1
|
Leichtle A, Lupatsii M, Graspeuntner S, Jeschke S, Penxová Z, Kurabi A, Ryan AF, Rupp J, Pries R, Bruchhage KL. Anti-inflammatory response to 1,8-Cineol and associated microbial communities in Otitis media patients. Sci Rep 2024; 14:16362. [PMID: 39014066 PMCID: PMC11252366 DOI: 10.1038/s41598-024-67498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Chronic Otitis Media (COM) is defined as long term inflammation and colonization with pathogenic bacteria due to a defect or retraction of the tympanic membrane. Surgical interventions are often augmented by antibiotic resistance development and therefore, off-label treatment using the natural drug 1,8-Cineol was carried out. All COM patients underwent antibiotic therapy and middle ear surgery and developed antibiotic resistances. Microbiological investigations from the auditory canal and stool samples were performed in correlation with the clinical course. Therapy of COM patients with 1,8-Cineol revealed a clear reduction of inflammatory microbes P. aeruginosa and Proteus mirabilis in ear samples as well as intestinal Prevotella copri, which was associated with an improved clinical outcome in certain individuals. The present off-label study revealed manifold anti-inflammatory effects of the natural monoterpene 1,8-Cineol in Otitis media patients. A better understanding of the underlying mechanisms will improve the current treatment options and possible forms of application of this natural drug.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Stephanie Jeschke
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Zuzana Penxová
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | - Arwa Kurabi
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Allen Frederic Ryan
- Department of Surgery/ Otolaryngology, University of California San Diego, La Jolla, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, 23538, Lübeck, Germany
| | | |
Collapse
|
2
|
Malveira EA, Nunes AKA, Andrade AL, Melo GLC, da Silva WMB, de Morais SM, Dos Santos HS, de Lima LB, de Albuquerque CC, do Nascimento Souza DN, Teixeira EH, de Vasconcelos MA. Antibacterial and Antibiofilm Activity of Croton urticifolius Lam. Essential Oil Via Membrane Disruption. Curr Microbiol 2024; 81:256. [PMID: 38955831 DOI: 10.1007/s00284-024-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.
Collapse
Affiliation(s)
- Ellen Araújo Malveira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Aluska Kelly A Nunes
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Gabriel Lucas Carvalho Melo
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | | - Selene Maia de Morais
- Centro de Ciência E Tecnologia, Universidade Estadual Do Ceará, Fortaleza, CE, Brasil
| | - Hélcio Silva Dos Santos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
- Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Vale Do Acaraú, Sobral, CE, Brazil
| | - Leandro Bezerra de Lima
- Faculdade de Ciências Exatas E Naturais, Universidade Do Estado Do Rio Grande Do Norte, Mossoró, RN, Brazil
| | | | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia E Medicina Legal, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
3
|
De Gaetano F, Pastorello M, Pistarà V, Rescifina A, Margani F, Barbera V, Ventura CA, Marino A. Rutin/Sulfobutylether-β-Cyclodextrin as a Promising Therapeutic Formulation for Ocular Infection. Pharmaceutics 2024; 16:233. [PMID: 38399286 PMCID: PMC10892075 DOI: 10.3390/pharmaceutics16020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment is challenging for scientists due to their low water solubility. In this study, we designed a liquid formulation based on rutin/sulfobutylether-β-cyclodextrin (RTN/SBE-β-CD) inclusion complex for treating ocular infections. The correct stoichiometry and the accurate binding constant were determined by employing SupraFit software (2.5.120) in the UV-vis titration experiment. A deep physical-chemical characterization of the RTN/SBE-β-CD inclusion complex was also performed; it confirmed the predominant formation of a stable complex (Kc, 9660 M-1) in a 1:1 molar ratio, with high water solubility that was 20 times (2.5 mg/mL) higher than the free molecule (0.125 mg/mL), permitting the dissolution of the solid complex within 30 min. NMR studies revealed the involvement of the bicyclic flavonoid moiety in the complexation, which was also confirmed by molecular modeling studies. In vitro, the antibacterial and antibiofilm activity of the formulation was assayed against Staphylococcus aureus and Pseudomonas aeruginosa strains. The results demonstrated a significant activity of the formulation than that of the free molecules.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Martina Pastorello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Venerando Pistarà
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Antonio Rescifina
- Department of Pharmaceutical and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.P.); (A.R.)
