1
|
Davidson A, Kelly PH, Davis J, Major M, Moïsi JC, Stark JH. Historical Summary of Tick and Animal Surveillance Studies for Lyme Disease in Canada, 1975-2023: A Scoping Review. Zoonoses Public Health 2025; 72:9-22. [PMID: 39575920 PMCID: PMC11695702 DOI: 10.1111/zph.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Lyme disease (LD) is caused by infection with the bacteria Borrelia burgdorferi sensu lato (Bb) through the bite of an infected Ixodes spp. tick. LD has emerged as a public and animal health issue in Canada, with human incidence increasing in part due to the expansion of Ixodes scapularis ticks and their vertebrate hosts. We sought to provide the first comprehensive summary of published tick and animal surveillance literature regarding LD in Canada to describe changes in LD over time. METHODS We conducted a review to identify peer-reviewed LD-focused tick, mammal, and bird surveillance articles in three online databases between 1975 and 2023. Data on study characteristics, data collection years, and surveillance methods and findings were extracted. Descriptive statistics were reported. RESULTS In total, 115 studies were included for review. Results showed an increase in published surveillance literature and changes in study approaches and their provincial distribution over time, coinciding with increased LD cases in Canada. Seventy-four studies were published after 2014 when Canada's Federal Framework on Lyme Disease Act was introduced, and two-thirds of these studies focused on tick surveillance only. Overall, 58% of studies involved surveillance in Ontario but increases in all other provinces were observed after 2009. CONCLUSIONS Observed changes in five decades of LD-related tick and animal surveillance literature helps document the historical rapid spread of Ixodes and Bb across provinces. This can provide lessons for other regions that may transition from emerging to endemic status for LD in the coming years.
Collapse
Affiliation(s)
| | - Patrick H. Kelly
- Vaccines and Antivirals Medical AffairsPfizer Inc.New YorkNew YorkUSA
| | - Julie Davis
- Life SciencesClarivate AnalyticsChandlerArizonaUSA
| | - Maria Major
- Vaccines Medical AffairsPfizer Canada ULCKirklandQuebecCanada
| | | | - James H. Stark
- Vaccines and Antivirals Medical AffairsPfizer Inc.CambridgeMassachusettsUSA
| |
Collapse
|
2
|
Couloigner I, Dizon C, Mak S, Dykstra E, Fraser E, Morshed M, Iwasawa S, Checkley S, Cork S. Mapping Ixodes pacificus and Borrelia burgdorferi Habitat Suitability Under Current and Mid-Century Climate in the Pacific Northwest (BC and WA). Vector Borne Zoonotic Dis 2025; 25:49-59. [PMID: 39092518 DOI: 10.1089/vbz.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Introduction: Lyme disease is the most common vector-borne disease in the United States and Canada. The primary vector for the causative agent of Lyme disease, Borrelia burgdorferi, in the Pacific Northwest is the western blacklegged tick, Ixodes pacificus. Materials and Methods: Using active tick surveillance data from British Columbia, Canada, and Washington State, USA, habitat suitability models using MaxEnt (maximum entropy) were developed for I. pacificus to predict its current and mid-century geographic distributions. Passive surveillance data both from BC and WA were also visualized. Results: According to the constructed models, the number of frost-free days during the winter is the most relevant predictor of its habitat suitability, followed by summer climate moisture, ecoregion, and mean minimum fall temperature. The ensemble geographic distribution map predicts that the coastal regions and inland valleys of British Columbia and the Puget Lowlands of Washington State provide the most suitable habitats for I. pacificus. The density map of ticks submitted from passive surveillance data was overlaid on the current distribution map and demonstrates the correlation between numbers of submissions and habitat suitability. Mid-century projections, based on current climate change predictions, indicate a range expansion, especially of low and moderate suitability, from current distribution. Regarding Lyme disease risk, I. pacificus identified from both active and passive surveillance and tested positive for B. burgdorferi were found to be in areas of moderate to very high suitability for I. pacificus. Conclusion: According to developed models, the total suitable habitat area for I. pacificus will expand in the interior regions of British Columbia and Washington State. However, the risk remains small given relatively low infection rates among I. pacificus. Further studies are required to better understand how this might change in the future.
