1
|
Kasule GW, Hermans S, Semugenze D, Wekiya E, Nsubuga J, Mwachan P, Kabugo J, Joloba M, García-Basteiro AL, Ssengooba W. Non-sputum-based samples and biomarkers for detection of Mycobacterium tuberculosis: the hope to improve childhood and HIV-associated tuberculosis diagnosis. Eur J Med Res 2024; 29:502. [PMID: 39420420 PMCID: PMC11487833 DOI: 10.1186/s40001-024-02092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
In 2014, the World Health Organisation (WHO) published target product profiles (TPP) for development of novel tuberculosis (TB) diagnostics. One of the key highlights is the need for point-of-care non-sputum-based tests capable of detecting all forms of TB through identification of characteristic biomarkers or biosignatures. Compared to the limitations associated with sputum-based TB tests, non-sputum samples are easy to collect, non-invasive, with potential to improve TB diagnosis among children and among people living with HIV/AIDS (PLHIV). This review gives an overview of the existing evidence on TB diagnostic studies of non-sputum-based samples collected non-invasively from or through the oral-gastrointestinal tract (GI) and nasal pharynx regions of humans and the biomarkers detected. We further summarized evidence of these biomarkers and sample types from research done in paediatric and PLHIV. The review identified; saliva, cough aerosols, oral swabs, oral wash, dental plaque, tongue swabs, face mask sampling, exhaled breath, and stool, as the non-sputum samples investigated. These biomarkers can be categorized into Deoxyribose Nucleic Acid (DNA), Ribonucleic Acid (RNA), inflammatory, antigen-antibody, volatile and non-volatile compounds, microbiome and microbiota. The biomarkers identified were derived both from the host and pathogen. Similar biomarkers were identified in the general population, children and among PLHIV. These biomarkers have been detected by either already approved simple point of care or sophisticated devices. Differences in methodology and sample types investigated, small sample size of children and PLHIV populations, bias due to confounding factors, were some of the identified challenges in these studies. There is need to conduct larger and standardized multi centre studies to evaluate non-sputum-based biomarker-based tests in children and PLHIV.
Collapse
Affiliation(s)
- George W Kasule
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- National Tuberculosis and Leprosy Programme (NTRL/NTLP), Kampala, Uganda
| | - Sabine Hermans
- Amsterdam UMC, Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam UMC, Location University of Amsterdam, Amsterdam Public Health, Global Health, Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam, The Netherlands
| | - Derrick Semugenze
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Enock Wekiya
- National Tuberculosis and Leprosy Programme (NTRL/NTLP), Kampala, Uganda
| | - Joachim Nsubuga
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Patricia Mwachan
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Joel Kabugo
- National Tuberculosis and Leprosy Programme (NTRL/NTLP), Kampala, Uganda
| | - Moses Joloba
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Willy Ssengooba
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda.
- Makerere University Lung Institute (MLI), Makerere University, Kampala, Uganda.
| |
Collapse
|
2
|
Patterson B, Dinkele R, Gessner S, Koch A, Hoosen Z, January V, Leonard B, McKerry A, Seldon R, Vazi A, Hermans S, Cobelens F, Warner DF, Wood R. Aerosolization of viable Mycobacterium tuberculosis bacilli by tuberculosis clinic attendees independent of sputum-Xpert Ultra status. Proc Natl Acad Sci U S A 2024; 121:e2314813121. [PMID: 38470917 PMCID: PMC10962937 DOI: 10.1073/pnas.2314813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.
