1
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
2
|
Uddin MM, Chen Z, Xu F, Huang L. Physiological and Cellular Ultrastructural Responses of Sesuvium portulacastrum under Cd Stress Grown Hydroponically. PLANTS (BASEL, SWITZERLAND) 2023; 12:3381. [PMID: 37836122 PMCID: PMC10574335 DOI: 10.3390/plants12193381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023]
Abstract
This study aimed to investigate the physiological and cellular mechanisms of Sesuvium portulacastrum under heavy metal stress to evaluate possible tolerance and adaptation mechanisms in a metal-polluted environment. The physiological and cellular ultrastructural responses of S. portulacastrum were studied hydroponically under exposure to a range of cadmium (Cd) concentrations (50 µM to 600 µM) for 28 days. The activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), changes in chlorophyll, and cellular ultrastructural content were examined. There was no significant difference in chlorophyll content in the leaf under the stress of 300 μM, but 400 μM and 600 μM Cd stress showed significantly decreased chlorophyll content. The SOD activity indicates an increase under the Cd stress of 100 μM for leaves, 300 μM for stems, and 50 μM for roots; after that, the SOD activity gradually decreased with increasing Cd concentrations. But POD activity was considerably increased with increasing Cd stress. CAT activity showed a gradual increase in concentrations until 300 μM of Cd stress and then decreased sharply in roots, stems, and leaf tissues. Cd stress had a considerable impact on the structure of the roots, stems, and leaves cells, such as distorted and thinner cell walls and the deformation of chloroplasts, mitochondria, and other organelles. Therefore, the increased number of nucleolus in the cell nucleus suggests that cells may be able to maintain their protein synthesis in a stressful environment. This study concludes that SOD is the dominant antioxidant enzyme activity during low Cd toxicity (<100 μM), while POD is the dominant enzyme activity during higher Cd toxicity (>100 μM).
Collapse
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Zhenfang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Fuliu Xu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
3
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y, Li Z. Effects of 24-Epibrassinolide, melatonin and their combined effect on cadmium tolerance in Primula forbesii Franch. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115217. [PMID: 37406607 DOI: 10.1016/j.ecoenv.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
This study aimed to investigate the interaction between 24-Epibrassinolide (EBR) and melatonin (MT) and their effects on cadmium (Cd)-stressed Primula forbesii Franch. P. forbesii seedlings were hydroponically acclimatized at 6-7 weeks, then treated with Cd (200 μmol L-1), 24-EBR (0.1 μmol L-1), and MT (100 μmol L-1) after two weeks. Cd stress significantly reduced crown width, shoot, root length, shoot fresh weight, and fresh and dry root weights. Herein, 24-EBR, MT, and 24-EBR+MT treatments attenuated the growth inhibition caused by Cd stress and improved the morphology, growth indexes, and ornamental characteristics of P. forbesii under Cd stress. 24-EBR had the best effect by effectively alleviating Cd stress and promoting plant growth and development. 24-EBR significantly increased all growth parameters compared to Cd treatment. In addition, 24-EBR significantly improved the gas exchange parameters, activities of antioxidant enzymes, and the cycle efficiency of AsA-GSH. Furthermore, 24-EBR increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) by 127.29%, 61.31%, 61.22%, and 51.04%, respectively, compared with the Cd treatment. Therefore, 24-EBR removed the reactive oxygen species produced by stress, thus protecting plants against stress damage. These results indicate that 24-EBR can effectively enhance the tolerance of P. forbesii to Cd stress.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuolin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y. Differential physiological responses and tolerance to potentially toxic elements in Primula forbesii Franch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67200-67216. [PMID: 37106307 DOI: 10.1007/s11356-023-27259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/23/2023] [Indexed: 05/25/2023]
Abstract
Environmental pollution caused by potentially toxic elements (PTEs) has become a global problem that endangers environmental sustainability due to industrial, agricultural, and urban pollution. Primula forbesii Franch. (a synonym of Primula filipes G. Watt.) is a biennial flower native to China with excellent stress resistance and ornamental value. In this study, we examined the phenotypic traits, growth indexes, and physiological properties of P. forbesii in response to five representative PTEs (Cd, Ni, Cr(III), Cu, and Zn) under hydroponic culture conditions. High concentrations of Zn and Cr had little effect on the growth and physiological properties of P. forbesii, indicating that the species has strong tolerance to Zn and Cr stress. Alternatively, high concentrations of Cd, Ni, and Cu seriously affected plant growth and development, resulting in leaf chlorosis and even death, and therefore may have a serious negative impact on the growth of P. forbesii. However, activity levels of some antioxidant enzymes and osmotic regulatory substances remained high, indicating that P. forbesii resisted PTE stress by regulating physiological and biochemical metabolism to a certain extent. Furthermore, principal component analysis and membership function were used to comprehensively evaluate P. forbesii resistance to PTEs. These analyses revealed that P. forbesii exhibits distinct sensitivities and physiological responses to different PTEs and suggested that the resistance to five PTEs in decreasing order is Zn > Cr > Cd > Cu > Ni. These results provide a theoretical basis for the future application of P. forbesii in environments with PTE pollution and may expand its practical utilization.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
