1
|
Tran J, Jackman RP, Muench MO, Hazegh K, Bean SW, Thomas KA, Fang F, Page G, O’Connor K, Roubinian N, Anawalt BD, Kanias T. Testosterone supplementation increases red blood cell susceptibility to oxidative stress, decreases membrane deformability, and decreases survival after cold storage and transfusion. Transfusion 2024; 64:1469-1480. [PMID: 38884364 PMCID: PMC11316632 DOI: 10.1111/trf.17922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Blood collection from donors on testosterone therapy (TT) is restricted to red blood cell (RBC) concentrates to avoid patient exposure to supraphysiological testosterone (T). The objective of this study was to identify TT-related changes in RBC characteristics relevant to transfusion effectiveness in patients. STUDY DESIGN This was a two-part study with cohorts of patients and blood donors on TT. In part 1, we conducted longitudinal evaluation of RBCs collected before and at three time points after initiation of T. RBC assays included storage and oxidative hemolysis, membrane deformability (elongation index), and oximetry. In part 2, we evaluated the fate of transfused RBCs from TT donors in immunodeficient mice and by retrospective analyses of NIH's vein-to-vein databases. RESULTS TT increased oxidative hemolysis (1.45-fold change) and decreased RBC membrane deformability. Plasma free testosterone was positively correlated with oxidative hemolysis (r = .552) and negatively correlated with the elongation index (r = -.472). Stored and gamma-irradiated RBCs from TT donors had lower posttransfusion recovery in mice compared to controls (41.6 ± 12 vs. 55.3 ± 20.5%). Recipients of RBCs from male donors taking T had 25% lower hemoglobin increments compared to recipients of RBCs from non-TT male donors, and had increased incidence (OR, 1.80) of requiring additional RBC transfusions within 48 h of the index transfusion event. CONCLUSIONS TT is associated with altered RBC characteristics and transfusion effectiveness. These results suggest that clinical utilization of TT RBCs may be less effective in recipients who benefit from longer RBC survival, such as chronically transfused patients.
Collapse
Affiliation(s)
- Johnson Tran
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Kimberly A. Thomas
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Fang Fang
- Genomics and Translational Research Center, RTI International, NC, USA
| | - Grier Page
- Genomics and Translational Research Center, RTI International, NC, USA
- Fellow program, RTI International, Atlanta, GA, USA
| | - Kim O’Connor
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Kaiser Permanente Northern California Division of Research, Oakland, CA
| | - Bradley D. Anawalt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, CO, USA
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Tran JQ, Muench MO, Gaillard B, Darst O, Tomayko MM, Jackman RP. Polyinosinic: polycytidylic acid induced inflammation enhances while lipopolysaccharide diminishes alloimmunity to platelet transfusion in mice. Front Immunol 2023; 14:1281130. [PMID: 38146372 PMCID: PMC10749330 DOI: 10.3389/fimmu.2023.1281130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Alloimmune responses against platelet antigens, which dominantly target the major histocompatibility complex (MHC), can cause adverse reactions to subsequent platelet transfusions, platelet refractoriness, or rejection of future transplants. Platelet transfusion recipients include individuals experiencing severe bacterial or viral infections, and how their underlying health modulates platelet alloimmunity is not well understood. Methods This study investigated the effect of underlying inflammation on platelet alloimmunization by modelling viral-like inflammation with polyinosinic-polycytidylic acid (poly(I:C)) or gram-negative bacterial infection with lipopolysaccharide (LPS), hypothesizing that underlying inflammation enhances alloimmunization. Mice were pretreated with poly(I:C), LPS, or nothing, then transfused with non-leukoreduced or leukoreduced platelets. Alloantibodies and allogeneic MHC-specific B cell (allo-B cell) responses were evaluated two weeks later. Rare populations of allo-B cells were identified using MHC tetramers. Results Relative to platelet transfusion alone, prior exposure to poly(I:C) increased the alloantibody response to allogeneic platelet transfusion whereas prior exposure to LPS diminished responses. Prior exposure to poly(I:C) had equivalent, if not moderately diminished, allo-B cell responses relative to platelet transfusion alone and exhibited more robust allo-B cell memory development. Conversely, prior exposure to LPS resulted in diminished allo-B cell frequency, activation, antigen experience, and germinal center formation and altered memory B cell responses. Discussion In conclusion, not all inflammatory environments enhance bystander responses and prior inflammation mediated by LPS on gram-negative bacteria may in fact curtail platelet alloimmunization.
