1
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
2
|
Jo SH, Jeon HJ, Song WS, Lee JS, Kwon JE, Park JH, Kim YR, Kim MG, Baek JH, Kwon SY, Kim JS, Yang YH, Kim YG. Unveiling the inhibition mechanism of Clostridioides difficile by Bifidobacterium longum via multiomics approach. Front Microbiol 2023; 14:1293149. [PMID: 38029200 PMCID: PMC10663266 DOI: 10.3389/fmicb.2023.1293149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.
Collapse
Affiliation(s)
- Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Baker R, Hontecillas R. Modulation of colonic immunometabolic responses during Clostridioides difficile infection ameliorates disease severity and inflammation. Sci Rep 2023; 13:14708. [PMID: 37679643 PMCID: PMC10485029 DOI: 10.1038/s41598-023-41847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, and its clinical symptoms can span from asymptomatic colonization to pseudomembranous colitis and even death. The current standard of care for CDI is antibiotic treatment to achieve bacterial clearance; however, 15 to 35% of patients experience recurrence after initial response to antibiotics. We have conducted a comprehensive, global colonic transcriptomics analysis of a 10-day study in mice to provide new insights on the local host response during CDI and identify novel host metabolic mechanisms with therapeutic potential. The analysis indicates major alterations of colonic gene expression kinetics at the acute infection stage, that are restored during the recovery phase. At the metabolic level, we observe a biphasic response pattern characterized by upregulated glycolytic metabolism during the peak of inflammation, while mitochondrial metabolism predominates during the recovery/healing stage. Inhibition of glycolysis via 2-Deoxy-D-glucose (2-DG) administration during CDI decreases disease severity, protects from mortality, and ameliorates colitis in vivo. Additionally, 2-DG also protects intestinal epithelial cells from C. difficile toxin damage, preventing loss of barrier integrity and secretion of proinflammatory mediators. These data postulate the pharmacological targeting of host immunometabolic pathways as novel treatment modalities for CDI.
Collapse
Affiliation(s)
| | | | | | | | - Ryan Baker
- NIMML Institute, Blacksburg, VA, 24060, USA
| | | |
Collapse
|
4
|
Powers DA, Jenior ML, Kolling GL, Papin JA. Network analysis of toxin production in Clostridioides difficile identifies key metabolic dependencies. PLoS Comput Biol 2023; 19:e1011076. [PMID: 37099624 PMCID: PMC10166488 DOI: 10.1371/journal.pcbi.1011076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.
Collapse
Affiliation(s)
- Deborah A. Powers
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
5
|
Bustin KA, Abbas A, Wang X, Abt MC, Zackular JP, Matthews ML. Characterizing metabolic drivers of Clostridioides difficile infection with activity-based hydrazine probes. Front Pharmacol 2023; 14:1074619. [PMID: 36778002 PMCID: PMC9908766 DOI: 10.3389/fphar.2023.1074619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Many enzymes require post-translational modifications or cofactor machinery for primary function. As these catalytically essential moieties are highly regulated, they act as dual sensors and chemical handles for context-dependent metabolic activity. Clostridioides difficile is a major nosocomial pathogen that infects the colon. Energy generating metabolism, particularly through amino acid Stickland fermentation, is central to colonization and persistence of this pathogen during infection. Here using activity-based protein profiling (ABPP), we revealed Stickland enzyme activity is a biomarker for C. difficile infection (CDI) and annotated two such cofactor-dependent Stickland reductases. We structurally characterized the cysteine-derived pyruvoyl cofactors of D-proline and glycine reductase in C. difficile cultures and showed through cofactor monitoring that their activity is regulated by their respective amino acid substrates. Proline reductase was consistently active in toxigenic C. difficile, confirming the enzyme to be a major metabolic driver of CDI. Further, activity-based hydrazine probes were shown to be active site-directed inhibitors of proline reductase. As such, this enzyme activity, via its druggable cofactor modality, is a promising therapeutic target that could allow for the repopulation of bacteria that compete with C. difficile for proline and therefore restore colonization resistance against C. difficile in the gut.
Collapse
Affiliation(s)
- Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Arwa Abbas
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
7
|
Michel AM, Borrero-de Acuña JM, Molinari G, Ünal CM, Will S, Derksen E, Barthels S, Bartram W, Schrader M, Rohde M, Zhang H, Hoffmann T, Neumann-Schaal M, Bremer E, Jahn D. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology. Environ Microbiol 2022; 24:1499-1517. [PMID: 35106888 DOI: 10.1111/1462-2920.15925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrheas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt- stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate (DMSP) restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically-identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of L-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annika-Marisa Michel
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - José Manuel Borrero-de Acuña
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Universidad de Sevilla, Facultad de Biología, Departamento de Microbiología, Av. de la Reina Mercedes, n° 6, CP, 41012, Sevilla, Spain
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Can Murat Ünal
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine Will
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elisabeth Derksen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Barthels
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Wiebke Bartram
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michel Schrader
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hao Zhang
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,School of Life Science and Technology, Changchun University of Science and Technology, No. 7186 Weixing Road, 130022, Changchun, China
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
8
|
Aguirre AM, Sorg JA. Gut associated metabolites and their roles in Clostridioides difficile pathogenesis. Gut Microbes 2022; 14:2094672. [PMID: 35793402 PMCID: PMC9450991 DOI: 10.1080/19490976.2022.2094672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The nosocomial pathogen Clostridioides difficile is a burden to the healthcare system. Gut microbiome disruption, most commonly by broad-spectrum antibiotic treatment, is well established to generate a state that is susceptible to CDI. A variety of metabolites produced by the host and/or gut microbiota have been shown to interact with C. difficile. Certain bile acids promote/inhibit germination while other cholesterol-derived compounds and amino acids used in the Stickland metabolic pathway affect growth and CDI colonization. Short chain fatty acids maintain intestinal barrier integrity and a myriad of other metabolic compounds are used as nutritional sources or used by C. difficile to inhibit or outcompete other bacteria in the gut. As the move toward non-antibiotic CDI treatment takes place, a deeper understanding of interactions between C. difficile and the host's gut microbiome and metabolites becomes more relevant.
