1
|
Zhu TY, Hu P, Mi YH, Zhang JL, Xu AN, Gao MT, Zhang YY, Shen SB, Yang GM, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2024:e14445. [PMID: 39660787 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian-Yi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Hui Mi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - An-Na Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming-Tong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying-Ying Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - San-Bing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Guang-Ming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Munasinghe M, Brandvain Y. Together inbreeding and reproductive compensation favor lethal t-haplotypes. J Hered 2024; 115:672-681. [PMID: 38842146 DOI: 10.1093/jhered/esae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Male mice who are heterozygous for distorting and non-distorting alleles at the t-haplotype transmit the driving t-haplotype around 90% of the time-a drastic departure from Mendelian expectations. This selfish act comes at a cost. The mechanism underlying transmission distortion in this system causes severe sterility in males homozygous for the drive alleles, ultimately preventing its fixation. Curiously, many driving t-haplotypes also induce embryonic lethality in both sexes when homozygous; however, this is neither universal nor a necessity for this distortion mechanism. Charlesworth provided an adaptive explanation for the evolution of lethal t-haplotypes in a population segregating for distorting and non-distorting t alleles-if mothers compensate by replacing dead embryos with new offspring (or by transferring energy to surviving offspring), a recessive lethal can be favored because it effectively allows mothers the opportunity to trade in infertile males for potentially fertile offspring. This model, however, requires near complete reproductive compensation for the invasion of the lethal t-haplotype and produces an equilibrium frequency of lethal drivers well below what is observed in nature. We show that low levels of systemic inbreeding, which we model as brother-sister mating, allow lethal t-haplotypes to invade with much lower levels of reproductive compensation. Furthermore, inbreeding allows these lethal haplotypes to largely displace the ancestral male-sterile haplotypes. Our results show that together inbreeding and reproductive compensation move expected equilibria closer to observed haplotype frequencies in natural populations and occur under lower, potentially more reasonable, parameters.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States
| |
Collapse
|
4
|
Morello GM, Capas-Peneda S, Brajon S, Lamas S, Lopes IM, Gilbert C, Olsson IAS. Proper micro-environment alleviates mortality in laboratory mouse breeding induced by litter overlap and older dams. Commun Biol 2024; 7:1008. [PMID: 39154136 PMCID: PMC11330512 DOI: 10.1038/s42003-024-06654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
The ongoing worldwide effort to reduce animal numbers in research often omits the issue of pre-weaning mortality in mouse breeding. A conservative estimate of 20% mortality would mean approximately 1.1 M mice die annually in the EU before scientific use. We hypothesize that pre-weaning mortality in laboratory mouse breeding is associated with cage social and macro/micro-environment conditions. Here we count pups from 509 C57BL/6J litters daily for accurate detection of mortality, and monitor cage micro-environment for 172 C57BL/6J litters. Probability of pups to die increases with the increase in dam age, number and age of older pups in the cage (of overlapped/cohabitating litters), and in small (<6 pups) and large (>11 pups) focal litters. Higher temperatures (>23.6 °C) and nest scores (>3.75) compensate for some of the socially-associated risks for pup death. These findings can be implemented in strategies for reducing pre-weaning mouse mortality, a more welfare-friendly and sustainable approach for science.
Collapse
Affiliation(s)
- Gabriela M Morello
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
| | - Sara Capas-Peneda
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sophie Brajon
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sofia Lamas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Igor M Lopes
- Sociedade Portuguesa de Inovação, Porto, Portugal
| | | | - I Anna S Olsson
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Pham XT, Abe Y, Mukai Y, Ono D, Tanaka KF, Ohmura Y, Wake H, Yamanaka A. Glutamatergic signaling from melanin-concentrating hormone-producing neurons: A requirement for memory regulation, but not for metabolism control. PNAS NEXUS 2024; 3:pgae275. [PMID: 39035036 PMCID: PMC11259978 DOI: 10.1093/pnasnexus/pgae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.