Collapse
Affiliation(s)
- Benjamin Patterson
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Ryan Dinkele
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Sophia Gessner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Anastasia Koch
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Zeenat Hoosen
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Vanessa January
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Bryan Leonard
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andrea McKerry
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Ronnett Seldon
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Andiswa Vazi
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| | - Sabine Hermans
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Frank Cobelens
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam1105, The Netherlands
| | - Digby F. Warner
- South African Medical Research Council, National Health Laboratory Service, University of Cape Town Molecular Mycobacteriology Research Unit & Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town7925, South Africa
- Aerobiology and TB Research Unit, Desmond Tutu Health Foundation, Cape Town7975, South Africa
| |
Collapse
|
3
|
Yerlikaya S, Broger T, Isaacs C, Bell D, Holtgrewe L, Gupta-Wright A, Nahid P, Cattamanchi A, Denkinger CM. Blazing the trail for innovative tuberculosis diagnostics. Infection 2024; 52:29-42. [PMID: 38032537 PMCID: PMC10811035 DOI: 10.1007/s15010-023-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The COVID-19 pandemic brought diagnostics into the spotlight in an unprecedented way not only for case management but also for population health, surveillance, and monitoring. The industry saw notable levels of investment and accelerated research which sparked a wave of innovation. Simple non-invasive sampling methods such as nasal swabs have become widely used in settings ranging from tertiary hospitals to the community. Self-testing has also been adopted as standard practice using not only conventional lateral flow tests but novel and affordable point-of-care molecular diagnostics. The use of new technologies, including artificial intelligence-based diagnostics, have rapidly expanded in the clinical setting. The capacity for next-generation sequencing and acceptance of digital health has significantly increased. However, 4 years after the pandemic started, the market for SARS-CoV-2 tests is saturated, and developers may benefit from leveraging their innovations for other diseases; tuberculosis (TB) is a worthwhile portfolio expansion for diagnostics developers given the extremely high disease burden, supportive environment from not-for-profit initiatives and governments, and the urgent need to overcome the long-standing dearth of innovation in the TB diagnostics field. In exchange, the current challenges in TB detection may be resolved by adopting enhanced swab-based molecular methods, instrument-based, higher sensitivity antigen detection technologies, and/or artificial intelligence-based digital health technologies developed for COVID-19. The aim of this article is to review how such innovative approaches for COVID-19 diagnosis can be applied to TB to have a comparable impact.
Collapse
Affiliation(s)
- Seda Yerlikaya
- Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
| | - Tobias Broger
- Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - David Bell
- Independent Consultant, Lake Jackson, TX, USA
| | - Lydia Holtgrewe
- Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Ankur Gupta-Wright
- Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Global Health, University College London, London, UK
| | - Payam Nahid
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - Adithya Cattamanchi
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
- Division of Pulmonary Diseases and Critical Care Medicine, University of California Irvine, Irvine, CA, USA
| | - Claudia M Denkinger
- Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital and Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- German Centre for Infection Research, Partner Site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Mikszewski A, Stabile L, Buonanno G, Morawska L. The airborne contagiousness of respiratory viruses: A comparative analysis and implications for mitigation. GEOSCIENCE FRONTIERS 2022; 13:101285. [PMID: 38620948 PMCID: PMC8378671 DOI: 10.1016/j.gsf.2021.101285] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 05/07/2023]
Abstract
The infectious emission rate is a fundamental input parameter for airborne transmission risk assessment, but data are limited due to reliance on estimates from chance superspreading events. This study assesses the strength of a predictive estimation approach developed by the authors for SARS-CoV-2 and uses novel estimates to compare the contagiousness of respiratory pathogens. We applied the approach to SARS-CoV-1, SARS-CoV-2, MERS, measles virus, adenovirus, rhinovirus, coxsackievirus, seasonal influenza virus and Mycobacterium tuberculosis (TB) and compared quanta emission rate (ERq) estimates to literature values. We calculated infection risk in a prototypical classroom and barracks to assess the relative ability of ventilation to mitigate airborne transmission. Our median standing and speaking ERq estimate for SARS-CoV-2 (2.7 quanta h-1) is similar to active, untreated TB (3.1 quanta h-1), higher than seasonal influenza (0.17 quanta h-1), and lower than measles virus (15 quanta h-1). We calculated event reproduction numbers above 1 for SARS-CoV-2, measles virus, and untreated TB in both the classroom and barracks for an activity level of standing and speaking at low, medium and high ventilation rates of 2.3, 6.6 and 14 L per second per person (L s-1 p-1), respectively. Our predictive ERq estimates are consistent with the range of values reported over decades of research. In congregate settings, current ventilation standards are unlikely to control the spread of viruses with upper quartile ERq values above 10 quanta h-1, such as SARS-CoV-2, indicating the need for additional control measures.
Collapse
Affiliation(s)
- Alex Mikszewski
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland, Australia
- CIUS Building Performance Lab, The City University of New York, New York, NY, USA
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Giorgio Buonanno
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
5
|
Coleman M, Martinez L, Theron G, Wood R, Marais B. Mycobacterium tuberculosis Transmission in High-Incidence Settings-New Paradigms and Insights. Pathogens 2022; 11:1228. [PMID: 36364978 PMCID: PMC9695830 DOI: 10.3390/pathogens11111228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis has affected humankind for thousands of years, but a deeper understanding of its cause and transmission only arose after Robert Koch discovered Mycobacterium tuberculosis in 1882. Valuable insight has been gained since, but the accumulation of knowledge has been frustratingly slow and incomplete for a pathogen that remains the number one infectious disease killer on the planet. Contrast that to the rapid progress that has been made in our understanding SARS-CoV-2 (the cause of COVID-19) aerobiology and transmission. In this Review, we discuss important historical and contemporary insights into M. tuberculosis transmission. Historical insights describing the principles of aerosol transmission, as well as relevant pathogen, host and environment factors are described. Furthermore, novel insights into asymptomatic and subclinical tuberculosis, and the potential role this may play in population-level transmission is discussed. Progress towards understanding the full spectrum of M. tuberculosis transmission in high-burden settings has been hampered by sub-optimal diagnostic tools, limited basic science exploration and inadequate study designs. We propose that, as a tuberculosis field, we must learn from and capitalize on the novel insights and methods that have been developed to investigate SARS-CoV-2 transmission to limit ongoing tuberculosis transmission, which sustains the global pandemic.
