1
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
2
|
Wu Z, Peng H, Shu Y, Zhang L, Zhang S, Zhang J, Li S, Fan Q, Wei Y, Ming L, Tong J, Zhang Y. Electroacupuncture activates the peroxisome proliferators-activated receptor pathway to improve the phenotype of cerebral palsy. CNS Neurosci Ther 2024; 30:e14876. [PMID: 39049731 PMCID: PMC11269887 DOI: 10.1111/cns.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
AIM This study explores the efficacy of electroacupuncture (EA) in treating cerebral palsy (CP) in Sprague-Dawley (SD) pups, specifically CP animal models, and its molecular mechanisms. METHODS Gait analysis and Y-maze were used to detect the improvement of motor ability and cognitive function of CP rats after EA treatment. Transcription sequencing was used to determine the key pathway for EA to improve the symptoms of CP. PPAR agonists were used to verify the causal relationship between the pathway and the improvement of CP phenotype. RESULTS The motor ability and cognitive function of CP pups were improved after EA treatment. The results of transcriptome sequencing suggest that the improvement of CP phenotype may be caused by the activation of PPAR pathway. PPAR pathway is widely activated in the epithelium of CP pups treated with EA, which is verified by qPCR. Rosiglitazone (Ros), a PPAR agonist, can improve CP phenotype while activating PPAR pathway, which proves the causal relationship between PPAR pathway activation and CP phenotype improvement. CONCLUSION Our study demonstrated behavioral improvements and enhanced cognitive functions in CP models after EA treatment by activating PPAR pathway, suggesting new perspectives for CP rehabilitation, and providing theoretical support for acupuncture treatment of CP.
Collapse
Affiliation(s)
- Zhi‐Feng Wu
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Hong‐Hao Peng
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Yun Shu
- Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouChina
| | - Li Zhang
- Department of NeurosurgeryChildren's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of PediatricsChongqingChina
| | - Si Zhang
- Department of RadiologyArmy Medical University Xinqiao HospitalChongqingChina
| | - Jing‐Yang Zhang
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Si‐jie Li
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Qiong‐Li Fan
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Yun Wei
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Li Ming
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| | - Jing‐Jing Tong
- Department of Traditional Chinese MedicineArmy Medical University Xinqiao HospitalChongqingChina
| | - Yu‐Ping Zhang
- Department of PediatricsArmy Medical University Xinqiao HospitalChongqingChina
| |
Collapse
|
3
|
Kwok T, Yeguvapalli S, Chitrala KN. Identification of Genes Crucial for Biological Processes in Breast Cancer Liver Metastasis Relapse. Int J Mol Sci 2024; 25:5439. [PMID: 38791477 PMCID: PMC11122209 DOI: 10.3390/ijms25105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, when advancing to a metastatic stage, involves the liver, impacting over 50% of cases and significantly diminishing survival rates. Presently, a lack of tailored therapeutic protocols for breast cancer liver metastasis (BCLM) underscores the need for a deeper understanding of molecular patterns governing this complication. Therefore, by analyzing differentially expressed genes (DEGs) between primary breast tumors and BCLM lesions, we aimed to shed light on the diversities of this process. This research investigated breast cancer liver metastasis relapse by employing a comprehensive approach that integrated data filtering, gene ontology and KEGG pathway analysis, overall survival analysis, identification of the alteration in the DEGs, visualization of the protein-protein interaction network, Signor 2.0, identification of positively correlated genes, immune cell infiltration analysis, genetic alternation analysis, copy number variant analysis, gene-to-mRNA interaction, transcription factor analysis, molecular docking, and identification of potential treatment targets. This study's integrative approach unveiled metabolic reprogramming, suggesting altered PCK1 and LPL expression as key in breast cancer metastasis recurrence.
Collapse
|
4
|
Tang N, Liu XT, Wen WL, Liang TS, Lv XT, Li QL, Wang GE, Wu YH. Restraint stress promotes monobenzone-induced depigmentation in mice via the activation of glucocorticoid receptor/macrophage migration inhibitory factor signaling pathway. Mol Immunol 2023; 161:33-43. [PMID: 37481827 DOI: 10.1016/j.molimm.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Psychological stress triggers onset and development of vitiligo in humans. However, the mechanism of psychological stress on vitiligo remains unclear. The study aims to investigate whether psychological stress promotes vitiligo and explore the underlying mechanism. A depigmentation mouse model induced by applying a skin-bleaching reagent monobenzone to dorsal skin and an in vitro HaCaT keratinocyte death model induced by monobenzone were employed to explore the effect of restraint stress, which mimics psychological stress, on depigmentation. The results indicated that restraint stress promoted vitiligo-related depigmentation, vacuolisation, spongiosis, CD8+ T lymphocyte infiltration, and loss of melanocytes in the skin. Restraint stress activated cutaneous NLR family containing pyrin domain protein 3 (NLRP3) inflammasome. In addition, restraint stress aggravated anxiety-like behaviors and increased levels of macrophage migration inhibitory factor (MIF) and corticosterone in the circulation, accompanied with decreasing the expression of cutaneous 8-oxoguanine DNA glycosylase (OGG1) in depigmentation mice. In vitro experiments demonstrated that activation of glucocorticoid receptor (GR) by cortisol upregulated NLRP3 expression dependent on MIF, and directly decreased the transcription of OGG1. Blockade of MIF reversed the NLRP3 signal in restraint stress-induced depigmentation mice. In conclusion, restraint stress promotes vitiligo-related depigmentation in mice via the activation of GR/MIF signaling pathway. The findings provide a theoretical basis for prevention and treatments of vitiligo with therapies of targeting GR, MIF, and OGG1.