Collapse
Affiliation(s)
- Xuan Thang Pham
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Psychiatry, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Ohmura
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Yamanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Cintra L, Alexandre-Ribeiro SR, Teixeira JTX, Megid MM, Coucolis TV, Zanatto DA, Leal VN, Massironi SMG, Mori CMC. Nest-building in breeding mice: Impact of macro- and micro-environment. Lab Anim 2024; 58:219-230. [PMID: 38296224 DOI: 10.1177/00236772231171191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The housing conditions of laboratory mice must be strictly controlled in order to reduce the impact of pathophysiological changes that affect animal health and welfare, possibly resulting in increased variability within experimental results. One way to improve the activity and survival of laboratory mice is to provide nesting material. The objective of this study was to determine if nest-building quality could be used to detect changes in murine mating behaviour in a rodent facility under controlled conditions. Nesting scores of 847 cages with monogamous pairs from three different genetic backgrounds (129, B6 and BALB/c) of both sexes were correlated with 18 predefined variables. The effects on nest quality were evaluated using descriptive data analysis, correspondence analysis and ordinal logistic model fitting. The results showed a strong relationship between nest quality and nest position. Humidity, genetic background, cage change and the number and age of pups in the cage affected the nest-building scores. The most important indicators were cage change and relative humidity, both of which exerted significant negative effects on nest-building quality. Even though the criteria were well defined, the observer could still influence nest score appraisal. However, in a long-term observational study, observers could improve their assessment by training and acquiring greater experience in score assignment. Nest-building scores are easy to assess in the cage, with little discomfort to the animal. Moreover, the nest score is a valid indicator of the health and well-being of laboratory mice and can provide valuable support in the management of animal facilities.
Collapse
Affiliation(s)
- Luciana Cintra
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
- Hospital Israelita Albert Einstein, Brazil
| | | | | | - Michel Mancinelli Megid
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Brazil
| | - Thiago Vieira Coucolis
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Brazil
| | - Dennis Albert Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Victoria Nathaly Leal
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | |
Collapse
|
7
|
Bravo JC, Ugartemendia L, Barman A, Rodríguez AB, Pariente JA, Bravo R. Bibliometric analysis on cannibalism/infanticide and maternal aggression towards pups in laboratory rodents. Lab Anim 2024; 58:240-251. [PMID: 38353042 DOI: 10.1177/00236772231192030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Animal welfare has evolved during the past decades to improve not only the quality of life of laboratory rodents but also the quality and reproducibility of scientific investigations. Bibliometric analysis has become an important tool to complete the current knowledge with academic databases. Our objective was to investigate whether scientific research on cannibalism/infanticide is connected with maternal aggression towards the offspring in laboratory rodents. To carry out our research, we performed a specific search for published articles on each concept. Results were analyzed in the open-source environment RStudio with the package Bibliometrix. We obtained 253 and 134 articles for the first search (cannibalism/infanticide) and the second search (maternal aggression towards the pups) respectively. We observed that the interest in infanticide/cannibalism started in the 1950s, while researchers started showing interest in maternal aggression towards the pups 30 years later. Our analyses indicated that maternal aggression had better citations in scientific literature. In addition, although our results showed some common features (e.g. oxytocin or medial preoptic area in the brain), we observed a gap between cannibalism/infanticide and maternal aggression towards the pups with only 14 published articles in common for both the searches. Therefore, we recommend researchers to combine both concepts in further investigations in the context of cannibalism for better dissemination and higher impact in laboratory rodents' welfare research.
Collapse
Affiliation(s)
- José C Bravo
- Animal facility of University of Extremadura, University of Extremadura, Spain
- Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Spain
| | - Lierni Ugartemendia
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, USA
| | - Arko Barman
- D2K Lab & Department of Electrical and Computer Engineering, Rice University, USA
| | - Ana B Rodríguez
- Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Spain
| | - José A Pariente
- Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Spain
| | - Rafael Bravo
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, USA
| |
Collapse
|
8
|
Tanaka T. Biological and environmental factors influencing reproductive performance in ICR mice, Mus musculus. Birth Defects Res 2024; 116:e2337. [PMID: 38613401 DOI: 10.1002/bdr2.2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Since strain names and breeding facilities of ICR mice used in 37 reproductive toxicity studies have changed from 1990 to 2022 in our laboratory, biological and environmental factors that affect reproductive parameters were investigated in control mice to examine the validity of the background data. METHODS Litter size and sex ratio were measured at birth [postnatal day (PND) 0], while offspring body weight was measured on PND 0 and 21 during the lactation. The relationships between biological and environmental factors and reproductive parameters were assessed with multiple regression analysis using stepwise regression as an explanatory variable selection strategy. The biological factors of litter size at birth, secondary sex ratio (male%), body weight (g) at birth and strain name, and environmental factors of facilities (room), temperature/humidity, and bedding materials were used as explanatory variables, and reproductive parameters of litter size at birth, secondary sex ratio (male%), body weight (g) at birth, and survival index (%) of offspring at PND 21 were used as response variables. RESULTS No significant effects were indicated in litter size and sex ratio (male %) with any biological and environmental factors. Male and female offspring weights were significantly affected by strain names. No significant effects were indicated in the survival index (%) at PND 21 in both sexes with any biological and environmental factors. CONCLUSIONS Litter size and sex ratio in this report are sufficient as background data throughout the period because no significant variables of biological and environmental factors affected litter size and gender composition.