Collapse
Affiliation(s)
- Mikaela Coleman
- WHO Collaborating Centre for Tuberculosis and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney 2006, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia
| | - Leonardo Martinez
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Robin Wood
- Desmond Tutu Health Foundation and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Ben Marais
- WHO Collaborating Centre for Tuberculosis and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
6
|
Verma R, Moreira FMF, do Prado Morais AO, Walter KS, Dos Santos PCP, Kim E, Soares TR, de Araujo RCP, da Silva BO, da Silva Santos A, Croda J, Andrews JR. Detection of M. tuberculosis in the environment as a tool for identifying high-risk locations for tuberculosis transmission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156970. [PMID: 35760168 DOI: 10.1016/j.scitotenv.2022.156970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Tuberculosis (TB) remains a leading cause of infectious mortality globally, yet most cases cannot be epidemiologically linked even with extensive contact investigations and whole genome sequencing. Consequently, there remain major gaps in our understanding of where and when M. tuberculosis (Mtb) exposures occur. We aimed to investigate whether Mtb can be detected in environments where TB patients were recently present, which could serve as a tool for characterizing exposure risk. We collected 389 environment surface (ES) swabs from two high TB burden prisons in Brazil, sampling 41 (n = 340) cells occupied by individuals with active TB and 7 (n = 49) cells from individuals without TB. In a subset of pooled swabs (n = 6) and a swab from a cigarette lighter from the cell with active TB patients, we enriched Mtb DNA using RNA-bait hybrid capture assays and performed whole genome sequencing. In prison cells, Mtb DNA was detected in 55/340 (16 %) of ES swabs from cells occupied by active TB patients and none (0/49) from cells in which no active TB patients were present. Mtb was detected in 13/16 (81 %) prison cells occupied by the individuals with high/medium sputum Xpert Mtb load and 8/25 (32 %) with low/very low sputum Mtb load (p = 0.003). Seven hybrid capture samples had a median genomic coverage of 140×. rpoB mutations conferring high-level rifampin resistance were detected in 3/7 ES swabs. Mtb was frequently detectable in environments recently occupied by individuals with active TB. This approach could be applied in congregate environments to identify and characterize high-risk settings for Mtb exposure.
Collapse
Affiliation(s)
- Renu Verma
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | | | - Agne Oliveira do Prado Morais
- Postgraduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Katharine S Walter
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paulo César Pereira Dos Santos
- Postgraduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Eugene Kim
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thiego Ramon Soares
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | | | | | - Julio Croda
- Oswaldo Cruz Foundation Mato Grosso do Sul, Mato Grosso do Sul, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA; Federal University of Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Carney T, Rooney JA, Niemand N, Myers B, Theron D, Wood R, White LF, Meade CS, Chegou NN, Ragan E, Walzl G, Horsburgh R, Warren RM, Jacobson KR. Transmission Of Tuberculosis Among illicit drug use Linkages (TOTAL): A cross-sectional observational study protocol using respondent driven sampling. PLoS One 2022; 17:e0262440. [PMID: 35167586 PMCID: PMC8846525 DOI: 10.1371/journal.pone.0262440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
People who use illicit drugs (PWUDs) have been identified as a key at-risk group for tuberculosis (TB). Examination of illicit drug use networks has potential to assess the risk of TB exposure and disease progression. Research also is needed to assess mechanisms for accelerated TB transmission in this population. This study aims to 1) assess the rate of TB exposure, risk of disease progression, and disease burden among PWUD; 2) estimate the proportion of active TB cases resulting from recent transmission within this network; and 3) evaluate whether PWUD with TB disease have physiologic characteristics associated with more efficient TB transmission. Our cross-sectional, observational study aims to assess TB transmission through illicit drug use networks, focusing on methamphetamine and Mandrax (methaqualone) use, in a high TB burden setting and identify mechanisms underlying accelerated transmission. We will recruit and enroll 750 PWUD (living with and without HIV) through respondent driven sampling in Worcester, South Africa. Drug use will be measured through self-report and biological measures, with sputum specimens collected to identify TB disease by Xpert Ultra (Cepheid) and mycobacterial culture. We will co-enroll those with microbiologic evidence of TB disease in Aim 2 for molecular and social network study. Whole genome sequencing of Mycobacteria tuberculosis (Mtb) specimens and social contact surveys will be done for those diagnosed with TB. For Aim 3, aerosolized Mtb will be compared in individuals with newly diagnosed TB who do and do not smoke illicit drug. Knowledge from this study will provide the basis for a strategy to interrupt TB transmission in PWUD and provide insight into how this fuels overall community transmission. Results have potential for informing interventions to reduce TB spread applicable to high TB and HIV burden settings. Trial registration: Clinicaltrials.gov Registration Number: NCT041515602. Date of Registration: 5 November 2019.
