1
|
Bryan JN, Maitz CA. Translational History and Hope of Immunotherapy of Canine Tumors. Clin Cancer Res 2024; 30:4272-4285. [PMID: 39042399 PMCID: PMC11444889 DOI: 10.1158/1078-0432.ccr-23-2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Companion dogs have served an important role in cancer immunotherapy research. Sharing similar environments and diets with humans, dogs naturally develop many of the same cancers. These shared exposures, coupled with dogs' diverse genetic makeup, make them ideal subjects for studying cancer therapies. Tumors like osteosarcoma, hemangiosarcoma, soft-tissue sarcoma, and non-Hodgkin lymphoma occur with greater frequency than their counterpart disease in humans. Canine brain tumors allow the study of therapy strategies with imaging, surgery, and radiotherapy equipment in veterinary patients with near-human geometry. Nonspecific immunostimulants, autologous and allogeneic vaccines, immune checkpoint inhibitors, and cellular therapies used in treating canine cancers have been tested in veterinary clinical trials. These treatments have not only improved outcomes for dogs but have also provided valuable insights for human cancer treatment. Advancements in radiation technology and the development of tools to characterize canine immune responses have further facilitated the ability to translate veterinary clinical trial results to human applications. Advancements in immunotherapy of canine tumors have directly supported translation to human clinical trials leading to approved therapies for patients with cancer around the world. The study of immunotherapy in dogs has been and will continue to be a promising avenue for advancing human cancer treatment.
Collapse
Affiliation(s)
- Jeffrey N. Bryan
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| | - Charles A. Maitz
- Comparative Oncology, Radiobiology, and Epigenetics Laboratory, Department of Veterinary Medicine and Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO
| |
Collapse
|
2
|
Lu H, Kuang D, Zhou P, Zeng J, Xia Q, Wang J, Duan P, Jiang L, Zang S, Jin Y, Jiang X, Li J, Tang W, Zhou J, Chen J, Ying J. PD-L1 expression in recurrent or metastatic head and neck squamous cell carcinoma in China (EXCEED study): a multicentre retrospective study. J Clin Pathol 2024:jcp-2023-209059. [PMID: 37968103 DOI: 10.1136/jcp-2023-209059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
AIMS Programmed death-ligand 1 (PD-L1) is known to be highly expressed in various malignancies, including head and neck squamous cell carcinoma (HNSCC). We aimed to determine the prevalence of PD-L1 expression in recurrent or metastatic HNSCC (R/M HNSCC) among Chinese patients. METHODS This multicentre, retrospective analysis of data from six centres in China included patients with R/M HNSCC treated from 9 August 2021 to 28 February 2022. PD-L1 expression in tumour tissue was assessed and represented using a combined positive score (CPS). The χ2 and Cochran-Mantel-Haenszel χ2 tests were used to compare the prevalence of different PD-L1 expression statuses according to related co-variables. RESULTS For all 402 examined patients with R/M HNSCC, 168 cases (41.8%) had PD-L1 expression with a CPS ≥20, and 337 cases (83.8%) had PD-L1 expression with a CPS ≥1. Between the PD-L1 CPS ≥20 group and PD-L1 CPS <20 group, statistically significant differences were observed for variables of sex (p<0.001), smoking habit (p=0.0138 for non-smokers vs current smokers) and primary tumour site (p<0.001 for hypopharynx vs oral cavity and p=0.0304 for larynx vs oral cavity, respectively). CONCLUSION PD-L1 with CPS ≥20 was expressed in about 41.8% of cases with R/M HNSCC among Chinese patients, and PD-L1 expression was significantly associated with sex, smoking history and primary tumour site. Our findings regarding the variables related to PD-L1 expression level provide insight for clinical practice and a solid basis for future research on immunotherapy in HNSCC. TRIAL REGISTRATION NUMBER ISRCTN10570964.
Collapse
Affiliation(s)
- Haizhen Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zeng
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingxin Xia
- Department of Pathology, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pei Duan
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengbing Zang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yiping Jin
- Department of Pathology, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiangnan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jielin Li
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Wenmin Tang
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Jiansong Zhou
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Jihua Chen
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Nguyen TV, Do LTK, Lin Q, Nagahara M, Namula Z, Wittayarat M, Hirata M, Otoi T, Tanihara F. Programmed cell death-1-modified pig developed using electroporation-mediated gene editing for in vitro fertilized zygotes. In Vitro Cell Dev Biol Anim 2024; 60:716-724. [PMID: 38485817 DOI: 10.1007/s11626-024-00869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 08/03/2024]
Abstract
Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan.