Collapse
Affiliation(s)
| | - Carl Dizon
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | - Erin Fraser
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Stefan Iwasawa
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Sylvia Checkley
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Susan Cork
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
3
|
Fellin E, Varin M, Millien V. Outdoor worker knowledge of ticks and Lyme disease in Québec. Zoonoses Public Health 2024; 71:855-867. [PMID: 38967431 DOI: 10.1111/zph.13167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIMS Lyme disease is a well-known occupational risk across North America caused by exposure to Borrelia burgdorferi via blacklegged ticks (Ixodes scapularis). As the geographic range of B. burgdorferi advances with the increasing distribution of blacklegged ticks, more outdoor workers are at risk of contracting Lyme disease. In this study, we examined the demography and personal perceptions of outdoor workers within one framework to better determine the overall risk for those working outdoors. METHODS AND RESULTS We analysed outdoor worker knowledge of ticks and of behaviours that can prevent tick bites and Lyme disease. We then compared these risk perceptions of individuals across age, sex, education, and industry, as well as time spent outdoors. We tested the hypothesis that the risk perception of an individual and their knowledge of Lyme disease transmission was dependent on their demographics, experience in their job, and the region in which they spend time outdoors. We estimated a knowledge-based risk score based on individuals' answers to a questionnaire on risk perception given to voluntary participants who work outdoors. Those who had higher risk scores were more at risk. We found that knowledge-based risk scores were correlated with geographic risk levels and with the number of hours per day spent outdoors. Those who work longer hours and who work in areas with mid-level risk had higher risk scores. Those who spend more time outdoors recreationally had lower risk scores. CONCLUSIONS Further examination and acknowledgment of the reasoning behind why these factors are affecting workers' risks must be considered to recognize that it is not necessarily demographics or geographically high-risk areas that affect an individual's risk. Workers' knowledge of these risks is affected by several variables that should be taken into consideration when implementing safety measures and awareness programs.
Collapse
Affiliation(s)
- Erica Fellin
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Mathieu Varin
- Centre d'enseignement et de Recherche en Foresterie (CERFO), Québec City, Québec, Canada
| | - Virginie Millien
- Department of Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
4
|
Kelly PH, Tan Y, Yan Q, Shafquat M, Davidson A, Xu Q, Major M, Halsby K, Grajales A, Davis J, Angulo FJ, Moïsi JC, Stark JH. Borrelia burgdorferi sensu lato prevalence in Ixodes scapularis from Canada: A thirty-year summary and meta-analysis (1990-2020). Acta Trop 2024; 256:107268. [PMID: 38782109 DOI: 10.1016/j.actatropica.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Borrelia burgdorferi sensu lato (Bb) are a complex of bacteria genospecies that can cause Lyme disease (LD) in humans after the bite of an infected Ixodes spp. vector tick. In Canada, incidence of LD is increasing in part due to the rapid geographic expansion of Ixodes scapularis across the southcentral and eastern provinces. To better understand temporal and spatial (provincial) prevalence of Bb infection of I. scapularis and how tick surveillance is utilized in Canada to assess LD risk, a literature review was conducted. Tick surveillance studies published between January 1975 to November 2023, that measured the prevalence of Bb in I. scapularis via "passive surveillance" from the public citizenry or "active surveillance" by drag or flag sampling of host-seeking ticks in Canada were included for review. Meta-analyses were conducted via random effects modeling. Forty-seven articles, yielding 26 passive and 28 active surveillance studies, met inclusion criteria. Mean durations of collection for I. scapularis were 2.1 years in active surveillance studies (1999-2020) and 5.5 years by passive surveillance studies (1990-2020). Collectively, data were extracted on 99,528 I. scapularis nymphs and adults collected between 1990-2020 across nine provinces, including Newfoundland & Labrador (33 ticks) and Alberta (208 ticks). More studies were conducted in Ontario (36) than any other province. Across nine provinces, the prevalence of Bb infection in I. scapularis collected by passive surveillance was 14.6% with the highest prevalence in Nova Scotia at 20.5% (minimum studies >1). Among host-seeking I. scapularis collected via active surveillance, Bb infection prevalence was 10.5% in nymphs, 31.9% in adults, and 23.8% across both life stages. Host-seeking I. scapularis nymphs and adults from Ontario had the highest Bb prevalence at 13.6% and 34.8%, respectively. Between 2007-2019, Bb infection prevalence in host-seeking I. scapularis was positively associated over time (p<0.001) which is concurrent with a ∼25-fold increase in the number of annually reported LD cases in Canada over the same period. The prevalence of Bb-infection in I. scapularis has rapidly increased over three decades as reported by tick surveillance studies in Canada which coincides with increasing human incidence for LD. The wide-ranging distribution and variable prevalence of Bb-infected I. scapularis ticks across provinces demonstrates the growing need for long-term standardized tick surveillance to monitor the changing trends in I. scapularis populations and best define LD risk areas in Canada.