Collapse
Affiliation(s)
- Tara Carney
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Division of Addiction Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, South Africa
| | - Jennifer A. Rooney
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Nandi Niemand
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bronwyn Myers
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Tygerberg, South Africa
- Division of Addiction Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, Groote Schuur Hospital, Observatory, Cape Town, South Africa
- Curtin enAble Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | | | - Robin Wood
- Desmond Tutu Health Foundation, UCT Faculty of Health Sciences, Observatory, Cape Town, South Africa
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | - Christina S. Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States of America
| | - Novel N. Chegou
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizabeth Ragan
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert Horsburgh
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Department of Epidemiology, Biostatistics and Global Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karen R. Jacobson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
8
|
Yang L, Yi W, Sun F, Xu M, Zeng Z, Bi X, Dong J, Xie Y, Li M. Application of Lab-on-Chip for Detection of Microbial Nucleic Acid in Food and Environment. Front Microbiol 2021; 12:765375. [PMID: 34803990 PMCID: PMC8600318 DOI: 10.3389/fmicb.2021.765375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Various diseases caused by food-borne or environmental pathogenic microorganisms have been a persistent threat to public health and global economies. It is necessary to regularly detect microorganisms in food and environment to prevent infection of pathogenic microorganisms. However, most traditional detection methods are expensive, time-consuming, and unfeasible in practice in the absence of sophisticated instruments and trained operators. Point-of-care testing (POCT) can be used to detect microorganisms rapidly on site and greatly improve the efficiency of microbial detection. Lab-on-chip (LOC) is an emerging POCT technology with great potential by integrating most of the experimental steps carried out in the laboratory into a single monolithic device. This review will primarily focus on principles and techniques of LOC for detection of microbial nucleic acid in food and environment, including sample preparation, nucleic acid amplification and sample detection.
Collapse
Affiliation(s)
- Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
9
|
Cough-independent production of viable Mycobacterium tuberculosis in bioaerosol. Tuberculosis (Edinb) 2020; 126:102038. [PMID: 33316737 DOI: 10.1016/j.tube.2020.102038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Symptoms of infectious respiratory illnesses are often assumed to drive transmission. However, production and release of Mycobacterium tuberculosis (Mtb) bioaerosols is poorly understood. We report quantitation of Mtb exhaled during specific respiratory manoeuvres. METHODS Direct capture of nascent bioaerosol particles and indirect collection of aged particles was performed in 10 healthy subjects. Indirect and direct capture of exhaled viable Mtb bacilli was compared in 38 PTB patients and directly captured viable Mtb during cough and bronchiole-burst manoeuvres in 27 of the PTB patients. RESULTS Direct sampling of healthy subjects captured larger bioaerosol volumes with higher proportions of 2-5 μm particles than indirect sampling. Indirect sampling identified viable Mtb in 92.1% (35 of 38) of PTB patients during 60-min relaxed breathing, median bacillary count 7.5 (IQR: 3.25-19). Direct sampling for 10-min identified Mtb in 97.4% (37 of 38) of PTB patients with higher bacilli counts (p < 0.001), median 24.5 (IQR:11.25-37.5). A short 5-min sampling regimen of 10 coughs or 10 bronchiole-burst manoeuvres yielded a median of 11 (IQR: 4-17) and 11 (IQR: 7-17.5) Mtb bacilli, respectively (p = 0.53). CONCLUSIONS Peripheral lung bioaerosol released through deep exhalations alone contained viable Mtb suggesting non-cough transmission is possible in PTB.
Collapse
|