the southeastern region of South America, particularly in Brazil. Thus, the objectives of this study were to identify the diversity of endophytic microorganisms associated with olive leaves with culture-dependent and culture-independent methods, to explore which factors influence the composition and abundance of this microbial community, to identify the trophic mode of these fungi by FunGuild and, to verify type associations between bacterial and fungal communities. Leaf samples were collected from 93 plants in nine locations in the Brazilian states of São Paulo and Minas Gerais. Leaves were first superficially disinfected before fungal isolation and next-generation metabarcoding sequencing was completed targeting the 16S rRNA regions for bacteria and ITS1 for fungi. In total, 800 isolates were obtained, which were grouped into 191 morphotypes and molecularly identified, resulting in 38 genera, 32 of which were recorded for the first time in cultivated olive trees in Brazil. For the isolated fungi, the most abundant trophic level was pathotrophic and for the culture-independent method was unidentified followed by symbiotrophic. The metabarcoding results revealed that factors such as plant age, altitudinal gradient, and geographic location can influence the microbial community of commercial olive plants, while the specific cultivar did not.
Collapse
Affiliation(s)
- Amanda Aparecida de Oliveira
- São Paulo State University (UNESP) - Institute of Biosciences - Campus Rio Claro, Department of General and Applied Biology. Center for Social Insect Studies, Rio Claro, SP 13506-900, Brazil; Biological Institute of São Paulo - Vila Mariana, São Paulo, SP 04014-002, Brazil.
| | | | - Corrie Saux Moreau
- Cornell University, Department of Entomology, Ithaca, NY 14853, USA; Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY 14853, USA
| | | | - Ricardo Harakava
- Biological Institute of São Paulo - Vila Mariana, São Paulo, SP 04014-002, Brazil
| | - Odair Correa Bueno
- São Paulo State University (UNESP) - Institute of Biosciences - Campus Rio Claro, Department of General and Applied Biology. Center for Social Insect Studies, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
5
|
Sisodiya S, Sinha A, Debnath M, Shekhawat R, Shekhawat SS. Protecting Superfood Olive Crop from Pests and Pathogens Using Image
Processing Techniques: A Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666211227103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Olive (Oleo europaea L.) cultivars are widely cultivated all over the
world. However, they are often attacked by pests and pathogens. This deteriorates the quality of
the crop, leading to less yield of olive oil. The different infections that cause comparable disease
symptoms on olive leaves can be classified using image processing techniques.
Objective:
The olive has established itself as a superfood and a possible source of medicine, owing
to the rapid increase in the availability of data in the field of nutrigenomics. The goal of this
review is to underline the importance of applying image processing techniques to detect and
classify diseases early.
Method:
PubMed, ScienceDirect, and Google Scholar were used to conduct a systematic literature
search using the keywords olive oil, pest and pathogen of olives, and metabolic profiling.
Results:
Infections caused by infectious diseases frequently result in significant losses and lowquality
olive oil yields. Early detection of disease infestations can safeguard the olive plant and
its yield.
Results:
This strategy can help protect the crop from disease spread, and early detection and
classification of the disease can aid in prompt prophylaxis of diseased olive plants before the
disease worsens. Protecting olive plants from pests and pathogens can help keep the yield and
quality of olive oil consistent.
Collapse
Affiliation(s)
- Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Aditya Sinha
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Rajveer Shekhawat
- Department of Computer Science &
Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | | |
Collapse
|
6
|
Papadopoulou EA, Angelis A, Antoniadi L, Aliferis KA, Skaltsounis AL. Discovering the Next-Generation Plant Protection Products: A Proof-of-Concept via the Isolation and Bioactivity Assessment of the Olive Tree Endophyte Bacillus sp. PTA13 Lipopeptides. Metabolites 2021; 11:metabo11120833. [PMID: 34940591 PMCID: PMC8705366 DOI: 10.3390/metabo11120833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic microorganisms (EMs) have recently attracted interest for applications in plant protection, mainly due to their bioactive compound-producing capacity. Therefore, we underwent the task of isolating olive tree EMs and investigating their bioactivity against the devastating pathogen Colletotrichum acutatum. Several EMs were isolated; however, the Bacillus sp. PTA13 isolate exhibited the highest toxicity to the phytopathogen. Bacteria of the genus Bacillus exhibit superior bioactive metabolite-producing capacity, with the lipopeptides (LPs) of surfactin, iturin, and fengycin groups being the most studied. A total LP extract and several fractions were obtained, and their bioactivity was assessed against C. acutatum strains. LPs of the major surfactin, iturin, and fengycin groups and the minor gageotetrin and bacilotetrin groups were annotated. The results confirmed the bioactivity of the major LPs, with fengycins being the most fungitoxic. Interestingly, the minor LP fraction exhibited selective toxicity to the fungicide-resistant C. acutatum isolate, an observation that highlights the significance of our approach to comprehensively mine the total LP extract. This work represents a proof of concept of the exploitation of EMs in customized olive tree plant protection and aligns well with strategies that focus on the sustainability and safety of food production via the development of next-generation plant protection products.
Collapse
Affiliation(s)
- Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.A.); (L.A.)
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.A.); (L.A.)
| | - Lemonia Antoniadi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.A.); (L.A.)
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
- Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Correspondence: (K.A.A.); (A.-L.S.); Tel.: +30-210-5294541 (K.A.A.); +30-210-7274598 (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece; (A.A.); (L.A.)
