1
|
Ben Romdhane W, Al-Ashkar I, Ibrahim A, Sallam M, Al-Doss A, Hassairi A. Aeluropus littoralis stress-associated protein promotes water deficit resilience in engineered durum wheat. Heliyon 2024; 10:e30933. [PMID: 38765027 PMCID: PMC11097078 DOI: 10.1016/j.heliyon.2024.e30933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Global climate change-related water deficit negatively affect the growth, development and yield performance of multiple cereal crops, including durum wheat. Therefore, the improvement of water-deficit stress tolerance in durum wheat varieties in arid and semiarid areas has become imperative for food security. Herein, we evaluated the water deficiency resilience potential of two marker-free transgenic durum wheat lines (AlSAP-lines: K9.3 and K21.3) under well-watered and water-deficit stress conditions at both physiological and agronomic levels. These two lines overexpressed the AlSAP gene, isolated from the halophyte grass Aeluropus littoralis, encoding a stress-associated zinc finger protein containing the A20/AN1 domains. Under well-watered conditions, the wild-type (WT) and both AlSAP-lines displayed comparable performance concerning all the evaluated parameters. Ectopic transgene expression exerted no adverse effects on growth and yield performance of the durum wheat plants. Under water-deficit conditions, no significant differences in the plant height, leaf number, spike length, and spikelet number were observed between AlSAP-lines and WT plants. However, compared to WT, the AlSAP-lines exhibited greater dry matter production, greater flag leaf area, improved net photosynthetic rate, stomatal conductance, and water use efficiency. Notably, the AlSAP-lines displayed 25 % higher grain yield (GY) than the WT plants under water-deficit conditions. The RT-qPCR-based selected stress-related gene (TdDREB1, TdLEA, TdAPX1, and TdBlt101-2) expression analyses indicated stress-related genes enhancement in AlSAP-durum wheat plants under both well-watered and water-deficit conditions, potentially related to the water-deficit resilience. Collectively, our findings support that the ectopic AlSAP expression in durum wheat lines enhances water-deficit resilience ability, thereby potentially compensate for the GY loss in arid and semi-arid regions.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Ibrahim
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Mohammed Sallam
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Li J, Zhao P, Zhao L, Chen Q, Nong S, Li Q, Wang L. Integrated VIS/NIR Spectrum and Genome-Wide Association Study for Genetic Dissection of Cellulose Crystallinity in Wheat Stems. Int J Mol Sci 2024; 25:3028. [PMID: 38474272 DOI: 10.3390/ijms25053028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cellulose crystallinity is a crucial factor influencing stem strength and, consequently, wheat lodging. However, the genetic dissection of cellulose crystallinity is less reported due to the difficulty of its measurement. In this study, VIS/NIR spectra and cellulose crystallinity were measured for a wheat accession panel with diverse genetic backgrounds. We developed a reliable VIS/NIR model for cellulose crystallinity with a high determination coefficient (R2) (0.95) and residual prediction deviation (RPD) (4.04), enabling the rapid screening of wheat samples. A GWAS of the cellulose crystallinity in 326 wheat accessions revealed 14 significant SNPs and 13 QTLs. Two candidate genes, TraesCS4B03G0029800 and TraesCS5B03G1085500, were identified. In summary, this study establishes an efficient method for the measurement of cellulose crystallinity in wheat stems and provides a genetic basis for enhancing lodging resistance in wheat.