Collapse
Affiliation(s)
- Patrick H Kelly
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA.
| | - Ye Tan
- Medical Affairs, Evidence Generation Statistics Pfizer Inc., Cambridge, MA, USA
| | - Qi Yan
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Collegeville, PA, USA
| | - Madiha Shafquat
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Alexander Davidson
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Qiaoyi Xu
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., New York City, NY, USA
| | - Maria Major
- Vaccines Medical Affairs Pfizer Canada ULC, Kirkland, QC, Canada
| | - Kate Halsby
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Walton Oaks, Surrey, UK
| | - Ana Grajales
- Vaccines Medical Affairs Pfizer Canada ULC, Kirkland, QC, Canada
| | - Julie Davis
- Life Sciences, Clarivate Analytics, 3133 W. Frye Road Suite 401, Chandler, AZ, USA
| | - Frederick J Angulo
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Collegeville, PA, USA
| | - Jennifer C Moïsi
- Medical Affairs, Vaccines and Antivirals Pfizer Inc., Paris, France
| | - James H Stark
- Medical Affairs, Vaccines and Antivirals, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
5
|
Logan JJ, Knudby A, Leighton PA, Talbot B, McKay R, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Ixodes scapularis density and Borrelia burgdorferi prevalence along a residential-woodland gradient in a region of emerging Lyme disease risk. Sci Rep 2024; 14:13107. [PMID: 38849451 PMCID: PMC11161484 DOI: 10.1038/s41598-024-64085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.
Collapse
Affiliation(s)
- James J Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Anders Knudby
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Patrick A Leighton
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Roman McKay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Justine I Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Logan JJ, Sawada M, Knudby A, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Knowledge, protective behaviours, and perception of Lyme disease in an area of emerging risk: results from a cross-sectional survey of adults in Ottawa, Ontario. BMC Public Health 2024; 24:867. [PMID: 38509528 PMCID: PMC10956326 DOI: 10.1186/s12889-024-18348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The number of Lyme disease risk areas in Canada is growing. In regions with emerging tick populations, it is important to emphasize peridomestic risk and the importance of protective behaviours in local public health communication. This study aims to identify characteristics associated with high levels of Lyme disease knowledge and adoption of protective behaviours among residents in the Ottawa, Ontario region. METHODS A geographically stratified web survey was conducted in November 2020 (n = 2018) to determine knowledge, attitudes, and practices regarding Lyme disease among adult residents. Responses were used to calculate: (i) composite scores for knowledge and adoption of protective practices; and (ii) an exposure risk index based on reported activity in woodlands during the spring-to-fall tick exposure risk period. RESULTS 60% of respondents had a high knowledge of Lyme disease, yet only 14% indicated they often use five or more measures to protect themselves. Factors strongly associated with a high level of Lyme disease knowledge included being 55 or older (Odds Ratio (OR) = 2.04), living on a property with a yard (OR = 3.22), having a high exposure index (OR = 1.59), and knowing someone previously infected with Lyme disease (OR = 2.05). Strong associations with the adoption of a high number of protective behaviours were observed with membership in a non-Indigenous racialized group (OR = 1.70), living on a property with a yard (OR = 2.37), previous infection with Lyme disease (OR = 2.13), prior tick bite exposure (OR = 1.62), and primarily occupational activity in wooded areas (OR = 2.31). CONCLUSIONS This study highlights the dynamics between Lyme disease knowledge, patterns of exposure risk awareness, and vigilance of personal protection in a Canadian region with emerging Lyme disease risk. Notably, this study identified gaps between perceived local risk and protective behaviours, presenting opportunities for targeted enhanced communication efforts in areas of Lyme disease emergence.