Collapse
Affiliation(s)
- Nan Tang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiao-Ting Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Lun Wen
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Tian-Shan Liang
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xi-Ting Lv
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi-Lin Li
- Departments of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yan-Hua Wu
- Departments of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Beheshti F, Hosseini M, Bakhtiari-Dovvombaygi H, Salmani H, Ahmadabady S, Marefati N, Baghcheghi Y. Rosiglitazone attenuates amyloid beta and glial fibrillary acidic protein in the hippocampus and neuroinflammation associated learning and memory impairments in rats. Behav Brain Res 2023; 452:114549. [PMID: 37343837 DOI: 10.1016/j.bbr.2023.114549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE The aim of the current study was to investigate the beneficial effects of rosiglitazone (Rosi) on amyloid beta(Aβ) and glial fibrillary acidic protein (GFAP) in the hippocampus and neuroinflammation-associated learning and memory impairments in rats. MATERIALS AND METHODS The rats were grouped and treated as follows: (1) Control in which saline and vehicle were administered instead of LPS and Rosi respectively. (2) Lipopolysaccharide (LPS) group in which LPS was dissolved in saline and injected (1 mg/kg) intraperitoneally. Vehicle was administered instead of Rosi in this group. (3-5) LPS+ Rosi 1, LPS+ Rosi 3, and LPS+ Rosi 5 groups in them 1, 3, or 5 mg/kg of Rosi respectively was administered 30 min before LPS. The treatments were done for two weeks. In the first week, Rosi or its vehicle was injected 30 min before LPS. In the second week, the treatments were the same as the first week and behavioral tests were also carried out in the second week. The hippocampal tissues were finally detached for biochemical assessment. RESULTS The results showed that Rosi reversed increased levels of Aβ, GFAP, interleukin (IL)- 6, tumor necrosis factor-α (TNF-α), nitric oxide (NO) metabolites, and malondialdehyde (MDA) due to LPS injection. Rosi also reversed attenuating effects of LPS on IL-10 and thiol concentration and activities of catalase (CAT) and superoxide dismutase (SOD). In the Morris water maze test, the LPS group had a longer latency to find the platform while spent a shorter time spent in the target quadrant in the probe trial than the control group. In the passive avoidance test, the animals of the LPS group had a shorter delay to enter the dark chamber than the animals of the control group. Treatment with Rosi reversed these parameters. CONCLUSION The findings showed Rosi attenuated Aβ, GFAP, and oxidative stress in the hippocampus and neuroinflammation-associated learning and memory impairments in rats.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Bakhtiari-Dovvombaygi
- Nursing and Midwifery School, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salmani
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Somaieh Ahmadabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
6
|
Keledjian K, Makar T, Zhang C, Zhang J, Shim B, Davis H, Bryant J, Gerzanich V, Simard JM, Zhao RY. Correlation of HIV-Induced Neuroinflammation and Synaptopathy with Impairment of Learning and Memory in Mice with HAND. J Clin Med 2023; 12:5169. [PMID: 37629211 PMCID: PMC10455390 DOI: 10.3390/jcm12165169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Over 38 million people worldwide are living with HIV/AIDS, and more than half of them are affected by HIV-associated neurocognitive disorders (HAND). Such disorders are characterized by chronic neuroinflammation, neurotoxicity, and central nervous system deterioration, which lead to short- or long-term memory loss, cognitive impairment, and motor skill deficits that may show gender disparities. However, the underlying mechanisms remain unclear. Our previous study suggested that HIV-1 infection and viral protein R (Vpr) upregulate the SUR1-TRPM4 channel associated with neuroinflammation, which may contribute to HAND. The present study aimed to explore this relationship in a mouse model of HAND. This study employed the HIV transgenic Tg26 mouse model, comparing Tg26 mice with wildtype mice in various cognitive behavioral and memory tests, including locomotor activity tests, recognition memory tests, and spatial learning and memory tests. The study found that Tg26 mice exhibited impaired cognitive skills and reduced learning abilities compared to wildtype mice, particularly in spatial memory. Interestingly, male Tg26 mice displayed significant differences in spatial memory losses (p < 0.001), while no significant differences were identified in female mice. Consistent with our early results, SUR1-TRPM4 channels were upregulated in Tg26 mice along with glial fibrillary acidic protein (GFAP) and aquaporin 4 (AQP4), consistent with reactive astrocytosis and neuroinflammation. Corresponding reductions in neurosynaptic responses, as indicated by downregulation of Synapsin-1 (SYN1) and Synaptophysin (SYP), suggested synaptopathy as a possible mechanism underlying cognitive and motor skill deficits. In conclusion, our study suggests a possible relationship between SUR1-TRPM4-mediated neuroinflammation and synaptopathy with impairments of learning and memory in mice with HAND. These findings could help to develop new therapeutic strategies for individuals living with HAND.