Collapse
Affiliation(s)
- Jianguo Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Peimin Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyan Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiang Chen
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shikun Nong
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiang Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Sallam M, Ghazy A, Al-Doss A, Al-Ashkar I. Combining Genetic and Phenotypic Analyses for Detecting Bread Wheat Genotypes of Drought Tolerance through Multivariate Analysis Techniques. Life (Basel) 2024; 14:183. [PMID: 38398692 PMCID: PMC10890630 DOI: 10.3390/life14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Successfully promoting drought tolerance in wheat genotypes will require several procedures, such as field experimentations, measuring relevant traits, using analysis tools of high precision and efficiency, and taking a complementary approach that combines analyses of phenotyping and genotyping at once. The aim of this study is to assess the genetic diversity of 60 genotypes using SSR (simple sequence repeat) markers collected from several regions of the world and select 13 of them as more genetically diverse to be re-evaluated under field conditions to study drought stress by estimating 30 agro-physio-biochemical traits. Genetic parameters and multivariate analysis were used to compare genotype traits and identify which traits are increasingly efficient at detecting wheat genotypes of drought tolerance. Hierarchical cluster (HC) analysis of SSR markers divided the genotypes into five main categories of drought tolerance: four high tolerant (HT), eight tolerant (T), nine moderate tolerant (MT), six sensitive (S), and 33 high sensitive (HS). Six traits exhibit a combination of high heritability (>60%) and genetic gain (>20%). Analyses of principal components and stepwise multiple linear regression together identified nine traits (grain yield, flag leaf area, stomatal conductance, plant height, relative turgidity, glycine betaine, polyphenol oxidase, chlorophyll content, and grain-filling duration) as a screening tool that effectively detects the variation among the 13 genotypes used. HC analysis of the nine traits divided genotypes into three main categories: T, MT, and S, representing three, five, and five genotypes, respectively, and were completely identical in linear discriminant analysis. But in the case of SSR markers, they were classified into three main categories: T, MT, and S, representing five, three, and five genotypes, respectively, which are both significantly correlated as per the Mantel test. The SSR markers were associated with nine traits, which are considered an assistance tool in the selection process for drought tolerance. So, this study is useful and has successfully detected several agro-physio-biochemical traits, associated SSR markers, and some drought-tolerant genotypes, coupled with our knowledge of the phenotypic and genotypic basis of wheat genotypes.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.G.); (A.A.-D.)
| |
Collapse
|
4
|
Al-Ashkar I, Sallam M, Ibrahim A, Ghazy A, Al-Suhaibani N, Ben Romdhane W, Al-Doss A. Identification of Wheat Ideotype under Multiple Abiotic Stresses and Complex Environmental Interplays by Multivariate Analysis Techniques. PLANTS (BASEL, SWITZERLAND) 2023; 12:3540. [PMID: 37896004 PMCID: PMC10610392 DOI: 10.3390/plants12203540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Multiple abiotic stresses negatively impact wheat production all over the world. We need to increase productivity by 60% to provide food security to the world population of 9.6 billion by 2050; it is surely time to develop stress-tolerant genotypes with a thorough comprehension of the genetic basis and the plant's capacity to tolerate these stresses and complex environmental reactions. To approach these goals, we used multivariate analysis techniques, the additive main effects and multiplicative interaction (AMMI) model for prediction, linear discriminant analysis (LDA) to enhance the reliability of the classification, multi-trait genotype-ideotype distance index (MGIDI) to detect the ideotype, and the weighted average of absolute scores (WAASB) index to recognize genotypes with stability that are highly productive. Six tolerance multi-indices were used to test twenty wheat