| | - Fatima Margani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy; (F.M.); (V.B.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (M.P.)
| |
Collapse
|
4
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
5
|
Hoch CC, Petry J, Griesbaum L, Weiser T, Werner K, Ploch M, Verschoor A, Multhoff G, Bashiri Dezfouli A, Wollenberg B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed Pharmacother 2023; 167:115467. [PMID: 37696087 DOI: 10.1016/j.biopha.2023.115467] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
1,8-cineole (Eucalyptol), a naturally occurring compound derived from botanical sources such as eucalyptus, rosemary, and camphor laurel, has a long history of use in traditional medicine and exhibits an array of biological properties, including anti-inflammatory, antioxidant, antimicrobial, bronchodilatory, analgesic, and pro-apoptotic effects. Recent evidence has also indicated its potential role in managing conditions such as Alzheimer's disease, neuropathic pain, and cancer. This review spotlights the health advantages of 1,8-cineole, as demonstrated in clinical trials involving patients with respiratory disorders, including chronic obstructive pulmonary disease, asthma, bronchitis, and rhinosinusitis. In addition, we shed light on potential therapeutic applications of 1,8-cineole in various conditions, such as depression, epilepsy, peptic ulcer disease, diarrhea, cardiac-related heart diseases, and diabetes mellitus. A comprehensive understanding of 1,8-cineole's pharmacodynamics and safety aspects as well as developing effective formulations, might help to leverage its therapeutic value. This thorough review sets the stage for future research on diverse health benefits and potential uses of 1,8-cineole in tackling complex medical conditions.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Julie Petry
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Lena Griesbaum
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Tobias Weiser
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Kathrin Werner
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | | | - Admar Verschoor
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany.
| |
Collapse
|
6
|
Nejad MK, Hasani A, Soofiyani SR, Nahandi MZ, Hasani A. Aptitude of Uropathogenic Escherichia coli in Renal Transplant Recipients: A Comprehensive Review on Characteristic Features, and Production of Extended Spectrum β-Lactamase. Curr Microbiol 2023; 80:382. [PMID: 37864769 DOI: 10.1007/s00284-023-03476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/05/2023] [Indexed: 10/23/2023]
Abstract
Urinary tract infection is the most common infection in almost half of the renal transplant patients. The development of UTI in these patients may progress to bacteremia, acute T cell-mediated rejection, impaired allograft function, or allograft loss, along with the increased risk of hospitalization and death. Among various pathogens implicated, Uropathogenic E. coli (UPEC), especially sequence type 131 (ST131), is the most virulent and multidrug-resistant pathogen. High antimicrobial resistance to most β-lactam antibiotics, mediated by extended spectrum β-lactamases (ESBLs) produced by UPEC, is a challenge in the clinical management of UTIs in kidney transplant recipients. Indeed, multidrug resistance to β-lactam antibiotics is a direct consequence of ESBL production. Resistance to other antibiotics such as aminoglycosides, fluoroquinolones, and trimethoprim-sulphamethoxazole has also been reported in ESBLs-producing UPEC, which reduces the therapeutic options, rising healthcare-associated costs and subsequently leads to renal failure or even graft loss. In this review, we aimed to discuss the post-transplant risk factors of UTI, UPEC virulence factors (VF), and the related factors including quorum sensing, and stress resistance genes. Furthermore, we searched for the current treatment strategies and some of the alternate approaches proposed as therapeutic options that may affirm the treatment of ESBL-producing UPEC.