Collapse
Affiliation(s)
- Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Tapas Makar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
| | - Bosung Shim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - Harry Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.K.); (T.M.); (B.S.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
- Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.Z.); (J.Z.)
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (H.D.); (J.B.)
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
8
|
Sarailoo M, Afshari S, Asghariazar V, Safarzadeh E, Dadkhah M. Cognitive Impairment and Neurodegenerative Diseases Development Associated with Organophosphate Pesticides Exposure: a Review Study. Neurotox Res 2022; 40:1624-1643. [PMID: 36066747 DOI: 10.1007/s12640-022-00552-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
A significant body of literature emphasizes the role of insecticide, particularly organophosphates (OPs), as the major environmental factor in the etiology of neurodegenerative diseases. This review aims to study the relationship between OP insecticide exposure, cognitive impairment, and neurodegenerative disease development. Human populations, especially in developing countries, are frequently exposed to OPs due to their extensive applications. The involvement of various signaling pathways in OP neurotoxicity are reported, but the OP-induced cognitive impairment and link between OP exposure and the pathophysiology of neurodegenerative diseases are not clearly understood. In the present review, we have therefore aimed to come to new conclusions which may help to find protective and preventive strategies against OP neurotoxicity and may establish a possible link between organophosphate exposure, cognitive impairment, and OP-induced neurotoxicity. Moreover, we discuss the findings obtained from animal and human research providing some support for OP-induced cognitive impairment and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Masoomeh Dadkhah
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
9
|
Polarization of Microglia and Its Therapeutic Potential in Sepsis. Int J Mol Sci 2022; 23:ijms23094925. [PMID: 35563317 PMCID: PMC9101892 DOI: 10.3390/ijms23094925] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, leaving the inflammation process without a proper resolution, leading to tissue damage and possibly sequelae. The central nervous system (CNS) is one of the first regions affected by the peripheral inflammation caused by sepsis, exposing the neurons to an environment of oxidative stress, triggering neuronal dysfunction and apoptosis. Sepsis-associated encephalopathy (SAE) is the most frequent sepsis-associated organ dysfunction, with symptoms such as deliriums, seizures, and coma, linked to increased mortality, morbidity, and cognitive disability. However, the current therapy does not avoid those patients’ symptoms, evidencing the search for a more optimal approach. Herein we focus on microglia as a prominent therapeutic target due to its multiple functions maintaining CNS homeostasis and its polarizing capabilities, stimulating and resolving neuroinflammation depending on the stimuli. Microglia polarization is a target of multiple studies involving nerve cell preservation in diseases caused or aggravated by neuroinflammation, but in sepsis, its therapeutic potential is overlooked. We highlight the peroxisome proliferator-activated receptor gamma (PPARγ) neuroprotective properties, its role in microglia polarization and inflammation resolution, and the interaction with nuclear factor-κB (NF-κB) and mitogen-activated kinases (MAPK), making PPARγ a molecular target for sepsis-related studies to come.