Collapse
Affiliation(s)
- James J Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Michael Sawada
- Laboratory for Applied Geomatics and GIS Science (LAGGISS), Department of Geography, Environment & Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Anders Knudby
- Department of Geography, Environment & Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Justine I Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Guillot C, Aenishaenslin C, Acheson ES, Koffi J, Bouchard C, Leighton PA. Spatial multi-criteria decision analysis for the selection of sentinel regions in tick-borne disease surveillance. BMC Public Health 2024; 24:294. [PMID: 38267914 PMCID: PMC10809750 DOI: 10.1186/s12889-024-17684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The implementation of cost-effective surveillance systems is essential for tracking the emerging risk of tick-borne diseases. In Canada, where Lyme disease is a growing public health concern, a national sentinel surveillance network was designed to follow the epidemiological portrait of this tick-borne disease across the country. The surveillance network consists of sentinel regions, with active drag sampling carried out annually in all regions to assess the density of Ixodes spp. ticks and prevalence of various tick-borne pathogens in the tick population. The aim of the present study was to prioritize sentinel regions by integrating different spatial criteria relevant to the surveillance goals. METHODS We used spatially-explicit multi-criteria decision analyses (MCDA) to map priority areas for surveillance across Canada, and to evaluate different scenarios using sensitivity analyses. Results were shared with stakeholders to support their decision making for the selection of priority areas to survey during active surveillance activities. RESULTS Weights attributed to criteria by decision-makers were overall consistent. Sensitivity analyses showed that the population criterion had the most impact on rankings. Thirty-seven sentinel regions were identified across Canada using this systematic and transparent approach. CONCLUSION This novel application of spatial MCDA to surveillance network design favors inclusivity of nationwide partners. We propose that such an approach can support the standardized planning of spatial design of sentinel surveillance not only for vector-borne disease BDs, but more broadly for infectious disease surveillance where spatial design is an important component.
Collapse
Affiliation(s)
- C Guillot
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada.
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada.
| | - C Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| | - E S Acheson
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - J Koffi
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - C Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - P A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Murison K, Wilson CH, Clow KM, Gasmi S, Hatchette TF, Bourgeois AC, Evans GA, Koffi JK. Epidemiology and clinical manifestations of reported Lyme disease cases: Data from the Canadian Lyme disease enhanced surveillance system. PLoS One 2023; 18:e0295909. [PMID: 38100405 PMCID: PMC10723709 DOI: 10.1371/journal.pone.0295909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Lyme disease cases reported in seven Canadian provinces from 2009 to 2019 through the Lyme Disease Enhanced Surveillance System are described herein by demographic, geography, time and season. The proportion of males was greater than females. Bimodal peaks in incidence were observed in children and older adults (≥60 years of age) for all clinical signs except cardiac manifestations, which were more evenly distributed across age groups. Proportions of disease stages varied between provinces: Atlantic provinces reported mainly early Lyme disease, while Ontario reported equal proportions of early and late-stage Lyme disease. Early Lyme disease cases were mainly reported between May through November, whereas late Lyme disease were reported in December through April. Increased awareness over time may have contributed to a decrease in the proportion of cases reporting late disseminated Lyme disease. These analyses help better describe clinical features of reported Lyme disease cases in Canada.