Collapse
Affiliation(s)
- Toyohito Tanaka
- Division of Toxicology, Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| |
Collapse
|
9
|
Strege CL, Miller WC, Eide C, Hubbard J, Tolar J. Methods for Decreasing Preweaning Mortality in a Fragile Mouse Model of Hypomorphic Collagen VII Deficiency. Comp Med 2024; 74:99-104. [PMID: 38508685 PMCID: PMC11078276 DOI: 10.30802/aalas-cm-23-000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Preweaning mortality is a widespread problem in laboratory mouse breeding, particularly in the case of fragile mouse models. While numerous studies explore alternative care methods to increase the survivability of common mouse strains, there remains a paucity of research into the care of mice with fragile health conditions that result from induced or natural genetic mutations. In this study, standard husbandry practices were enhanced by the addition of a softened diet, a nutritionally fortified dietary supplement, soft bedding, gentle handling techniques, decreased handling, lengthened weaning age, and dam productivity tracking. This alternative care plan was shown to increase the survival of a fragile recessive dystrophic epidermolysis bullosa mouse model, and some aspects could be used in developing a care plan for other fragile mouse strains.
Collapse
Affiliation(s)
- Chloe L Strege
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - William C Miller
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Cindy Eide
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jennifer Hubbard
- Research Animal Resources, University of Minnesota, Minneapolis, Minnesota;,
| | - Jakub Tolar
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota;,
| |
Collapse
|
10
|
Wharton KN, Walsh C, Bauer-Pisani TJ, Smith PC, Wilson SR. Effect of Cage Change Frequency on Perinatal Mortality in C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:148-153. [PMID: 38061769 PMCID: PMC11022952 DOI: 10.30802/aalas-jaalas-23-000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 09/16/2023] [Indexed: 04/19/2024]
Abstract
Perinatal mortality is a common problem in mouse breeding colonies. Few studies have examined the influence of environmental changes on mouse pup survival. In this study, monogamous breeding cages of C57BL/6J mice were set up and randomized into 3 cage change groups: 1) cage change at 8 d after parturition, 2) cage change at 3 d after parturition, or 3) cage change at 3 d after parturition with the addition of a polycarbonate hut in the cage. Pairs were bred to produce a minimum of 4 litters. Pup survival to weaning relative to experimental cage change date, and survival rates after cage change were evaluated. The results revealed no significant differences between experimental groups. The majority of pup loss occurred within the first 24 h after birth for those pups that were alive at birth. Overall, the postpartum day of cage change did not affect the perinatal survival of mouse pups.