Collapse
Affiliation(s)
- Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zaare Nahandi
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
8
|
Mhade S, Kaushik KS. Tools of the Trade: Image Analysis Programs for Confocal Laser-Scanning Microscopy Studies of Biofilms and Considerations for Their Use by Experimental Researchers. ACS OMEGA 2023; 8:20163-20177. [PMID: 37332792 PMCID: PMC10268615 DOI: 10.1021/acsomega.2c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Confocal laser-scanning microscopy (CLSM) is the bedrock of the microscopic visualization of biofilms. Previous applications of CLSM in biofilm studies have largely focused on observations of bacterial or fungal elements of biofilms, often seen as aggregates or mats of cells. However, the field of biofilm research is moving beyond qualitative observations alone, toward the quantitative analysis of the structural and functional features of biofilms, across clinical, environmental, and laboratory conditions. In recent times, several image analysis programs have been developed to extract and quantify biofilm properties from confocal micrographs. These tools not only vary in their scope and relevance to the specific biofilm features under study but also with respect to the user interface, compatibility with operating systems, and raw image requirements. Understanding these considerations is important when selecting tools for quantitative biofilm analysis, including at the initial experimental stages of image acquisition. In this review, we provide an overview of image analysis programs for confocal micrographs of biofilms, with a focus on tool selection and image acquisition parameters that are relevant for experimental researchers to ensure reliability and compatibility with downstream image processing.
Collapse
Affiliation(s)
- Shreeya Mhade
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| | - Karishma S Kaushik
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| |
Collapse
|
9
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
10
|
Nunes AKA, Araújo Malveira E, Lopes Andrade A, Barbosa da Silva WM, de Morais SM, Silva Dos Santos H, Cavalcanti de Albuquerque C, Holanda Teixeira E, do Nascimento Souza DN, Alves de Vasconcelos M. Chemical Composition Determination and Evaluation of the Antimicrobial Activity of Essential Oil from Croton blanchetianus (Euphorbiaceae) against Clinically Relevant Bacteria. Chem Biodivers 2023; 20:e202200777. [PMID: 36541751 DOI: 10.1002/cbdv.202200777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
In this study, the chemical composition of the essential oil (EO) extracted from Croton blanchetianus Baill leaves was identified, and antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli strains were determined. Moreover, the effects of EO in combination with ampicillin and tetracycline were investigated. Thirty-four components, mainly mono-and sesquiterpenes that represented 94.05 % of the chemical composition, were identified in the EO. The EO showed bacteriostatic and bactericidal activities against all strains tested. Furthermore, the EO showed a synergistic effect with ampicillin and tetracycline. EO significantly inhibited biofilm formation and reduced the number of viable cells in biofilms. The EO may be a promising natural product for preventing bacterial biofilm infections.
Collapse
Affiliation(s)
- Aluska Kelly A Nunes
- Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
| | - Ellen Araújo Malveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Wildson Max Barbosa da Silva
- Universidade Estadual do Ceará, Centro de Ciência e Tecnologia, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE, Brasil
| | - Selene Maia de Morais
- Universidade Estadual do Ceará, Centro de Ciência e Tecnologia, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE, Brasil
| | - Hélcio Silva Dos Santos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, CE, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Mayron Alves de Vasconcelos
- Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil.,Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil
| |
Collapse
|
11
|
de Oliveira GD, da Rocha WRV, Rodrigues JFB, Alves HDS. Synergistic and Antibiofilm Effects of the Essential Oil from Croton conduplicatus (Euphorbiaceae) against Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2022; 16:ph16010055. [PMID: 36678551 PMCID: PMC9867205 DOI: 10.3390/ph16010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial resistance refers to the ability of bacteria to resist the action of some antibiotics due to the development of adaptation and resistance mechanisms. It is a serious public health problem, especially for diseases caused by opportunistic bacteria. In this context, the search for new drugs, used alone or in combination, appears as an alternative for the treatment of microbial infections, and natural products, such as essential oils, are important in this process due to their structural diversity, which increases the probability for antimicrobial action. The objective of this study was to extract and identify the chemical components of the essential oil from Croton conduplicatus (EOCC), to evaluate the antimicrobial activity, to investigate the effect of the interaction between the EOCC and different antibiotics and to evaluate its antibiofilm potential. The EOCC was obtained by hydrodistillation. Based on chemical characterisation, 70 compounds were identified, with 1.8 cineole (13.15%), p-cymene (10.68%), caryophyllene (9.73%) and spathulenol (6.36%) being the major constituents. The minimum inhibitory concentration (MIC) values of EOCC were 256 and 512 µg mL-1 for methicillin-sensitive and -resistant Staphylococcus aureus strains (MSSA and MRSA), respectively. The combinations of EOCC with the antibiotics oxacillin and ampicillin were synergistic (OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and AMP MIC to 0.5 and 0.25 for MSSA, respectively, and OXA/EOCC and AMP/EOCC combined decreased the OXA MIC and the AMP MIC to 1 and 0.5 for MRSA, respectively) and could modify the resistance profile of MSSA and MRSA strains. The results indicated that EOCC was also able to partially inhibit biofilm formation. Our study presents important information about the chemical composition of EOCC and its antimicrobial potential and provides a reference to determine the mechanisms of action of EOCC and its use in pharmaceutical formulations.