genotypes grown under multiple abiotic stresses. The AMMI model showed varying differences with performance indices, which disagreed with the trait and genotype differences used. The G01, G12, G16, and G02 were selected as the appropriate and stable genotypes using the MGIDI with the six tolerance multi-indices. The biplot features the genotypes (G01, G03, G11, G16, G17, G18, and G20) that were most stable and had high tolerance across the environments. The pooled analyses (LDA, MGIDI, and WAASB) showed genotype G01 as the most stable candidate. The genotype (G01) is considered a novel genetic resource for improving productivity and stabilizing wheat programs under multiple abiotic stresses. Hence, these techniques, if used in an integrated manner, strongly support the plant breeders in multi-environment trials.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.I.); (A.G.); (N.A.-S.); (W.B.R.); (A.A.-D.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Patidar A, Yadav MC, Kumari J, Tiwari S, Chawla G, Paul V. Identification of Climate-Smart Bread Wheat Germplasm Lines with Enhanced Adaptation to Global Warming. PLANTS (BASEL, SWITZERLAND) 2023; 12:2851. [PMID: 37571005 PMCID: PMC10420658 DOI: 10.3390/plants12152851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Bread wheat (Triticum aestivum L.) is widely grown in sub-tropical and tropical areas and, as such, it is exposed to heatstress especially during the grain filling period (GFP). Global warming has further affected its production and productivity in these heat-stressed environments. We examined the effects of heatstress on 18 morpho-physiological and yield-related traits in 96 bread wheat accessions. Heat stress decreased crop growth and GFP, and consequently reduced morphological and yield-related traits in the delayed sown crop. A low heat susceptibility index and high yield stability were used for selecting tolerant accessions. Under heatstress, the days to 50% anthesis, flag-leaf area, chlorophyll content, normalized difference vegetation index (NDVI), thousand grain weight (TGW), harvest index and grain yield were significantly reduced both in tolerant and susceptible accessions. The reduction was severe in susceptible accessions (48.2% grain yield reduction in IC277741). The plant height, peduncle length and spike length showeda significant reduction in susceptible accessions, but a non-significant reduction in the tolerant accessions under the heatstress. The physiological traits like the canopy temperature depression (CTD), plant waxiness and leaf rolling were increased in tolerant accessions under heatstress. Scanning electron microscopy of matured wheat grains revealed ultrastructural changes in endosperm and aleurone cells due to heat stress. The reduction in size and density of large starch granules is the major cause of the yield and TGW decrease in the heat-stress-susceptible accessions. The most stable and high-yielding accessions, namely, IC566223, IC128454, IC335792, EC576707, IC535176, IC529207, IC446713 and IC416019 were identified as the climate-smart germplasm lines. We selected germplasm lines possessing desirable traits as potential parents for the development of bi-parent and multi-parent mapping populations.
Collapse
Affiliation(s)
- Anil Patidar
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
- Post-Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mahesh C. Yadav
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
| | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| | - Shailesh Tiwari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Vijay Paul
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
6
|
Mishra DC, Majumdar SG, Kumar A, Bhati J, Chaturvedi KK, Kumar RR, Goswami S, Rai A, Budhlakoti N. Regulatory Networks of lncRNAs, miRNAs, and mRNAs in Response to Heat Stress in Wheat (Triticum Aestivum L.): An Integrated Analysis. Int J Genomics 2023; 2023:1774764. [PMID: 37033711 PMCID: PMC10079388 DOI: 10.1155/2023/1774764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 04/03/2023] Open
Abstract
Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965 lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0 DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles. The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the development of improved climate-resilient wheat cultivars.