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, 3290498, Japan.
| |
Collapse
|
4
|
Pimenta J, Prada J, Pires I, Cotovio M. Programmed-cell death ligand 1 (PD-L1) expression in equine sarcoids and squamous cell carcinoma. Open Vet J 2024; 14:1476-1482. [PMID: 39055760 PMCID: PMC11268900 DOI: 10.5455/ovj.2024.v14.i6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Background Sarcoids and squamous cell carcinomas (SCCs) are the most concerning equine oncological diseases. Both tumors are challenging to manage due to their invasive behavior and high prevalence of recurrences. Furthermore, SCCs have a propensity to metastasize. Programed cell-death ligand 1 (PD-L1) has been one of the main therapeutic targets for immunotherapy in various human tumors. PD-L1 research in equine tumors is scarce and more efforts are necessary to understand the potential of this biomarker as a therapeutical target. Aim Evaluate the immunohistochemical expression of PD-L1 in equine sarcoids and SCC. Methods Thirteen equine tumors (seven sarcoids and 6 SCCs) were tested by immunohistochemistry and evaluated semi quantitatively to assess the percentage of positive cells. Results None of the sarcoids presented PD-L1 expression. Regarding SCC, 2 tumors presented <10% of labeled cells; 2 tumors presented 10%-25% of labeled cells and 2 tumors presented 25%-50% of labeled cells. There were statistically significant differences between sarcoids and SCC regarding the expression of PD-L1. Conclusion Our results point to the fact that PD-L1 could be a potential therapeutic target against SCC, and also encourage in-depth studies in this area, with larger sample sizes.
Collapse
Affiliation(s)
- José Pimenta
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- CIVG Vasco da Gama Research Center / EUVG – Vasco da Gama University School, Coimbra, Portugal
| | - Justina Prada
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Mário Cotovio
- CECAV Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| |
Collapse
|
5
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Fesmire CC, Peal B, Ruff J, Moyer E, McParland TJ, Derks K, O’Neil E, Emke C, Johnson B, Ghosh S, Petrella RA, DeWitt MR, Prange T, Fogle C, Sano MB. Investigation of integrated time nanosecond pulse irreversible electroporation against spontaneous equine melanoma. Front Vet Sci 2024; 11:1232650. [PMID: 38352036 PMCID: PMC10861690 DOI: 10.3389/fvets.2024.1232650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Integrated time nanosecond pulse irreversible electroporation (INSPIRE) is a novel tumor ablation modality that employs high voltage, alternating polarity waveforms to induce cell death in a well-defined volume while sparing the underlying tissue. This study aimed to demonstrate the in vivo efficacy of INSPIRE against spontaneous melanoma in standing, awake horses. Methods A custom applicator and a pulse generation system were utilized in a pilot study to treat horses presenting with spontaneous melanoma. INSPIRE treatments were administered to 32 tumors across 6 horses and an additional 13 tumors were followed to act as untreated controls. Tumors were tracked over a 43-85 day period following a single INSPIRE treatment. Pulse widths of 500ns and 2000ns with voltages between 1000 V and 2000 V were investigated to determine the effect of these variables on treatment outcomes. Results Treatments administered at the lowest voltage (1000 V) reduced tumor volumes by 11 to 15%. Higher voltage (2000 V) treatments reduced tumor volumes by 84 to 88% and eliminated 33% and 80% of tumors when 500 ns and 2000 ns pulses were administered, respectively. Discussion Promising results were achieved without the use of chemotherapeutics, the use of general anesthesia, or the need for surgical resection in regions which are challenging to keep sterile. This novel therapeutic approach has the potential to expand the role of pulsed electric fields in veterinary patients, especially when general anesthesia is contraindicated, and warrants future studies to demonstrate the efficacy of INSPIRE as a solid tumor treatment.