Collapse
Affiliation(s)
- Keely N Wharton
- Yale University Department of Comparative Medicine, New Haven, Connecticut
| | - Courtney Walsh
- Yale University Department of Comparative Medicine, New Haven, Connecticut
| | | | - Peter C Smith
- Yale University Department of Comparative Medicine, New Haven, Connecticut
| | - Steven R Wilson
- Yale University Department of Comparative Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Hull MA, Nunamaker EA, Reynolds PS. Effects of Refined Handling on Reproductive Indices of BALB/cJ and CD-1 IGS Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:3-9. [PMID: 38154807 PMCID: PMC10844741 DOI: 10.30802/aalas-jaalas-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Current mouse handling methods during cage change procedures can cause stress and potentially compromise animal welfare. Our previous study of breeding C57BL/6J mice found modest increases in pup production and a significant reduction in preweaning litter losses when mice were handled using a tunnel as compared with a tail-lift with padded forceps. The current study evaluated how these 2 handling methods affected reproduction by 2 additional mouse strains, BALB/cJ (a low- to intermediate-fecundity strain) and CD-1 IGS (a high-fecundity stock). We predicted that refined handling would have minimal effects on the high-fecundity line with a satisfactory production rate and greater effects on the low-fecundity line. Handling method (tunnel compared with tail-lift) was randomly assigned to monogamous breeding pairs of mice. Reproductive metrics (litter size at birth and weaning, numbers of litters, litter attrition, between-litter intervals, pup wean- ing weight, and sex ratio) were prospectively monitored for 80 BALB/cJ and 77 CD-1 pairs that were bred continuously for 6 mo. Both strains of mice were highly productive, exceeding previously published breeding data. However, neither strain demonstrated operational or statistically significant differences between handling methods for any reproduction metric. As we detected no negative effects in these 2 strains and the benefits are clear in other strains, refined handling should be considered for all breeding mice.
Collapse
Affiliation(s)
- Margaret A Hull
- Animal Care Services, University of Florida, Gainesville, Florida
| | - Elizabeth A Nunamaker
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, Massachusetts; and
| | - Penny S Reynolds
- Statistics in Anesthesiology Research Core, Department of Anesthesiology, College of Medicine, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Warren EB, Briano JA, Ellegood J, DeYoung T, Lerch JP, Morrow EM. 17q12 deletion syndrome mouse model shows defects in craniofacial, brain and kidney development, and glucose homeostasis. Dis Model Mech 2022; 15:dmm049752. [PMID: 36373506 PMCID: PMC10655816 DOI: 10.1242/dmm.049752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily B. Warren
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Juan A. Briano
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Eric M. Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
13
|
Brajon S, Morello GM, Capas-Peneda S, Hultgren J, Gilbert C, Olsson A. All the Pups We Cannot See: Cannibalism Masks Perinatal Death in Laboratory Mouse Breeding but Infanticide Is Rare. Animals (Basel) 2021; 11:2327. [PMID: 34438784 PMCID: PMC8388445 DOI: 10.3390/ani11082327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
Perinatal mortality is a major issue in laboratory mouse breeding. We compared a counting method using daily checks (DAILY_CHECK) with a method combining daily checks with detailed video analyses to detect cannibalisms (VIDEO_TRACK) for estimating the number of C57BL/6 pups that were born, that died and that were weaned in 193 litters from trios with (TRIO-OVERLAP) or without (TRIO-NO_OVERLAP) the presence of another litter. Linear mixed models were used at litter level. To understand whether cannibalism was associated with active killing (infanticide), we analysed VIDEO_TRACK recordings of 109 litters from TRIO-OVERLAP, TRIO-NO_OVERLAP or SOLO (single dams). We used Kaplan-Meier method and logistic regression at pup level. For DAILY_CHECK, the mean litter size was 35% smaller than for VIDEO_TRACK (p < 0.0001) and the number of dead pups was twice lower (p < 0.0001). The risk of pup loss was higher for TRIO-OVERLAP than TRIO-NO_OVERLAP (p < 0.0001). A high number of pup losses occurred between birth and the first cage check. Analyses of VIDEO_TRACK data indicated that pups were clearly dead at the start of most of the cannibalism events and infanticide was rare. As most pups die and disappear before the first cage check, many breeding facilities are likely to be unaware of their real rates of mouse pup mortality.
Collapse
Affiliation(s)
- Sophie Brajon
- Laboratory Animal Science, IBMC—Instituto de Biologia Molecular e Celular, and i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; (S.B.); (G.M.M.); (S.C.-P.)