Collapse
Affiliation(s)
- Kiera Murison
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Christy H. Wilson
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Katie M. Clow
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Salima Gasmi
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Todd F. Hatchette
- Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority, Departments of Pathology, Immunology and Microbiology, Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Annie-Claude Bourgeois
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Gerald A. Evans
- Infection Prevention & Control, Kingston Health Sciences Centre, Biomedical & Molecular Sciences and Pathology & Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Jules K. Koffi
- Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
9
|
Logan JJ, Hoi AG, Sawada M, Knudby A, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Risk factors for Lyme disease resulting from residential exposure amidst emerging Ixodes scapularis populations: A neighbourhood-level analysis of Ottawa, Ontario. PLoS One 2023; 18:e0290463. [PMID: 37616268 PMCID: PMC10449184 DOI: 10.1371/journal.pone.0290463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Lyme disease is an emerging health threat in Canada due to the continued northward expansion of the main tick vector, Ixodes scapularis. It is of particular concern to populations living in expanding peri-urban areas where residential development and municipal climate change response impact neighbourhood structure and composition. The objective of this study was to estimate associations of socio-ecological characteristics with residential Lyme disease risk at the neighbourhood scale. We used Lyme disease case data for 2017-2020 reported for Ottawa, Ontario to determine where patients' residential property, or elsewhere within their neighbourhood, was the suspected site of tick exposure. Cases meeting this exposure definition (n = 118) were aggregated and linked to neighbourhood boundaries. We calculated landscape characteristics from composited and classified August 2018 PlanetScope satellite imagery. Negative binomial generalized linear models guided by a priori hypothesized relationships explored the association between hypothesized interactions of landscape structure and the outcome. Increases in median household income, the number of forest patches, the proportion of forested area, forest edge density, and mean forest patch size were associated with higher residential Lyme disease incidence at the neighbourhood scale, while increases in forest shape complexity and average distance to forest edge were associated with reduced incidence (P<0.001). Among Ottawa neighbourhoods, the combined effect of forest shape complexity and average forest patch size was associated with higher residential Lyme disease incidence (P<0.001). These findings suggest that Lyme disease risk in residential settings is associated with urban design elements. This is particularly relevant in urban centres where local ecological changes may impact the presence of emerging tick populations and how residents interact with tick habitat. Further research into the mechanistic underpinnings of these associations would be an asset to both urban development planning and public health management.
Collapse
Affiliation(s)
- James J. Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Amber Gigi Hoi
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Sawada
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
- Laboratory for Applied Geomatics and GIS Science, Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
| | - Anders Knudby
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Justine I. Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands
| | - Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - Manisha A. Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Siegel EL, Lavoie N, Xu G, Brown CM, Ledizet M, Rich SM. Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts. Microorganisms 2023; 11:1418. [PMID: 37374922 DOI: 10.3390/microorganisms11061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne zoonoses pose a serious burden to global public health. To understand the distribution and determinants of these diseases, the many entangled environment-vector-host interactions which influence risk must be considered. Previous studies have evaluated how passive tick testing surveillance measures connect with the incidence of human Lyme disease. The present study sought to extend this to babesiosis and anaplasmosis, two rare tick-borne diseases. Human cases reported to the Massachusetts Department of Health and submissions to TickReport tick testing services between 2015 and 2021 were retrospectively analyzed. Moderate-to-strong town-level correlations using Spearman's Rho (ρ) were established between Ixodes scapularis submissions (total, infected, adult, and nymphal) and human disease. Aggregated ρ values ranged from 0.708 to 0.830 for anaplasmosis and 0.552 to 0.684 for babesiosis. Point observations maintained similar patterns but were slightly weaker, with mild year-to-year variation. The seasonality of tick submissions and demographics of bite victims also correlated well with reported disease. Future studies should assess how this information may best complement human disease reporting and entomological surveys as proxies for Lyme disease incidence in intervention studies, and how it may be used to better understand the dynamics of human-tick encounters.