Collapse
Affiliation(s)
- Chris C. Fesmire
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Bridgette Peal
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Jennifer Ruff
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Elizabeth Moyer
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Thomas J. McParland
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Kobi Derks
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Erin O’Neil
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Carrie Emke
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Brianna Johnson
- Clinical Studies Core, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Shatorupa Ghosh
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Ross A. Petrella
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Matthew R. DeWitt
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
| | - Timo Prange
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Callie Fogle
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| | - Michael B. Sano
- Bioelectricity Lab, UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, NC, United States
- Department of Molecular Biomedical Sciences, NC State College of Veterinary Medicine, Raleigh, NC, United States
| |
Collapse
|
7
|
Tiyamanee W, Konnai S, Okagawa T, Nojima Y, Ganbaatar O, Maekawa N, Hasebe R, Kagawa Y, Kato Y, Suzuki Y, Murata S, Ohashi K. Molecular characterization of immunoinhibitory factors PD-1/PD-L1 in sheep. Vet Immunol Immunopathol 2023; 261:110609. [PMID: 37201379 DOI: 10.1016/j.vetimm.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Sheep have been used as a large animal experimental model for studying infectious diseases. However, due to a lack of staining antibodies and reagents, immunological studies on sheep have not progressed. The immunoinhibitory receptor programmed death-1 (PD-1) is expressed on T lymphocytes. The interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. We previously reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections using anti-bovine PD-L1 monoclonal antibodies (mAbs). Furthermore, we found that blocking antibodies against PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy of cattle. However, the immunological role of the PD-1/PD-L1 pathway in chronic diseases of sheep remains unknown. In this study, we identified cDNA sequences of ovine PD-1 and PD-L1 and examined the cross-activity of anti-bovine PD-L1 mAbs against ovine PD-L1 as well as the expression of PD-L1 in ovine listeriosis. The amino acid sequences of ovine PD-1 and PD-L1 share a high degree of identity and similarity with homologs from ruminants and other mammalian species. Anti-bovine PD-L1 mAb recognized ovine PD-L1 on lymphocytes in the flow cytometric assay. Furthermore, an immunohistochemical staining confirmed the PD-L1 expression on macrophages in the brain lesions of ovine listeriosis. These findings indicated that our anti-PD-L1 mAb would be useful for analyzing the ovine PD-1/PD-L1 pathway. Further research is needed to determine the immunological role of PD-1/PD-L1 in chronic diseases such as BLV infection through experimental infection of sheep.
Collapse
Affiliation(s)
- Wisa Tiyamanee
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Yi Z, Gao Y, Yu F, Zhu Y, Liu H, Li J, Murua Escobar H. Interventions for treatment of cutaneous melanoma in horses: a structured literature review. Vet Res Commun 2022; 47:347-360. [PMID: 36329228 DOI: 10.1007/s11259-022-10023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Several therapies have been developed to treat equine cutaneous melanoma, but formal comparisons among different treatment options are currently unavailable. It was our intent to assess the efficacy of different treatment protocols and the quality of the studies based on the original published data, and summarize the knowledge concerning the outcome after equine cutaneous melanoma management. This structured review followed PRISMA procedure to search for treatment protocols on equine cutaneous melanoma published from 1960 until June 2021. Studies were assessed for the risk of bias. A descriptive analysis was performed, considering the disease control rate, the recurrence rate of the tumor, comorbidities, need for anesthesia, and horses' welfare. Twenty-three studies were included, from which the treatment outcomes of 173 horses were assessed. The homogeneity of the included trials was low. The percentages of each treatment arm achieving a partial response and curative effects accounted for 93.1% (surgical intervention), 90% (medication), and 39.4% (immunotherapies), respectively. A variable efficacy of different therapies of equine cutaneous melanoma was observed. Surgical intervention performed the best from the perspective of local antitumor effects alone. This literature review and descriptive analysis can serve as a source to assist in designing quality therapy research and can potentially aid in providing a clinical treatment reference for equine cutaneous melanoma.
Collapse
Affiliation(s)
- Ziwen Yi
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agriculture University, No. 2 Yuanmingyuan West Road, 100094, Beijing, China
| | - Yu Gao
- University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Feng Yu
- College of Veterinary Medicine, China Agriculture University, Beijing, China
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agriculture University, No. 2 Yuanmingyuan West Road, 100094, Beijing, China
| | - Haoqian Liu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agriculture University, No. 2 Yuanmingyuan West Road, 100094, Beijing, China
| | - Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agriculture University, No. 2 Yuanmingyuan West Road, 100094, Beijing, China.
| | - Hugo Murua Escobar
- Department of Hematology, Oncology and Palliative Medicine, Department of Medicine III, Rostock University Medical Center, Ernst Heydemann Street No. 6, 18057, Rostock, Germany.