Collapse
|
7
|
Selection of Lentil (Lens Culinaris (Medik.)) Genotypes Suitable for High-Temperature Conditions Based on Stress Tolerance Indices and Principal Component Analysis. Life (Basel) 2022; 12:life12111719. [DOI: 10.3390/life12111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Legumes, including lentil, are a valuable source of carbohydrates, fiber, protein and vitamins and minerals. Their nutritional characteristics have been associated with a reduction in the incidence of various cancers, HDL cholesterol, type 2 diabetes and heart disease. Among these quality parameters, lectins have been associated with reducing certain forms of cancer, activating innate defense mechanisms and managing obesity. Protease inhibitors such as trypsin and chymotrypsin inhibitors have been demonstrated to reduce the incidence of certain cancers and demonstrate potent anti-inflammatory properties. Angiotensin I-converting enzyme (ACE) inhibitor has been associated with a reduction in hypertension. Therefore, legumes, including lentils, should be part of our daily food intake. However, high temperatures at the terminal stage is a major abiotic constraint leading to a reduction in lentil yield and seed quality. Thus, the selection of heat-tolerant genotypes is essential to identifying the potential for high yields with stable performance. To select lentil genotypes, an experiment was conducted with 60 genotypes including local landraces, advanced breeding lines, commercial varieties and exotic germplasm under stress and non-stress conditions from 2019 to 2020. This study was followed by a subset study involving screening based on a few physicochemical parameters and reproductive traits along with field performances. Different tolerance indices (i.e., stress susceptible index (SSI), relative heat index (RHI), tolerance (TOL), mean productivity (MP), stress tolerance index (STI), geometric mean productivity (GMP), yield index (YI), yield stability index (YSI), heat-resistance index (HRI), modified stress-tolerance index (MSTI), abiotic tolerance index (ATI) and stress susceptibility percentage (SSPI)) were used for the selection of the genotypes along with field performance. Biplot analysis was further performed for choosing the most suitable indices. Based on principal components analysis, the GMP, MP, RRI, STI, YI, YSI, ATI and MSTI indices were identified as the most reliable stress indicators, and these indicators might be used for distinguishing heat-tolerant genotypes. Based on the stress indices, the genotypes BLX 05002-3, BLX 10002-20, LRIL-21-1-1-1-1, LRIL-21-1-1-1-1-6 and BLX 09015 were selected as the most stable and heat-tolerant genotypes. In contrast, the genotypes LG 198, Bagura Local, BLX 0200-08-4, RL-12-178, Maitree, 91517 and BLX 11014-8 were selected as the most heat sensitive. Data also exhibited an average yield reduction of 59% due to heat stress on the lentils. Moreover, eight heat-tolerant (HT) genotypes (BLX 09015, PRECOZ, LRL-21-112-1-1-1-1-6, BLX 05002-3, LR-9-25, BLX 05002-6, BARI Masur-8 and RL-12-181), and two heat-susceptible (HS) genotypes (BLX 12009-6, and LG 198) were selected from the screened genotypes and subjected to further analysis by growing them in the following year under similar conditions to investigate the mechanisms associated with heat tolerance. Comparative studies on reproductive function and physiochemical traits revealed significantly higher pollen viability, proline accumulation, relative water content, chlorophyll concentration and a lower membrane stability index in HT genotypes under heat stress. Therefore, these heat-tolerant genotypes could be used as the parents in the hybridization program for achieving heat-tolerant transgressive segregation.
Collapse
|
8
|
Juvenile heat stress tolerance in Triticum durum-Aegilops tauschii derived synthetics: a way forward for wheat improvement. Mol Biol Rep 2022; 49:5669-5683. [PMID: 35666425 DOI: 10.1007/s11033-022-07595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Exponentially increasing population and everchanging climatic conditions are two major concerns for global food security. Early sowing in the second fortnight of October is an emerging trend with farmers in Indo Gangetic Plains to avoid yield losses from terminal heat stress. This also benefits the use of residual soil moisture of rice crop, conserving about one irrigation. But most of the available wheat cultivars are not well adapted to early-season sowing. METHODS AND RESULTS Two in-house developed SHWs, syn14128 and syn14170, were screened for juvenile heat stress. Seedling length, biochemical parameters, and expression of amylase gene immediately after heat shock (HS) of 45 °C for 12 h and 20 h, and 24 h indicated significantly lower malondialdehyde, hydrogen peroxide, and higher free radical scavenging activities. Syn14170 reported higher total soluble sugar (TSS) under both HS periods, while syn14128 had a sustainable TSS content and amylase activity under HS as well as the recovery period. CONCLUSIONS Both the SHWs had lower oxidative damage along with high free radical scavenging under heat stress. The higher expression of amy4 along with sustainable TSS after heat stress in syn14128 indicated it as a potential source of juvenile heat stress tolerance. Variable response of SHWs to different biochemical parameters under heat stress opens future perspectives to explore the enzymatic pathways underlying these responses.