Collapse
Affiliation(s)
- Eric L Siegel
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathalie Lavoie
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | - Stephen M Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Newer Surveillance Data Extends our Understanding of the Niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae) in the United States. Vector Borne Zoonotic Dis 2023. [PMID: 37083463 DOI: 10.1089/vbz.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis, from 2002 to 2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods: Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis, and R. montanensis-infected D. variabilis, in the United States. Using random forest models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and "R. montanensis-positive niche" models across datasets. Results: Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis-positive niche. The updated D. variabilis niche model overpredicted suitability compared with the updated R. montanensis-positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained R. montanensis-positive niche than predicted by D. variabilis records alone. Conclusions: The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.
Collapse
Affiliation(s)
- Catherine A Lippi
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Holly D Gaff
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Robyn M Nadolny
- Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, Maryland, USA
| | - Sadie J Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Bouchard C, Dumas A, Baron G, Bowser N, Leighton PA, Lindsay LR, Milord F, Ogden NH, Aenishaenslin C. Integrated human behavior and tick risk maps to prioritize Lyme disease interventions using a 'One Health' approach. Ticks Tick Borne Dis 2023; 14:102083. [PMID: 36435167 DOI: 10.1016/j.ttbdis.2022.102083] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Lyme disease (LD) risk is emerging rapidly in Canada due to range expansion of its tick vectors, accelerated by climate change. The risk of contracting LD varies geographically due to variability in ecological characteristics that determine the hazard (the densities of infected host-seeking ticks) and vulnerability of the human population determined by their knowledge and adoption of preventive behaviors. Risk maps are commonly used to support public health decision-making on Lyme disease, but the ability of the human public to adopt preventive behaviors is rarely taken into account in their development, which represents a critical gap. The objective of this work was to improve LD risk mapping using an integrated social-behavioral and ecological approach to: (i) compute enhanced integrated risk maps for prioritization of interventions and (ii) develop a spatially-explicit assessment tool to examine the relative contribution of different risk factors. The study was carried out in the Estrie region located in southern Québec. The blacklegged tick, Ixodes scapularis, infected with the agent of LD is widespread in Estrie and as a result, regional LD incidence is the highest in the province. LD knowledge and behaviors in the population were measured in a cross-sectional health survey conducted in 2018 reaching 10,790 respondents in Estrie. These data were used to create an index for the social-behavioral component of risk in 2018. Local Empirical Bayes estimator technique were used to better quantify the spatial variance in the levels of adoption of LD preventive activities. For the ecological risk analysis, a tick abundance model was developed by integrating data from ongoing long-term tick surveillance programs from 2007 up to 2018. Social-behavioral and ecological components of the risk measures were combined to create vulnerability index maps and, with the addition of human population densities, prioritization index maps. Map predictions were validated by testing the association of high-risk areas with the current spatial distribution of human cases of LD and reported tick exposure. Our results demonstrated that social-behavioral and ecological components of LD risk have markedly different distributions within Estrie. The occurrence of human LD cases or reported tick exposure in a municipality was positively associated with tick density and the prioritization risk index (p < 0.001). This research is a second step towards a more comprehensive integrated LD risk assessment approach, examining social-behavioral risk factors that interact with ecological risk factors to influence the management of emerging tick-borne diseases, an approach that could be applied more widely to vector-borne and zoonotic diseases.