Collapse
|
10
|
Zhou J, Ni W, Ling Y, Lv X, Niu D, Zeng Y, Qiu Y, Si Y, Wang Z, Hu J. Human neural stem cells secretome inhibits lipopolysaccharide-induced neuroinflammation through modulating microglia polarization by activating PPAR-γ. Stem Cells Dev 2022; 31:369-382. [PMID: 35481777 DOI: 10.1089/scd.2022.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is one of the typical events in multiple neurodegenerative diseases, whereas microglia are the critical participants in the pathogenesis of neuroinflammation. Several studies suggest that neural stem cells (NSCs) present immunomodulatory benefits due to their paracrine products, which contain mounting trophic factors. In the current study, the anti-inflammatory effects of neural stem cells secretome (NSC-S) on lipopolysaccharide (LPS)-induced neuroinflammatory models were evaluated in vivo and the underlying mechanism was further investigated in vitro. It was revealed that NSC-S significantly attenuated the severity of LPS-induced behaviour disorders and inflammatory response in mice. In vitro studies found that NSC-S significantly promoted the polarization of microglia from proinflammatory M1 to anti-inflammatory M2 phenotype, and reduced the production of proinflammatory cytokines while elevated anti-inflammatory cytokines in BV2 cells. NSC-S promoted peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway activation. However, these effects of NSC-S were abrogated by PPAR-γ inhibitor GW9662. Notably, the fatty acid binding protein 5 (FABP5) in NSC-S may mediate PPAR-γ activation and inflammation remission. In summary, NSC-S promotes the regression of LPS-induced microglia-mediated inflammation through the PPAR-γ pathway. This function might be achieved via FABP5.
Collapse
Affiliation(s)
- Jiqin Zhou
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Wei Ni
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yating Ling
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Xiaorui Lv
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Dongdong Niu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Zeng
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yun Qiu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Si
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co.,Ltd, Ningbo, Zhejiang, China;
| | - Jiabo Hu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, 301, , Jiangsu, China, 212013;
| |
Collapse
|
11
|
Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol 2022; 59:3888-3912. [PMID: 35437700 DOI: 10.1007/s12035-022-02819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.
Collapse
|
12
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
13
|
Michalovicz LT, Kelly KA, Miller DB, Sullivan K, O'Callaghan JP. The β-adrenergic receptor blocker and anti-inflammatory drug propranolol mitigates brain cytokine expression in a long-term model of Gulf War Illness. Life Sci 2021; 285:119962. [PMID: 34563566 PMCID: PMC9047058 DOI: 10.1016/j.lfs.2021.119962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022]
Abstract
Aims: Growing evidence suggests that Gulf War Illness (GWI) is the result of underlying neuroimmune dysfunction. For example, previously we found that several GWI-relevant organophosphate acetylcholinesterase inhibitors produce heightened neuroinflammatory responses following subchronic exposure to stress hormone as a mimic of high physiological stress. The goal of the current study was to evaluate the potential for the β-adrenergic receptor inhibitor and anti-inflammatory drug, propranolol, to treat neuroinflammation in a novel long-term mouse model of GWI. Main methods: Adult male C57BL/6J mice received a subchronic exposure to corticosterone (CORT) at levels mimicking high physiological stress followed by exposure to the sarin surrogate, diisopropyl fluorophosphate (DFP). These mice were then re-exposed to CORT every other week for a total of five weeks, followed by a systemic immune challenge with lipopolysaccharide (LPS). Animals receiving the propranolol treatment were given a single dose (20 mg/kg, i.p.) either four or 11 days prior to the LPS challenge. The potential anti-neuroinflammatory effects of propranolol were interrogated by analysis of cytokine mRNA expression. Key findings: We found that our long-term GWI model produces a primed neuroinflammatory response to subsequent immune challenge that is dependent upon GWI-relevant organophosphate exposure. Propranolol treatment abrogated the elaboration of inflammatory cytokine mRNA expression in the brain instigated in our model, having no treatment effects in non-DFP exposed groups. Significance: Our results indicate that propranolol may be a promising therapy for GWI with the potential to treat the underlying neuroinflammation associated with the illness.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
14
|
Peroxisome proliferator-activated receptor gamma: a novel therapeutic target for cognitive impairment and mood disorders that functions via the regulation of adult neurogenesis. Arch Pharm Res 2021; 44:553-563. [PMID: 34138417 DOI: 10.1007/s12272-021-01333-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The proliferation, differentiation, and migration of neural precursor cells occur not only during embryonic development but also within distinct regions of the adult brain through the process of adult neurogenesis. As neurogenesis can potentially regulate brain cognition and neuronal plasticity, the factors that enhance neurogenesis can be attractive therapeutic targets for improving cognitive function and regulating neurodegenerative and neuropsychiatric disorders, including affective and mood disorders. Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated transcription factors belonging to the nuclear receptor superfamily. PPARγ is a target for insulin sensitizers and plays an essential role in regulating various metabolic processes, including adipogenesis and glucose homeostasis. Interestingly, evidence demonstrates the role of PPARγ activation in regulating neurogenesis. The pharmacological activation of PPARγ using specific ligands increases the proliferation and differentiation of neural stem cells in specific brain regions, including the hippocampus, and prevents neurodegeneration and improves cognition and anxiety/depression-like behaviors in animal models. We summarize here recent reports on the role of PPARγ in adult neurogenesis, as well as the mechanisms involved, and suggest that PPARγ can serve as a potential therapeutic target for neurological and/or neurodegenerative diseases.
Collapse
|