Collapse
|
9
|
Fernández-Calleja M, Ciudad FJ, Casas AM, Igartua E. Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. FRONTIERS IN PLANT SCIENCE 2022; 13:827701. [PMID: 35432439 PMCID: PMC9011329 DOI: 10.3389/fpls.2022.827701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Crop adaptation requires matching resource availability to plant development. Tight coordination of the plant cycle with prevailing environmental conditions is crucial to maximizing yield. It is expected that winters in temperate areas will become warmer, so the vernalization requirements of current cultivars can be desynchronized with the environment's vernalizing potential. Therefore, current phenological ideotypes may not be optimum for future climatic conditions. Major genes conferring vernalization sensitivity and phenological responses in barley (Hordeum vulgare L.) are known, but some allelic combinations remain insufficiently evaluated. Furthermore, there is a lack of knowledge about flowering time in a hybrid context. To honor the promise of increased yield potentials, hybrid barley phenology must be studied, and the knowledge deployed in new cultivars. A set of three male and two female barley lines, as well as their six F1 hybrids, were studied in growth chambers, subjected to three vernalization treatments: complete (8 weeks), moderate (4 weeks), and low (2 weeks). Development was recorded up to flowering, and expression of major genes was assayed at key stages. We observed a gradation in responses to vernalization, mostly additive, concentrated in the phase until the initiation of stem elongation, and proportional to the allele constitution and dosage present in VRN-H1. These responses were further modulated by the presence of PPD-H2. The duration of the late reproductive phase presented more dominance toward earliness and was affected by the rich variety of alleles at VRN-H3. Our results provide further opportunities for fine-tuning total and phasal growth duration in hybrid barley, beyond what is currently feasible in inbred cultivars.
Collapse
Affiliation(s)
- Miriam Fernández-Calleja
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| | - Francisco J. Ciudad
- Agricultural Technology Institute of Castilla and León (ITACYL), Valladolid, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station - Spanish National Research Council (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
10
|
Havrlentová M, Ondreičková K, Hozlár P, Gregusová V, Mihálik D, Kraic J. Formation of Potential Heterotic Groups of Oat Using Variation at Microsatellite Loci. PLANTS 2021; 10:plants10112462. [PMID: 34834825 PMCID: PMC8621079 DOI: 10.3390/plants10112462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023]
Abstract
An evaluation of polymorphism at the microsatellite loci was applied in distinguishing 85 oat (Avena sativa L.) genotypes selected from the collection of genetic resources. The set of genotypes included oats with white, yellow, and brown seeds as well as a subgroup of naked oat (Avena sativa var. nuda Koern). Variation at these loci was used to form potential heterotic groups potentially used in the oat breeding program. Seven from 20 analyzed microsatellite loci revealed polymorphism. Altogether, 35 microsatellite alleles were detected (2–10 per locus). Polymorphic patterns completely differentiated all genotypes within the subgroups of white, brown, and naked oats, respectively. Only within the greatest subgroup of yellow genotypes, four pairs of genotypes remained unseparated. Genetic differentiation between the oat subgroups allowed the formation of seven potential heterotic groups using the STRUCTURE analysis. The overall value of the fixation index (Fst) suggested a high genetic differentiation between the subgroups and validated a heterotic grouping. This approach can be implemented as a simple predictor of heterosis in parental crosses prior to extensive field testing or development and implementation of more accurate genomic selection.
Collapse
Affiliation(s)
- Michaela Havrlentová
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
- Correspondence:
| | - Katarína Ondreičková
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
| | - Peter Hozlár
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Daniel Mihálik
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| | - Ján Kraic
- National Agricultural and Food Center, Research Institute of Plant Production, Bratislavská Cesta 122, 92168 Piešťany, Slovakia; (K.O.); (P.H.); (D.M.); (J.K.)