Collapse
Affiliation(s)
- Genil Dantas de Oliveira
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
| | - Wilma Raianny Vieira da Rocha
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
| | - José Filipe Bacalhau Rodrigues
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Harley da Silva Alves
- Postgraduate Program in Pharmaceuticals Sciences, Department of Pharmacy, State University of Paraiba, Campina Grande 58429-500, Brazil
- Correspondence: ; Tel.: +55-83-98790-9234
| |
Collapse
|
12
|
Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microb Pathog 2022; 173:105824. [PMID: 36243382 DOI: 10.1016/j.micpath.2022.105824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The continuous emergence of multidrug-resistant (MDR) bacteria has posed an increasingly serious public health threat which urges people to develop some alternatives. Gallic acid (GA) is a natural ingredient in many traditional Chinese medicines, which has many biological activities, such as antibacterial, and antiseptic. Here, clinical isolates of MDR Escherichia coli (E. coli) were used to evaluate the antibacterial effect of GA and the underlying mechanism. The results revealed that GA exerted bactericidal activity and inhibited the formation of bacterial biofilm. GA enhanced the activities of ceftiofur sodium or tetracycline against E. coli, and facilitated antibiotic accumulation in bacteria. Further analysis of morphological alterations and efflux pump gene expressions confirmed that GA damaged outer and inner membranes, and suppressed the mRNA expressions of acrA, acrB, tolC, acrD and acrF involved in membrane permeability. In addition, GA showed protective effects against bacterial infection and improved the survival rates of Galleria mellonella and BALB/c mice. These data highlight a better understanding of GA against bacteria and provide an alternative strategy for MDR bacterial infection.
Collapse
|
13
|
Vazquez NM, Moreno S, Galván EM. Exposure of multidrug-resistant Klebsiella pneumoniae biofilms to 1,8-cineole leads to bacterial cell death and biomass disruption. Biofilm 2022; 4:100085. [PMID: 36249125 PMCID: PMC9562914 DOI: 10.1016/j.bioflm.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of health-care associated infections. The rise of antibiotic resistance and the ability to form biofilm among K. pneumoniae strains are two key factors associated with antibiotic treatment failure. The present study investigates the antibiofilm activity of 1,8-cineole against preformed biofilms of multidrug-resistant extended-spectrum β-lactamase-producing K. pneumoniae clinical isolates. To evaluate the antibiofilm activity, cellular viability was analyzed by colony-forming units counting and live/dead staining. In addition, biofilm biomass was evaluated by crystal violet and the biofilm matrix was stained with calcofluor white and observed by confocal laser scanning microscopy. A time- and concentration-dependent effect of the phytochemical over biofilm cell viability was observed revealing that 1% (v/v) 1,8-cineole during 1 h was the optimal treatment condition displaying a significant reduction of cell viability in the preformed biofilms (2.5-5.3 log cfu/cm2). Furthermore, confocal laser scanning microscopy after SYTO-9 and propidium iodide staining showed that 1,8-cineole was capable of killing bacteria throughout all layers of the biofilm. The compound also caused a biofilm disruption (30-62% biomass reduction determined by crystal violet staining) and a significant decrease in biofilm matrix density. Altogether, our results demonstrate that 1,8-cineole is a promising candidate as a novel antibiofilm agent against multidrug-resistant K. pneumoniae strains producing extended-spectrum β-lactamases, given its capability to disrupt the structure and to kill cells within the biofilm.