Collapse
Affiliation(s)
- Johnson Q. Tran
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Betty Gaillard
- Vitalant Research Institute, San Francisco, CA, United States
| | - Orsolya Darst
- Vitalant Research Institute, San Francisco, CA, United States
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Van Rompay KK, Coffey LL, Yee JL, Singapuri A, Stuart J, Lanteri MC, Maria FS, Lu K, Singh I, Bakkour S, Stone M, Williamson PC, Muench MO, Busch MP, Simmons G. Plasma transfusion-transmission of Zika virus in mice and macaques. Transfusion 2023; 63:574-585. [PMID: 36621777 PMCID: PMC10134791 DOI: 10.1111/trf.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Zika virus (ZIKV) epidemics with infections in pregnant women are associated with severe neurological disease in newborns. Although an arbovirus, ZIKV is also blood transfusion-transmitted (TT). Greater knowledge of the efficiency of ZIKV TT would aid decisions on testing and pathogen reduction technologies (PRT). STUDY DESIGN AND METHODS Plasma units from ZIKV RNA-reactive blood donors were used to study infectivity in vitro, in mice, and in macaques. Furthermore, plasma units were subjected to PRT using amotosalen/ultraviolet light A (A/UVA) before transfusion. RESULTS In vitro infectivity of ZIKV RNA-reactive plasma varied between 100 and 1000 international units (IU) of ZIKV RNA. Immunodeficient mice were more sensitive with as low as 32 IU sufficient to infect 50% of mice. 50-5500 IU of RNA led to TT in macaques using dose escalation of three different RNA-positive, seronegative plasma units. In contrast, RNA-reactive units collected postseroconversion were not infectious in macaques, even at a dose of 9 million IU RNA. After A/UVA PRT, transfusion of plasma containing up to 18 million IU was no longer infectious in vitro and did not result in ZIKV TT in macaques. CONCLUSION Significant risks of ZIKV TT are likely confined to a relatively short viremic window before seroconversion, and that sensitive nucleic acid amplification testing likely identifies the majority of infectious plasma. PRT was demonstrated to be effective at preventing ZIKV TT. Considering that there is no approved ZIKV vaccine, these data are relevant to mitigate the risk of TT during the future ZIKV outbreaks.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | - Jackson Stuart
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, United States of America
| | | | | | - Kai Lu
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Inderdeep Singh
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
5
|
Zhang Z, Kong X, Ligtenberg MA, van Hal-van Veen SE, Visser NL, de Bruijn B, Stecker K, van der Helm PW, Kuilman T, Hoefsmit EP, Vredevoogd DW, Apriamashvili G, Baars B, Voest EE, Klarenbeek S, Altelaar M, Peeper DS. RNF31 inhibition sensitizes tumors to bystander killing by innate and adaptive immune cells. Cell Rep Med 2022; 3:100655. [PMID: 35688159 PMCID: PMC9245005 DOI: 10.1016/j.xcrm.2022.100655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8+ T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8+ T cell pressure. We identify all components, RNF31, RBCK1, and SHARPIN, of the linear ubiquitination chain assembly complex (LUBAC). Genetic and pharmacologic ablation of RNF31, an E3 ubiquitin ligase, strongly sensitizes cancer cells to NK and CD8+ T cell killing. This occurs in a tumor necrosis factor (TNF)-dependent manner, causing loss of A20 and non-canonical IKK complexes from TNF receptor complex I. A small-molecule RNF31 inhibitor sensitizes colon carcinoma organoids to TNF and greatly enhances bystander killing of MHC antigen-deficient tumor cells. These results merit exploration of RNF31 inhibition as a clinical pharmacological opportunity for immunotherapy-refractory cancers. Parallel CRISPR screens in tumor cells identify NK and T cell susceptibility genes Ablation of LUBAC ubiquitination complex sensitizes tumors to immune elimination Small-molecule RNF31 inhibition sensitizes tumor cells in TNF-dependent fashion RNF31 inhibition strongly enhances immune bystander killing