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie Jozefa Herdu 2, 91701 Trnava, Slovakia;
| |
Collapse
|
11
|
Al-Ashkar I, Ibrahim A, Ghazy A, Attia K, Al-Ghamdi AA, Al-Dosary MA. Assessing the correlations and selection criteria between different traits in wheat salt-tolerant genotypes. Saudi J Biol Sci 2021; 28:5414-5427. [PMID: 34466123 PMCID: PMC8381045 DOI: 10.1016/j.sjbs.2021.05.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/24/2023] Open
Abstract
Salinity is one of the largest stresses blocking horizontal and vertical expansion in agricultural lands. Establishing salt-tolerant genotypes is a promising method to benefit from poor water quality and salinized lands. An integrated method was developed for accomplishing reliable and effective evaluation of traits stability of salt-tolerant wheat. The study aims were to estimate the genetic relationships between explanatory traits and shoot dry matter (SDM), and determine the traits stability under three salinity levels. Morphophysiological and biochemical traits were evaluated as selection criteria for SDM improvement in wheat for salinity tolerance. Three cultivars and three high-yielding doubled haploid lines (DHLs) were used. Three salt (NaCl) levels (control (washed sand), 7 and 14 dS m-1) were applied for 45 days (at the first signs of death in the sensitive genotypes). All morphophysiological traits gradually decreased as salinity levels increased, excluding the number of roots. Decreases were more visible in sensitive genotypes than in tolerant genotypes. All biochemical traits increased as salinity levels increased. Variance inflation factors (VIFs) and condition number exhibited multicollinearity for membrane stability index and polyphenol oxidase activity. After their removal, all VIFs were <10, thereby increasing path coefficient accuracy. Total chlorophyll content (CHL) and catalase (CAT) provided significant direct effects regarding genetic and phenotypic correlations for the three salinity levels and their interactions in path analysis on SDM, indicating their stability. CHL and CAT had high heritability (>0.60%) and genetic gain (>20%) and highly significant genetic correlation, co-heritability, and selection efficiencies for SDM. CHL and CAT could be used as selection criteria for salinity tolerance in wheat-breeding programs. The tolerated line (DHL21) with the check cultivar (Sakha 93) can be also recommended as novel genetic resource for improving salinity tolerance of wheat.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Abdullah Ibrahim
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelhalim Ghazy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Pox 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Monerah A. Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Sihag P, Sagwal V, Kumar A, Balyan P, Mir RR, Dhankher OP, Kumar U. Discovery of miRNAs and Development of Heat-Responsive miRNA-SSR Markers for Characterization of Wheat Germplasm for Terminal Heat Tolerance Breeding. Front Genet 2021; 12:699420. [PMID: 34394189 PMCID: PMC8356722 DOI: 10.3389/fgene.2021.699420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
A large proportion of the Asian population fulfills their energy requirements from wheat (Triticum aestivum L.). Wheat quality and yield are critically affected by the terminal heat stress across the globe. It affects approximately 40% of the wheat-cultivating regions of the world. Therefore, there is a critical need to develop improved terminal heat-tolerant wheat varieties. Marker-assisted breeding with genic simple sequence repeats (SSR) markers have been used for developing terminal heat-tolerant wheat varieties; however, only few studies involved the use of microRNA (miRNA)-based SSR markers (miRNA-SSRs) in wheat, which were found as key players in various abiotic stresses. In the present study, we identified 104 heat-stress-responsive miRNAs reported in various crops. Out of these, 70 miRNA-SSR markers have been validated on a set of 20 terminal heat-tolerant and heat-susceptible wheat genotypes. Among these, only 19 miRNA-SSR markers were found to be polymorphic, which were further used to study the genetic diversity and population structure. The polymorphic miRNA-SSRs amplified 61 SSR loci with an average of 2.9 alleles per locus. The polymorphic information content (PIC) value of polymorphic miRNA-SSRs ranged from 0.10 to 0.87 with a mean value of 0.48. The dendrogram constructed using unweighted neighbor-joining method and population structure analysis clustered these 20 wheat genotypes into 3 clusters. The target genes of these miRNAs are involved either directly or indirectly in providing tolerance to heat stress. Furthermore, two polymorphic markers miR159c and miR165b were declared as very promising diagnostic markers, since these markers showed specific alleles and discriminated terminal heat-tolerant genotypes from the susceptible genotypes. Thus, these identified miRNA-SSR markers will prove useful in the characterization of wheat germplasm through the study of genetic diversity and population structural analysis and in wheat molecular breeding programs aimed at terminal heat tolerance of wheat varieties.