Collapse
Affiliation(s)
- Nicolas M. Vazquez
- Laboratorio de Farmacología de Bioactivos Vegetales, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina,Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvia Moreno
- Laboratorio de Farmacología de Bioactivos Vegetales, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina,Corresponding author. Laboratorio de Farmacología de Bioactivos Vegetales, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.
| | - Estela M. Galván
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina,Corresponding author. Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Badescu B, Buda V, Romanescu M, Lombrea A, Danciu C, Dalleur O, Dohou AM, Dumitrascu V, Cretu O, Licker M, Muntean D. Current State of Knowledge Regarding WHO Critical Priority Pathogens: Mechanisms of Resistance and Proposed Solutions through Candidates Such as Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:1789. [PMID: 35890423 PMCID: PMC9319935 DOI: 10.3390/plants11141789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 05/05/2023]
Abstract
The rise of multidrug-resistant (MDR) pathogens has become a global health threat and an economic burden in providing adequate and effective treatment for many infections. This large-scale concern has emerged mainly due to mishandling of antibiotics (ABs) and has resulted in the rapid expansion of antimicrobial resistance (AMR). Nowadays, there is an urgent need for more potent, non-toxic and effective antimicrobial agents against MDR strains. In this regard, clinicians, pharmacists, microbiologists and the entire scientific community are encouraged to find alternative solutions in treating infectious diseases cause by these strains. In its "10 global issues to track in 2021", the World Health Organization (WHO) has made fighting drug resistance a priority. It has also issued a list of bacteria that are in urgent need for new ABs. Despite all available resources, researchers are unable to keep the pace of finding novel ABs in the face of emerging MDR strains. Traditional methods are increasingly becoming ineffective, so new approaches need to be considered. In this regard, the general tendency of turning towards natural alternatives has reinforced the interest in essential oils (EOs) as potent antimicrobial agents. Our present article aims to first review the main pathogens classified by WHO as critical in terms of current AMR. The next objective is to summarize the most important and up-to-date aspects of resistance mechanisms to classical antibiotic therapy and to compare them with the latest findings regarding the efficacy of alternative essential oil therapy.
Collapse
Affiliation(s)
- Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
| | - Angele Modupe Dohou
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
- Faculté des Sciences de la Santé, Université d’Abomey Calavi, Cotonou 01 BP 188, Benin
| | - Victor Dumitrascu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Monica Licker
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Li L, He M, Fang C, Zhang Y, Wang Y, Song X, Zou Y, Jia R, Liang X, Yin L, Lv C, Wan H, Zhao X, Yin Z. Preparation, characterization, ex vivo transdermal properties and skin irritation evaluation of 1,8-cineole nanoemulsion gel. Int J Pharm 2022; 624:121982. [DOI: 10.1016/j.ijpharm.2022.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
16
|
Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14071377. [PMID: 35890273 PMCID: PMC9315818 DOI: 10.3390/pharmaceutics14071377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the noticeable evolution in wound treatment over the centuries, a functional material that promotes correct and swift wound healing is important, considering the relative weight of chronic wounds in healthcare. Difficult to heal in a fashionable time, chronic wounds are more prone to infections and complications thereof. Nitric oxide (NO) has been explored for wound healing applications due to its appealing properties, which in the wound healing context include vasodilation, angiogenesis promotion, cell proliferation, and antimicrobial activity. NO delivery is facilitated by molecules that release NO when prompted, whose stability is ensured using carriers. Hydrogels, popular materials for wound dressings, have been studied as scaffolds for NO storage and delivery, showing promising results such as enhanced wound healing, controlled and sustained NO release, and bactericidal properties. Systems reported so far regarding NO delivery by hydrogels are reviewed.
Collapse
|