Collapse
Affiliation(s)
- Zhengkui Zhang
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xiangjun Kong
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Esmée P Hoefsmit
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Beau Baars
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Core Facility, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Anastasiadi AT, Paronis EC, Arvaniti VZ, Velentzas AD, Apostolidou AC, Balafas EG, Dzieciatkowska M, Kostomitsopoulos NG, Stamoulis K, Papassideri IS, D’Alessandro A, Kriebardis AG, Antonelou MH, Tzounakas VL. The Post-Storage Performance of RBCs from Beta-Thalassemia Trait Donors Is Related to Their Storability Profile. Int J Mol Sci 2021; 22:12281. [PMID: 34830162 PMCID: PMC8619127 DOI: 10.3390/ijms222212281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/02/2023] Open
Abstract
Blood donors with beta-thalassemia traits (βThal+) have proven to be good "storers", since their stored RBCs are resistant to lysis and resilient against oxidative/proteotoxic stress. To examine the performance of these RBCs post-storage, stored βThal+ and control RBCs were reconstituted in plasma donated from transfusion-dependent beta-thalassemic patients and healthy controls, and incubated for 24 h at body temperature. Several physiological parameters, including hemolysis, were evaluated. Moreover, labeled fresh/stored RBCs from the two groups were transfused in mice to assess 24 h recovery. All hemolysis metrics were better in the group of heterozygotes and distinguished them against controls in the plasma environment. The reconstituted βThal+ samples also presented higher proteasome activity and fewer procoagulant extracellular vesicles. Transfusion to mice demonstrated that βThal+ RBCs present a marginal trend for higher recovery, regardless of the recipient's immune background and the RBC storage age. According to correlation analysis, several of these advantageous post-storage characteristics are related to storage phenotypes, like the cytoskeleton composition, low cellular fragility, and enhanced membrane proteostasis that characterize stored βThal+ RBCs. Overall, it seems that the intrinsic physiology of βThal+ RBCs benefits them in conditions mimicking a recipient environment, and in the circulation of animal models; findings that warrant validation in clinical trials.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| | - Efthymios C. Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (A.C.A.); (E.G.B.); (N.G.K.)
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| | - Athanasios D. Velentzas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| | - Anastasia C. Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (A.C.A.); (E.G.B.); (N.G.K.)
| | - Evangelos G. Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (A.C.A.); (E.G.B.); (N.G.K.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (M.D.); (A.D.)
| | - Nikolaos G. Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (A.C.A.); (E.G.B.); (N.G.K.)
| | | | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (M.D.); (A.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece;
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (A.D.V.); (I.S.P.)