- Correspondence: (K.A.A.); (A.-L.S.); Tel.: +30-210-5294541 (K.A.A.); +30-210-7274598 (A.-L.S.)
| |
Collapse
|
7
|
Markakis EA, Roditakis EN, Kalantzakis GS, Chatzaki A, Soultatos SK, Stavrakaki M, Tavlaki GI, Koubouris GC, Bagkis N, Goumas DE. Characterization of Fungi Associated with Olive Fruit Rot and Olive Oil Degradation in Crete, Southern Greece. PLANT DISEASE 2021; 105:3623-3635. [PMID: 34003032 DOI: 10.1094/pdis-10-20-2227-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In November 2019, a severe outbreak of fruit rot was observed in olive orchards in Crete, southern Greece. Symptoms appeared primarily on fruits and stalks, resembling those caused by anthracnose. Typical symptoms were fruit rot, shrinkage, and mummification, associated commonly with stalk discoloration and fruit drop. Disease incidence was estimated at up to 100% in some cases, and an unprecedented increase in olive oil acidity reaching up to 8% (percentage of oleic acid) in severely affected olive groves was recorded. Thirty-two olive groves were then surveyed, and samples of fruit, stalk, leaf, and shoot were collected. Visual, stereoscopic, and microscopic observations revealed several fungi belonging to the genera Alternaria, Botryosphaeria, Capnodium, Colletotrichum, Fusarium, and Pseudocercospora. Fungal infection in fruits was commonly associated with concomitant infestation by the olive fruit fly Bactrocera oleae along with increased air temperature and relative humidity conditions that prevailed in October and November 2019. Twenty representative fungal strains isolated from symptomatic fruits and stalks were characterized by morphological, physiological, and molecular analyses. By internal transcribed spacer regions of ribosomal DNA region and translation elongation factor 1-α gene sequencing analysis, these isolates were identified as Alternaria spp., A. infectoria, Botryosphaeria dothidea, Colletotrichum boninense sensu lato, Fusarium lateritium, F. solani species complex and Stemphylium amaranthi. Pathogenicity tests on punctured fruits revealed that all isolates were pathogenic; however, F. solani isolates along with B. dothidea were the most virulent, and wounds were necessary for efficient fungal infection. Moreover, as few as 10 spores of F. solani were sufficient to cause significant infection in punctured fruits. F. solani was also capable of infecting olive fruits in the presence of B. oleae, with no additional wounding, in artificial inoculation experiments. Moreover, it was capable of colonizing and affecting olive blossoms. Further analyses of olive oil extracted from fruits artificially inoculated with F. solani indicated a significant increase in oil acidity, K232, K270, and peroxide value, whereas total phenol content was significantly decreased. To the best of our knowledge, this is the first report of F. solani associated with olive fruit rot and olive oil degradation worldwide.
Collapse
Affiliation(s)
- Emmanouil A Markakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Emmanouil N Roditakis
- Laboratory of Entomology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgios S Kalantzakis
- Laboratory of Food Technology, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Agrokipio 73100, Chania, Crete, Greece
| | - Anastasia Chatzaki
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Stefanos K Soultatos
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Marianna Stavrakaki
- Laboratory of Entomology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgia I Tavlaki
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Georgios C Koubouris
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, NAGREF, Hellenic Agricultural Organization DIMITRA, Agrokipio 73100, Chania, Crete, Greece
| | - Nikolaos Bagkis
- Regional Center for Plant Protection and Quality Control of Heraklion, Ministry of Rural Development and Food, Mesa Katsabas 71307, Heraklion, Crete, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Stavromenos 71004, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Ntasiou P, Kaldeli Kerou A, Karamanidou T, Vlachou A, Tziros GT, Tsouknidas A, Karaoglanidis GS. Synthesis and Characterization of Novel Copper Nanoparticles for the Control of Leaf Spot and Anthracnose Diseases of Olive. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1667. [PMID: 34202883 PMCID: PMC8307062 DOI: 10.3390/nano11071667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/31/2023]
Abstract
Olive crop is frequently treated with copper fungicides to combat foliar and fruit diseases such as olive leaf spot caused by Fusicladium oleagineum and anthracnose caused by Colletotrichum spp. The replacement of copper-based products with more eco-friendly alternatives is a priority. Metal nanoparticles synthesized in several ways have recently revolutionized crop protection with applications against important crop pathogens. In this study, we present the development of four copper-based nanoparticles (CuNP Type 1 to 4) synthesized with a wet chemistry approach. The CuNPs were characterized using Transmission Electron Microscopy, Dynamic Light Scattering, Laser Doppler Electrophoresis, and Attenuated Total Reflection measurements. In addition, the activity of the four CuNP types was tested in vitro and in planta against F. oleagineum and Colletotrichum spp. In vitro sensitivity measurements showed that for both pathogens, mycelial growth was the most susceptible developmental stage to the tested compounds. Against both pathogens, CuNP Type 1 and Type 2 were found to be more active in reducing mycelial growth compared to the reference commercial compounds of copper oxide and copper hydroxide. In planta experiments showed that CuNP Type 3 and CuNP Type 4 exhibited a strong protectant activity against both F. oleagineum and Colletotrichum acutatum with control efficacy values significantly higher than those achieved by the applications of either reference product.
Collapse
Affiliation(s)
- Panagiota Ntasiou
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| | - Alexandra Kaldeli Kerou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - Theodora Karamanidou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - Afrodite Vlachou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
| | - George T. Tziros
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| | - Alexander Tsouknidas
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece; (A.K.K.); (T.K.); (A.V.)
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Bakola & Sialvera, 50132 Kozani, Greece
| | - George S. Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 269, 54124 Thessaloniki, Greece; (P.N.); (G.T.T.)
| |
Collapse
|