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK;
| | - Gabriela Munhoz Morello
- Laboratory Animal Science, IBMC—Instituto de Biologia Molecular e Celular, and i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; (S.B.); (G.M.M.); (S.C.-P.)
| | - Sara Capas-Peneda
- Laboratory Animal Science, IBMC—Instituto de Biologia Molecular e Celular, and i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; (S.B.); (G.M.M.); (S.C.-P.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jan Hultgren
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 53223 Skara, Sweden;
| | - Colin Gilbert
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK;
| | - Anna Olsson
- Laboratory Animal Science, IBMC—Instituto de Biologia Molecular e Celular, and i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; (S.B.); (G.M.M.); (S.C.-P.)
| |
Collapse
|
14
|
Lough-Stevens M, Ghione CR, Urness M, Hobbs A, Sweeney CM, Dean MD. Male-derived copulatory plugs enhance implantation success in female Mus musculus. Biol Reprod 2021; 104:684-694. [PMID: 33355341 PMCID: PMC7962766 DOI: 10.1093/biolre/ioaa228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Among a wide diversity of sexually reproducing species, male ejaculates coagulate to form what has been termed a copulatory plug. A number of functions have been attributed to copulatory plugs, including the inhibition of female remating and the promotion of ejaculate movement. Here we demonstrate that copulatory plugs also influence the likelihood of implantation, which occurs roughly 4 days after copulation in mice. Using a bead transfer method to control for differences in ejaculate retention and fertilization rates, we show that implantation rates significantly drop among females mated to genetically engineered males incapable of forming plugs (because they lack functional transglutaminase 4, the main enzyme responsible for its formation). Surprisingly, this result does not correlate with differences in circulating progesterone levels among females, an important hormone involved in implantation. We discuss three models that connect male-derived copulatory plugs to implantation success, including the hypothesis that plugs contribute to a threshold amount of stimulation required for females to become receptive to implantation.
Collapse
Affiliation(s)
- Michael Lough-Stevens
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Caleb R Ghione
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew Urness
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Adelaide Hobbs
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Colleen M Sweeney
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Capas-Peneda S, Munhoz Morello G, Lamas S, S Olsson IA, Gilbert C. Necropsy protocol for newborn mice. Lab Anim 2021; 55:358-362. [PMID: 33423607 DOI: 10.1177/0023677220983374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neonatal mortality is high in laboratory mouse breeding, and causes are poorly understood. Post-mortem analysis of pups is an often overlooked source of information and insight. We present a necropsy protocol for neonatal mice designed for easy practical application by animal technicians.
Collapse
Affiliation(s)
- Sara Capas-Peneda
- Laboratory Animal Science, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Gabriela Munhoz Morello
- Laboratory Animal Science, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Animal Facility, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - I Anna S Olsson
- Laboratory Animal Science, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | | |
Collapse
|
16
|
A human-based assisted reproduction protocol for the menstruating spiny mouse, Acomys cahirinus. PLoS One 2020; 15:e0244411. [PMID: 33370773 PMCID: PMC7769615 DOI: 10.1371/journal.pone.0244411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022] Open
Abstract
The Egyptian or Common spiny mouse (A. cahirinus) is the first rodent species to show human-like menstruation and spontaneous decidualisation. We consider from these, and its other, human-like characteristics that this species will be a more useful and appropriate small animal model for human reproductive studies. Based on this, there is a need to develop specific laboratory-based assisted reproduction protocols including superovulation, in-vitro fertilisation, embryo cryopreservation and transfer to expand and make this model more relevant. Because standard rodent superovulation has not been successful in the spiny mouse, we have selected to test a human protocol. Female spiny mice will receive a subcutaneous GnRH agonist implant and be allowed to recover. Menstrual cycle lengths will then be allowed to stabilize prior to ovarian stimulation. After recovery, females will be injected IP once a day for 4 days with a FSH analogue, to induce follicular growth, and on day 5 will be injected IP with a hCG analogue to trigger ovulation. Females will either be culled 36hrs after trigger to collect oocytes or immediately paired with a stud male and two cell embryos collected 48hrs later. Mature oocytes will be inseminated using fresh spiny mouse spermatozoa and all in-vitro grown and in-vivo collected two cell embryos will be cryopreserved using methods developed in a close spiny mouse relative, the Mongolian gerbil. For embryo transfer, vitrified embryos will be rapidly warmed and non-surgically transferred to surrogate mice. Surrogates will be monitored until pregnancy is apparent (roughly 30 days) and then left undisturbed until birth, 38-40 days after transfer. By successfully developing robust assisted reproduction protocols in A. cahirinus we will be able to use this rodent as a more effective model for human reproduction.
Collapse
|