| |
Collapse
|
7
|
Gilfanova R, Callegari A, Childs A, Yang G, Luarca M, Gutierrez AG, Medina KI, Mai J, Hui A, Kline M, Wei X, Norris PJ, Muench MO. A bioinspired and chemically defined alternative to dimethyl sulfoxide for the cryopreservation of human hematopoietic stem cells. Bone Marrow Transplant 2021; 56:2644-2650. [PMID: 34155359 PMCID: PMC8563414 DOI: 10.1038/s41409-021-01368-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
The cryopreservation of hematopoietic cells using dimethyl sulfoxide (DMSO) and serum is a common procedure used in transplantation. However, DMSO has clinical and biological side effects due to its toxicity, and serum introduces variation and safety risks. Inspired by natural antifreeze proteins, a novel class of ice-interactive cryoprotectants was developed. The corresponding DMSO-, protein-, and serum-free cryopreservation media candidates were screened through a series of biological assays using human cell lines, peripheral blood cells, and bone marrow cells. XT-Thrive-A and XT-Thrive-B were identified as lead candidates to rival cryopreservation with 10% DMSO in serum based on post-thaw cell survival and short-term proliferation assays. The effectiveness of the novel cryopreservation media in freezing hematopoietic stem cells from human whole bone marrow was assessed by extreme limiting dilution analysis in immunodeficient mice. Stem cell frequencies were measured 12 weeks after transplant based on bone marrow engraftment of erythroid, myeloid, B-lymphoid, and CD34+ progenitors measured by flow cytometry. The recovered numbers of cryopreserved stem cells were similar among XT-Thrive A, XT-Thrive B, and DMSO with serum groups. These findings show that cryoprotectants developed through biomimicry of natural antifreeze proteins offers a substitute for DMSO-based media for the cryopreservation of hematopoietic stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Justin Mai
- Vitalant Research Institute, San Francisco, CA, USA
| | - Alvin Hui
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Vitalant Research Institute, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
8
|
Gilfanova R, Auclair KM, Hui A, Norris PJ, Muench MO. Reduced dimethyl sulfoxide concentrations successfully cryopreserve human hematopoietic stem cells with multi-lineage long-term engraftment ability in mice. Cytotherapy 2021; 23:1053-1059. [PMID: 34454842 DOI: 10.1016/j.jcyt.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS The cryopreservation of hematopoietic stem cells (HSCs) in dimethyl sulfoxide (DMSO) is used widely, but DMSO toxicity in transplant patients and the effects of DMSO on the normal function of cryopreserved cells are concerns. To address these issues, in vitro and clinical studies have explored using reduced concentrations of DMSO for cryopreservation. However, the effect of reducing DMSO concentration on the efficient cryopreservation of HSCs has not been directly measured. METHODS Cryopreservation of human bone marrow using 10%, 7.5% and 5% DMSO concentrations was examined. Cell counting, flow cytometry and colony assays were used to analyze different cell populations. The recovery of stem cells was enumerated using extreme limiting dilution analysis of long-term multi-lineage engraftment in immunodeficient mice. Four different methods of analyzing human engraftment were compared to ascertain stem cell engraftment: (i) engraftment of CD33+ myeloid, CD19+ B-lymphoid, CD235a+ erythroid and CD34+ progenitors; (ii) engraftment of the same four populations plus CD41+CD42b+ platelets; (iii) engraftment of CD34++CD133+ cells; and (iv) engraftment of CD34++CD38- cells. RESULTS Hematopoietic colony-forming, CD34++/+, CD34++CD133+ and CD34++CD38- cells were as well preserved with 5% DMSO as they were with the higher concentrations tested. The estimates of stem cell frequencies made in the xenogeneic transplant model did not show any significant detrimental effect of using lower concentrations of DMSO. Comparison of the different methods of gauging stem cell engraftment in mice led to different estimates of stem cell numbers, but overall, all measures found that reduced concentrations of DMSO supported the cryopreservation of HSCs. CONCLUSION Cryopreservation of HSCs in DMSO concentrations as low as 5% is effective.