Collapse
Affiliation(s)
- Pooja Sihag
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Anuj Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
13
|
Al-Ashkar I, Al-Suhaibani N, Abdella K, Sallam M, Alotaibi M, Seleiman MF. Combining Genetic and Multidimensional Analyses to Identify Interpretive Traits Related to Water Shortage Tolerance as an Indirect Selection Tool for Detecting Genotypes of Drought Tolerance in Wheat Breeding. PLANTS (BASEL, SWITZERLAND) 2021; 10:931. [PMID: 34066929 PMCID: PMC8148561 DOI: 10.3390/plants10050931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Water shortages have direct adverse effects on wheat productivity and growth worldwide, vertically and horizontally. Productivity may be promoted using water shortage-tolerant wheat genotypes. High-throughput tools have supported plant breeders in increasing the rate of stability of the genetic gain of interpretive traits for wheat productivity through multidimensional technical methods. We used 27 agrophysiological interpretive traits for grain yield (GY) of 25 bread wheat genotypes under water shortage stress conditions for two seasons. Genetic parameters and multidimensional analyses were used to identify genetic and phenotypic variations of the wheat genotypes used, combining these strategies effectively to achieve a balance. Considerable high genotypic variations were observed for 27 traits. Eleven interpretive traits related to GY had combined high heritability (h2 > 60%) and genetic gain (>20%), compared to GY, which showed moderate values both for heritability (57.60%) and genetic gain (16.89%). It was determined that six out of eleven traits (dry leaf weight (DLW), canopy temperature (CT), relative water content (RWC), flag leaf area (FLA), green leaves area (GLA) and leaf area index (LAI)) loaded the highest onto PC1 and PC2 (with scores of >0.27), and five of them had a positive trend with GY, while the CT trait had a negative correlation determined by principal component analysis (PCA). Genetic parameters and multidimensional analyses (PCA, stepwise regression, and path coefficient) showed that CT, RWC, GLA, and LAI were the most important interpretive traits for GY. Selection based on these four interpretive traits might improve genetic gain for GY in environments that are vulnerable to water shortages. The membership index and clustering analysis based on these four traits were significantly correlated, with some deviation, and classified genotypes into five groups. Highly tolerant, tolerant, intermediate, sensitive and highly sensitive clusters represented six, eight, two, three and six genotypes, respectively. The conclusions drawn from the membership index and clustering analysis, signifying that there were clear separations between the water shortage tolerance groups, were confirmed through discriminant analysis. MANOVA indicated that there were considerable variations between the five water shortage tolerance groups. The tolerated genotypes (DHL02, DHL30, DHL26, Misr1, Pavone-76 and DHL08) can be recommended as interesting new genetic sources for water shortage-tolerant wheat breeding programs.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Nasser Al-Suhaibani
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
| | - Kamel Abdella
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
| | - Mohammed Sallam
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
| | - Majed Alotaibi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.-S.); (K.A.); (M.S.); (M.A.)