Collapse
Affiliation(s)
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Jin Y, Fan Y, Sun H, Zhang Y, Wang H. Transcriptome Analysis Reveals Catabolite Control Protein A Regulatory Mechanisms Underlying Glucose-Excess or -Limited Conditions in a Ruminal Bacterium, Streptococcus bovis. Front Microbiol 2021; 12:767769. [PMID: 34867900 PMCID: PMC8637274 DOI: 10.3389/fmicb.2021.767769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Ruminants may suffer from rumen acidosis when fed with high-concentrate diets due to the higher proliferation and overproduction of lactate by Streptococcus bovis. The catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase (ldh) and pyruvate formate-lyase (pfl) in S. bovis, but its role in response to different carbon concentrations remains unclear. To characterize the regulatory mechanisms of CcpA in S. bovis S1 at different levels of carbon, herein, we analyzed the transcriptomic and physiological characteristics of S. bovis S1 and its ccpA mutant strain grown in glucose-excess and glucose-limited conditions. A reduced growth rate and a shift in fermentation pattern from homofermentation to heterofermentation were observed under glucose-limited condition as compared to glucose-excess condition, in S. bovis S1. Additionally, the inactivation of ccpA significantly affected the growth and end metabolites in both conditions. For the glycolytic intermediate, fructose 1,6-bisphosphate (FBP), the concentration significantly reduced at lower glucose conditions; its concentration decreased significantly in the ccpA mutant strain. Transcriptomic results showed that about 46% of the total genes were differentially transcribed between the wild-type strain and ccpA mutant strain grown in glucose-excess conditions; while only 12% genes were differentially transcribed in glucose-limited conditions. Different glucose concentrations led to the differential expression of 38% genes in the wild-type strain, while only half of these were differentially expressed in the ccpA-knockout strain. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the substrate glucose concentration significantly affected the gene expression in histidine metabolism, nitrogen metabolism, and some carbohydrate metabolism pathways. The deletion of ccpA affected several genes involved in carbohydrate metabolism, such as glycolysis, pyruvate metabolism, fructose and mannose metabolism, as well as in fatty acid biosynthesis pathways in bacteria grown in glucose-excess conditions; this effect was attenuated under glucose-limited conditions. Overall, these findings provide new information on gene transcription and metabolic mechanisms associated with substrate glucose concentration and validate the important role of CcpA in the regulation of carbon metabolism in S. bovis S1 at differential glucose availability.
Collapse
Affiliation(s)
- Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaotian Fan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hua Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Arrieta-Ortiz ML, Immanuel SRC, Turkarslan S, Wu WJ, Girinathan BP, Worley JN, DiBenedetto N, Soutourina O, Peltier J, Dupuy B, Bry L, Baliga NS. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe 2021; 29:1709-1723.e5. [PMID: 34637780 PMCID: PMC8595754 DOI: 10.1016/j.chom.2021.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.
Collapse
Affiliation(s)
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brintha P Girinathan
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries anaérobies, Institut Pasteur, Université de Paris, UMR CNRS 2001, Paris 75015, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Tiffany CR, Lee JY, Rogers AWL, Olsan EE, Morales P, Faber F, Bäumler AJ. The metabolic footprint of Clostridia and Erysipelotrichia reveals their role in depleting sugar alcohols in the cecum. MICROBIOME 2021; 9:174. [PMID: 34412707 PMCID: PMC8375055 DOI: 10.1186/s40168-021-01123-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood. METHODS Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa. Causality was investigated by engrafting germ-free or antibiotic-treated mice with complex or defined microbial communities. RESULTS We noted that a depletion of Clostridia and Erysipelotrichia from the gut microbiota triggered by antibiotic treatment was associated with an increase in the cecal concentration of sugar acids and sugar alcohols (polyols). Notably, when we inoculated germ-free mice with a defined microbial community of 14 Clostridia and 3 Erysipelotrichia isolates, we observed the inverse, with a marked decrease in the concentrations of sugar acids and polyols in cecal contents. The carbohydrate footprint produced by the defined microbial community was similar to that observed in gnotobiotic mice receiving a cecal microbiota transplant from conventional mice. Supplementation with sorbitol, a polyol used as artificial sweetener, increased cecal sorbitol concentrations in antibiotic-treated mice, which was abrogated after inoculation with a Clostridia isolate able to grow on sorbitol in vitro. CONCLUSIONS We conclude that consumption of sugar alcohols by Clostridia and Erysipelotrichia species depletes these metabolites from the intestinal lumen during homeostasis. Video abstract.
Collapse
Affiliation(s)
- Connor R Tiffany
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andrew W L Rogers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Department of Biological Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Present Address: Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Josef-Schneider-Street 2/D15, 97080, Würzburg, Germany
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|