Collapse
Affiliation(s)
- Renata Gilfanova
- Vitalant Research Institute, San Francisco, California, USA; Blood and Marrow Transplantation, Stanford University, Stanford, California, USA
| | | | - Alvin Hui
- Vitalant Research Institute, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Marcus O Muench
- Vitalant Research Institute, San Francisco, California, USA; Department of Laboratory Medicine, University of California, San Francisco, California, USA.
| |
Collapse
|
9
|
Abstract
The supply of platelets for transfusion is a logistical challenge due to the physiology of platelets and current measures of transfusion performance dictating storage at 22°C and a short product shelf-life (<7 days). Demand for platelets has increased in recent years and changes in the demographics of the population may enhance this further. Many studies have been conducted to understand what the optimal dose and trigger for transfusion should be, mainly in hematology patients who are the largest cohort that receive platelets, mostly to prevent bleeding. Emerging data suggests that for bleeding patients, where immediate hemostasis is a key consideration, the current standard product may not be optimal. Alternative platelet preparation methods/storage options that may improve the hemostatic properties of platelets are under active development. In parallel with research into alternative platelet products that might enhance hemostasis, better measures for assessing bleeding risk and platelet efficacy are needed.
Collapse
|
10
|
Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood 2021; 138:2607-2620. [PMID: 34293122 DOI: 10.1182/blood.2020009957] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery is transferred to PEVs by activated platelets. Using molecular and functional assays, we show that the active 20S proteasome is enriched in PEVs along with MHC-I and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were, however, augmented after immune complex injections in mice. The complete biodistribution of murine PEVs following injection into mice revealed that they could principally reach lymphoid organs such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules which promoted OVA-specific CD8+ T lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.
Collapse
|
11
|
Hazegh K, Fang F, Bravo MD, Tran JQ, Muench MO, Jackman RP, Roubinian N, Bertolone L, D’Alessandro A, Dumont L, Page GP, Kanias T. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress. Transfusion 2021; 61:435-448. [PMID: 33146433 PMCID: PMC7902376 DOI: 10.1111/trf.16168] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity is a global pandemic characterized by multiple comorbidities, including cardiovascular and metabolic diseases. The aim of this study was to define the associations between blood donor body mass index (BMI) and RBC measurements of metabolic stress and hemolysis. STUDY DESIGN AND METHODS The associations between donor BMI (<25 kg/m2 , normal weight; 25-29.9 kg/m2 , overweight; and ≥30 kg/m2 , obese) and hemolysis (storage, osmotic, and oxidative; n = 18 donors) or posttransfusion recovery (n = 14 donors) in immunodeficient mice were determined in stored leukocyte-reduced RBC units. Further evaluations were conducted using the National Heart, Lung, and Blood Institute RBC-Omics blood donor databases of hemolysis (n = 13 317) and metabolomics (n = 203). RESULTS Evaluations in 18 donors revealed that BMI was significantly (P < 0.05) and positively associated with storage and osmotic hemolysis. A BMI of 30 kg/m2 or greater was also associated with lower posttransfusion recovery in mice 10 minutes after transfusion (P = 0.026). Multivariable linear regression analyses in RBC-Omics revealed that BMI was a significant modifier for all hemolysis measurements, explaining 4.5%, 4.2%, and 0.2% of the variance in osmotic, oxidative, and storage hemolysis, respectively. In this cohort, obesity was positively associated (P < 0.001) with plasma ferritin (inflammation marker). Metabolomic analyses on RBCs from obese donors (44.1 ± 5.1 kg/m2 ) had altered membrane lipid composition, dysregulation of antioxidant pathways (eg, increased oxidized lipids, methionine sulfoxide, and xanthine), and dysregulation of nitric oxide metabolism, as compared to RBCs from nonobese (20.5 ± 1.0 kg/m2 ) donors. CONCLUSIONS Obesity is associated with significant changes in RBC metabolism and increased susceptibility to hemolysis under routine storage of RBC units. The impact on transfusion efficacy warrants further evaluation.
Collapse
Affiliation(s)
| | - Fang Fang
- RTI International, Research Triangle Park, North Carolina
| | | | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
- Kaiser Permanente Northern California, Division of Research, Oakland, California
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D’Alessandro
- Vitalant Research Institute, Denver, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine Division of Hematology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Larry Dumont
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|