1
|
Nozaki H, Matsuzaki R, Shimotori K, Ueki N, Heman W, Mahakham W, Yamaguchi H, Tanabe Y, Kawachi M. Two species of the green algae Volvox sect. Volvox from the Japanese ancient lake, Lake Biwa. PLoS One 2024; 19:e0310549. [PMID: 39312548 PMCID: PMC11419359 DOI: 10.1371/journal.pone.0310549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Volvox sect. Volvox is a group of green algae with unique morphological features (thick cytoplasmic bridges between somatic cells and spiny zygote walls) and a worldwide distribution. Despite research interest in the diversity of organisms in ancient lakes, Volvox sect. Volvox from ancient lakes worldwide has not been identified to the species level. Here, we established clonal cultures of two species of this group originating from Lake Biwa, an ancient lake in Japan, and performed identification based on morphological and molecular data. One was identified as Volvox kirkiorum based on the nuclear ribosomal DNA internal spacer region (ITS) sequence, bisexual (monoicous or monoecious) spheroids, and zygote morphology. The other showed genetic separation from related species based on the secondary structure of the ITS and results of phylogenetic analysis of a combined data set from the nuclear actin gene, ITS, and two plastid genes (large subunit of RuBisCO and photosystem II CP43 apoprotein gene); it represented a new phylogenetic lineage within Volvox sect. Volvox, suggesting possible endemism in Lake Biwa. This species produced bisexual spheroids with different zygote morphology and zygote number from other species with bisexual spheroids in Volvox sect. Volvox. Therefore, Volvox biwakoensis Nozaki et H. Yamaguchi sp. nov. is described herein. This is the first endemic species of the genus Volvox described from an ancient lake.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo, Japan
| | - Ryo Matsuzaki
- Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Koichi Shimotori
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
| | - Noriko Ueki
- Science Research Center, Hosei University, Tokyo, Japan
| | - Wirawan Heman
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin, Thailand
| | - Wuttipong Mahakham
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
| | - Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Cheng A, Lim WY, Lim PE, Yang Amri A, Poong SW, Song SL, Ilham Z. Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. BIOLOGY 2022; 11:biology11081209. [PMID: 36009834 PMCID: PMC9405220 DOI: 10.3390/biology11081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Invasive species are a leading hazard to marine ecosystems worldwide, coupled with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are generally regarded as biological agents that restrict invasive species, and their efficiency depends on their dietary habits, especially the autotrophs they eat. Many researchers have found contradicting findings on the effects of nutritional attributes and novelty of autotrophs on herbivore eating behaviour. In light of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we provide a comprehensive review to fill knowledge gaps about synergies based on macroalgae, an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also analyse macroalgal defence measures against herbivores, underlining unique features and potential roles in maintaining marine ecosystems. The nutritional qualities, shape, and novelty of autotrophs can alter herbivore feeding behaviour. Future research should explore aspects that can alter marine autotroph-herbivore interactions to resolve inconsistent results of specific features and the uniqueness of the organisms involved. Abstract Species invasion is a leading threat to marine ecosystems worldwide, being deemed as one of the ultimate jeopardies for biodiversity along with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are often considered as biological agents that control the spread of invasive species, and their effectiveness depends largely on factors that influence their feeding preferences, including the specific attributes of their food–the autotrophs. While the marine autotroph-herbivore interactions have been substantially discussed globally, many studies have reported contradictory findings on the effects of nutritional attributes and novelty of autotrophs on herbivore feeding behaviour. In view of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we generate a comprehensive review to furnish insights into critical knowledge gaps about the synergies based largely on the characteristics of macroalgae; an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also discuss the key defence strategies of these macroalgae against the herbivores, highlighting their unique attributes and plausible roles in keeping the marine ecosystems intact. Overall, the feeding behaviour of herbivores can be affected by the nutritional attributes, morphology, and novelty of the autotrophs. We recommend that future research should carefully consider different factors that can potentially affect the dynamics of the marine autotroph-herbivore interactions to resolve the inconsistent results of specific attributes and novelty of the organisms involved.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai Yin Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Phaik-Eem Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Affendi Yang Amri
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Looi Song
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| | - Zul Ilham
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| |
Collapse
|
3
|
Nozaki H, Mahakham W, Heman W, Matsuzaki R, Kawachi M. Morphology, mating system and taxonomy of Volvox africanus (Volvocaceae, Chlorophyceae) from Thailand. BOTANICAL STUDIES 2022; 63:1. [PMID: 35061120 PMCID: PMC8782957 DOI: 10.1186/s40529-022-00332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The oogamous green algal genus Volvox exhibits extensive diversity in mating systems, including heterothallism and homothallism with unisexual (male and/or female) and/or bisexual spheroids. Although four mating systems have been recognized worldwide in strains identified as "Volvox africanus", most of these strains are extinct. However, we previously rediscovered two types of the four mating systems (heterothallic, and homothallic with male and bisexual spheroids within a clone) from an ancient Japanese lake, Lake Biwa. RESULTS Here, we obtained strains exhibiting the third mating system (homothallic with unisexual male and female spheroids within a clone) from a freshwater area of Kalasin Province, Thailand. When sexual reproduction was induced in the present Thai strains, both male and female unisexual spheroids developed to form smooth-walled zygotes within a clonal culture. Phylogenetic analyses of the internal transcribed spacer region-2 of nuclear ribosomal DNA sequences from all four mating systems, including the extinct strains, resolved the third mating system is basal or paraphyletic within the homothallic clade. CONCLUSIONS The present morphological and molecular data of the Thai strains indicate that they belong to the homothallic species V. africanus. The phylogenetic results suggested that third mating system (homothallic with separate male and female sexual spheroids) may represent an initial evolutionary stage of transition from heterothallism to homothallism within Volvox africanus. Further field collections in geologically stable intracontinental regions may be fruitful for studying diversity and taxonomy of the freshwater green algal genus Volvox.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki Japan
| | - Wuttipong Mahakham
- Department of Biology & Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wirawan Heman
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Mueang Kalasin, Thailand
| | - Ryo Matsuzaki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki Japan
| |
Collapse
|
4
|
Desnitskiy AG. Volvox as a Model for Studying Cell Death and Senescence. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The spherical green alga Volvox consists of several hundred or thousand of somatic cells that undergo terminal differentiation, senescence and death, and a small number of gonidia (asexual reproductive cells) that give rise to the next generation. In the first part of this paper, the ontogenetic diversity of the genus Volvox is briefly considered, as well as the mechanisms of differentiation into the two types of cells mentioned above, which have been thoroughly studied during recent years in Volvox carteri. Then, a detailed critical analysis of the literature and some of my own data on senescence and cell death (mainly in V. carteri and, to a lesser extent, in V. aureus) was carried out, and it was noted that this aspect of Volvox developmental biology has not been sufficiently studied. Some perspectives of further research of the processes of cell death and senescence in representatives of the genus Volvox in a comparative aspect are indicated.
Collapse
|