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
14
|
Effects of Heat Stress on Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes. SUSTAINABILITY 2021. [DOI: 10.3390/su13052972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heat stress is one of the major threats to wheat production in many wheat-growing areas of the world as it causes severe yield loss at the reproductive stage. In the current study, 28 crosses were developed using 11 parental lines, including 7 female lines and 4 male testers following line × tester matting design in 2018–2019. Twenty-eight crosses along with their 11 parental lines were sown in a randomized complete block design in triplicate under optimal and heat stress conditions. Fifteen different morpho-physiological and grain quality parameters were recorded at different growth stages. Analysis of variance illustrated the presence of highly significant differences among wheat genotypes for all traits under both optimal and heat stress conditions. The results of combining ability unveiled the predominant role of non-additive gene action in the inheritance of almost all the studied traits under both conditions. Among parents, 3 parental lines WL-27, WT-39, and WL-57 showed good combining ability under both normal and heat stress conditions. Among crosses, WL-8 × WT-17, WL-37 × WT-17, WL-7 × WT-39, and WL-37 × WT-39 portrayed the highest specific combining ability effects for grain yield and its related traits under optimal as well as heat stress conditions. Biplot and cluster analysis confirmed the results of general and specific combining ability by showing that these wheat crosses belonged to a highly productive and heat tolerant cluster. Correlation analysis revealed a significantly positive correlation of grain yield with net photosynthetic rate, thousand-grain rate, and the number of grains per spike. The designated parental lines and their crosses were selected for future breeding programs in the development of heat resilient, climate-smart wheat genotypes.
Collapse
|
15
|
Agro-Physiologic Responses and Stress-Related Gene Expression of Four Doubled Haploid Wheat Lines under Salinity Stress Conditions. BIOLOGY 2021; 10:biology10010056. [PMID: 33466713 PMCID: PMC7828821 DOI: 10.3390/biology10010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Productivity of wheat can be enhanced using salt-tolerant genotypes. However, the assessment of salt tolerance potential in wheat through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. The study evaluated the salt tolerance potential of four doubled haploid lines of wheat and compared them with the check cultivar Sakha-93 using an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. The results indicated that the five genotypes tested displayed reduction in all traits evaluated except the canopy temperature and electrical conductivity, which had the greatest decline occurring in the check cultivar and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes under salt stress conditions. The multiple linear regression model and path coefficient analysis showed a coefficient of determination of 0.93. Concluding, the number of spikelets, and/or number of kernels were identified to be unbiased traits for assessing wheat DHLs under salinity conditions, given their contribution and direct impact on the grain yield. Moreover, the two most salt-tolerant genotypes DHL2 and DHL21 can be useful as genetic resources for future breeding programs. Abstract Salinity majorly hinders horizontal and vertical expansion in worldwide wheat production. Productivity can be enhanced using salt-tolerant wheat genotypes. However, the assessment of salt tolerance potential in bread wheat doubled haploid lines (DHL) through agro-physiological traits and stress-related gene expression analysis could potentially minimize the cost of breeding programs and be a powerful way for the selection of the most salt-tolerant genotype. We used an extensive set of agro-physiologic parameters and salt-stress-related gene expressions. Multivariate analysis was used to detect phenotypic and genetic variations of wheat genotypes more closely under salinity stress, and we analyzed how these strategies effectively balance each other. Four doubled haploid lines (DHLs) and the check cultivar (Sakha93) were evaluated in two salinity levels (without and 150 mM NaCl) until harvest. The five genotypes showed reduced growth under 150 mM NaCl; however, the check cultivar (Sakha93) died at the beginning of the flowering stage. Salt stress induced reduction traits, except the canopy temperature and initial electrical conductivity, which was found in each of the five genotypes, with the greatest decline occurring in the check cultivar (Sakha-93) and the least decline in DHL2. The genotypes DHL21 and DHL5 exhibited increased expression rate of salt-stress-related genes (TaNHX1, TaHKT1, and TaCAT1) compared with DHL2 and Sakha93 under salt stress conditions. Principle component analysis detection of the first two components explains 70.78% of the overall variation of all traits (28 out of 32 traits). A multiple linear regression model and path coefficient analysis showed a coefficient of determination (R2) of 0.93. The models identified two interpretive variables, number of spikelets, and/or number of kernels, which can be unbiased traits for assessing wheat DHLs under salinity stress conditions, given their contribution and direct impact on the grain yield.
Collapse
|