5
|
Deng M, Wang S, Huang H, Ye D, Zhang X, Wang Y, Zheng Z, Liu T, Li T, Yu H. Hydrogen peroxide mediates cadmium accumulation in the root of a high cadmium-accumulating rice (Oryza sativa L.) line. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130969. [PMID: 36860050 DOI: 10.1016/j.jhazmat.2023.130969] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) is a vital signaling molecule in response to cadmium (Cd) stress in plants. However, the role of H2O2 on Cd accumulation in root of different Cd-accumulating rice lines remains unclear. Exogenous H2O2 and 4-hydroxy-TEMPO (H2O2 scavenger) were applied to investigate the physiological and molecular mechanisms of H2O2 on Cd accumulation in the root of a high Cd-accumulating rice line Lu527-8 through hydroponic experiments. Interestingly, it was found Cd concentration in the root of Lu527-8 increased significantly when exposed to exogenous H2O2, while reduced significantly when exposed to 4-hydroxy-TEMPO under Cd stress, proving the role of H2O2 in regulating Cd accumulation in Lu527-8. Lu527-8 showed more Cd and H2O2 accumulation in the roots, along with more Cd accumulation in cell wall and soluble fraction, than the normal rice line Lu527-4. In particular, more pectin accumulation, especially low demethylated pectin, was observed in the root of Lu527-8 when exposed to exogenous H2O2 under Cd stress, resulting in more negative functional groups with greater capacity to binding Cd in the root cell wall of Lu527-8. It indicated that H2O2-induced cell wall modification and vacuolar compartmentalization contributes greatly to more Cd accumulation in the root of the high Cd-accumulating rice line.
Collapse
Affiliation(s)
- Mingwei Deng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
6
|
Effect of Fungal Endophyte Epichloë bromicola Infection on Cd Tolerance in Wild Barley ( Hordeum brevisubulatum). J Fungi (Basel) 2022; 8:jof8040366. [PMID: 35448597 PMCID: PMC9026929 DOI: 10.3390/jof8040366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Hydroponic Hordeum brevisubulatum (wild barley) was used as material in the greenhouse to study the effects of endophyte infection on plant growth, Cd absorption and transport, subcellular distribution, and Cd chemical forms under CdCl2 stress. Endophytic fungi respond positively to chlorophyll content and photosynthetic efficiency under Cd stress. The order of Cd absorption in different parts of the plant was: roots > stems > leaves. Endophyte infection increased the plant’s absorption and transport of Cd while causing a significant difference in the stem, which was associated with the distribution density of endophyte hyphae. The proportion of organelle Cd in endophyte-infected wild barley was significantly higher, which facilitated more Cd transport to aboveground. Cd stress showed a slight effect on the chemical forms of Cd in leaves. The proportion of phosphate, oxalate, and residual Cd increased in the stem. Cd existed in the form of inorganic salt, organic acid, pectin, and protein in roots. Endophyte infection reduced the Cd content of the more toxic chemical forms to protect the normal progress of plant physiological functions. Therefore, the isolation of cell walls and vacuoles is a key mechanism for plant Cd tolerance and detoxification. As endophyte infections have more ability to absorb Cd in plants, H. brevisubulatum−Epichloë bromicola symbionts can improve heavy metal contaminated soil and water.
Collapse
|
7
|
Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the oldest and most serious environmental problems in the world. The increasingly widespread salinization of soils and water resources represents a growing threat to agriculture around the world. A strategy to cope with this problem is to cultivate salt-tolerant crops and, therefore, it is necessary to identify plant species that are naturally adapted to high-salinity conditions. In this review, we focus our attention on some plant species that can be considered among the most representative halophytes of the Mediterranean region; they can be potential resources, such as new or relatively new vegetable crops, to produce raw or minimally processed (or ready-to-eat) products, considering their nutritional properties and nutraceuticals. The main biological and agronomic characteristics of these species and the potential health risks due to mycotoxigenic fungi have been analyzed and summarized in a dedicated section. The objective of this review is to illustrate the main biological and agronomical characteristics of the most common halophytic species in the Mediterranean area, which could expand the range of leafy vegetables on the market.
Collapse
|