| |
Collapse
|
9
|
Ganbaatar O, Konnai S, Okagawa T, Nojima Y, Maekawa N, Ichikawa Y, Kobayashi A, Shibahara T, Yanagawa Y, Higuchi H, Kato Y, Suzuki Y, Murata S, Ohashi K. Programmed death-ligand 1 expression in swine chronic infections and enhancement of interleukin-2 production via programmed death-1/programmed death-ligand 1 blockade. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1573-1583. [PMID: 34414683 PMCID: PMC8589367 DOI: 10.1002/iid3.510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
Introduction Chronic infections lead to the functional exhaustion of T cells. Exhausted T cells are phenotypically differentiated by the surface expression of the immunoinhibitory receptor, such as programmed death‐1 (PD‐1). The inhibitory signal is produced by the interaction between PD‐1 and its PD‐ligand 1 (PD‐L1) and impairs the effector functions of T cells. However, the expression dynamics of PD‐L1 and the immunological functions of the PD‐1/PD‐L1 pathway in chronic diseases of pigs are still poorly understood. In this study, we first analyzed the expression of PD‐L1 in various chronic infections in pigs, and then evaluated the immune activation by the blocking assay targeting the swine PD‐1/PD‐L1 pathway. Methods In the initial experiments, anti‐bovine PD‐L1 monoclonal antibodies (mAbs) were tested for cross‐reactivity with swine PD‐L1. Subsequently, immunohistochemical analysis was conducted using the anti‐PD‐L1 mAb. Finally, we assessed the immune activation of swine peripheral blood mononuclear cells (PBMCs) by the blockade with anti‐PD‐L1 mAb. Results Several anti‐PD‐L1 mAbs tested recognized swine PD‐L1‐expressing cells. The binding of swine PD‐L1 protein to swine PD‐1 was inhibited by some of these cross‐reactive mAbs. In addition, immunohistochemical analysis revealed that PD‐L1 was expressed at the site of infection in chronic infections of pigs. The PD‐L1 blockade increased the production of interleukin‐2 from swine PBMCs. Conclusions These findings suggest that the PD‐1/PD‐L1 pathway could be also involved in immunosuppression in chronic infections in pigs. This study provides a new perspective on therapeutic strategies for chronic diseases in pigs by targeting immunosuppressive pathways.
Collapse
Affiliation(s)
- Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiki Ichikawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Shibahara
- Division of Hygiene Management Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yojiro Yanagawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hidetoshi Higuchi
- Division of Health and Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
PD-L1/PD-1 and CTLA-4 Expression in Equine Penile Squamous Cell Carcinomas. Animals (Basel) 2021; 11:ani11072121. [PMID: 34359249 PMCID: PMC8300259 DOI: 10.3390/ani11072121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
In horses, penile squamous cell carcinomas (epSCCs) are among the most common cutaneous neoplastic lesions. These tumors usually arise in benign lesions such as viral plaques and papillomas frequently induced by Equus caballus papillomavirus type 2 (EcPV2) infection. In the last decade, the introduction of immune checkpoint inhibitors (ICI) for the treatment of human cancers has demonstrated promising results. Among the most commonly targeted pathways, there is PD-1/PD-L1 and CTLA-4. The aim of this study is to investigate the expression of the PD-1/PD-L1 pathway and CTLA-4 in the tumor microenvironment of epSCCs to assess the feasibility of an immunotherapeutic approach. Twenty equine epithelial tumors were retrospectively selected and submitted to RT-qPCR for PD-1 and PD-L1 genes. After testing antibodies cross-reactivity by western blotting, immunohistochemistry for PD-L1 and CTLA-4 was performed. Results from RT-qPCR demonstrated that 3/20 cases expressed the PD-L1 gene, whereas the PD-1 gene was not detected. Immunohistochemical positivity for PD-L1 was found only in one case. CTLA-4-positive cells were observe in all cases but were few (Mdn = 4.8; IQR = 2.3-7.1 cells/HPF). In this study group, PD-1/PD-L1 and CTLA-4 do not appear to be highly expressed and therefore the use of ICI in epSCCs may not have promising rates of response.
Collapse
|
11
|
Circulating Melanoma-Derived Extracellular Vesicles: Impact on Melanoma Diagnosis, Progression Monitoring, and Treatment Response. Pharmaceuticals (Basel) 2020; 13:ph13120475. [PMID: 33353043 PMCID: PMC7766072 DOI: 10.3390/ph13120475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma, one of the most aggressive human malignancies, is responsible for 80% of skin cancer deaths. Whilst early detection of disease progression or metastasis can improve patient survival, this remains a challenge due to the lack of reliable biomarkers. Importantly, these clinical challenges are not unique to humans, as melanoma affects many other species, including companion animals, such as the dog and horse. Extracellular vesicles (EVs) are tiny nanoparticles involved in cell-to-cell communication. Several protein and genomic EV markers have been described in the literature, as well as a wide variety of methods for isolating EVs from body fluids. As such, they may be valuable biomarkers in cancer and may address some clinical challenges in the management melanoma. This review aimed to explore the translational applications of EVs as biomarkers in melanoma, as well as their role in the clinical setting in humans and animals. A summary of melanoma-specific protein and genomic EV markers is presented, followed by a discussion of the role EVs in monitoring disease progression and treatment response. Finally, herein, we reviewed the advantages and disadvantages of methods utilised to isolate EVs from bodily fluids in melanoma patients (human and animals) and describe some of the challenges that will need to be addressed before EVs can be introduced in the clinical setting.
Collapse
|