Collapse
Affiliation(s)
- Catherine Bouchard
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| | - Ariane Dumas
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Geneviève Baron
- Direction de la santé publique de l'Estrie, CIUSSS de l'Estrie-CHUS, Sherbrooke, Québec, Canada
| | - Natasha Bowser
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - François Milord
- Direction de santé publique de la Montérégie, Centre intégré de santé et de services sociaux Montérégie-Centre, Longueuil, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Cécile Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
14
|
Lippi CA, Gaff HD, Nadolny RM, Ryan SJ. Newer Surveillance Data Extends our Understanding of the Niche of Rickettsia montanensis (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae) in the United States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523628. [PMID: 36711596 PMCID: PMC9882046 DOI: 10.1101/2023.01.11.523628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis , from 2002-2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis , and R. montanensis infected D. variabilis , in the United States. Using random forest (RF) models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and 'pathogen positive niche' models across datasets. Results Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis positive niche. The updated D. variabilis niche model overpredicted suitability compared to the updated R. montanensis positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained pathogen-positive niche than predicted by D. variabilis records alone. Conclusions The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL 32611
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, VA 23529
| | - Robyn M. Nadolny
- Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL 32611
| |
Collapse
|
15
|
Slatculescu AM, Pugliese M, Sander B, Zinszer K, Nelder MP, Russell CB, Kulkarni MA. Rurality, Socioeconomic Status, and Residence in Environmental Risk Areas Associated with Increased Lyme Disease Incidence in Ontario, Canada: A Case-Control Study. Vector Borne Zoonotic Dis 2022; 22:572-581. [PMID: 36378243 DOI: 10.1089/vbz.2022.0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Lyme disease (LD) is the most common tick-borne illness in North America. LD is acquired through exposure to the tick vector, Ixodes scapularis, known as the blacklegged tick. In Canada, LD is rapidly emerging, with the establishment of I. scapularis in many newly endemic regions posing a growing risk to local communities. In the Canadian context, many environmental and socioeconomic risk factors for human LD infection are yet to be ascertained and the degree of risk associated with residential and community exposure to ticks is not well known. Methods: We conducted a matched case-control study in southeastern Ontario, using LD patient data from provincial laboratory databases and uninfected population controls from 2014 to 2018. We aimed to identify area-level risk factors for LD and associations with residence in environmental risk areas, defined as areas with high model-predicted probability of I. scapularis occurrence, using the neighborhood dissemination area as the unit of analysis. Results: Using multivariable conditional logistic regression analysis, we identified that patients with LD had higher odds (odds ratio, OR; 95% confidence interval, CI) of living in neighborhoods with high probability of tick occurrence in the environment (OR = 2.2; 95% CI: 2.0-2.5), low walkability (OR = 1.6; 95% CI: 1.2-2.1), low material deprivation (OR = 1.4; 95% CI: 1.2-1.7), and low ethnic concentration (OR = 8.1; 95% CI: 6.7-9.9). We also found that the odds of LD infection for individuals residing in environmental risk areas was highest for those living in public health units (PHUs) with <250,000 population (OR = 3.0; 95% CI: 2.4-3.9) compared to those living in PHUs with >1,000,000 population (OR = 1.5; 95% CI: 1.1-2.1). Conclusion: This study shows that odds of human LD infection in Ontario, Canada is higher in less urbanized areas with higher socioeconomic status and indicates that exposure to ticks around the home residence or neighborhood is linked to increased odds of LD.
Collapse
Affiliation(s)
- Andreea M Slatculescu
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Michael Pugliese
- ICES uOttawa, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
| | - Beate Sander
- Toronto Health Economics and Technology Assessment Collaborative, University Health Network, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.,Public Health Ontario, Toronto, Canada.,ICES Central, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Kate Zinszer
- École de Santé Publique, Département de Médecine Sociale et Préventive, Université de Montréal, Montréal, Canada
| | | | | | - Manisha A Kulkarni
- Faculty of Medicine, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| |
Collapse
|
16
|
Semenza JC, Rocklöv J, Ebi KL. Climate Change and Cascading Risks from Infectious Disease. Infect Dis Ther 2022; 11:1371-1390. [PMID: 35585385 PMCID: PMC9334478 DOI: 10.1007/s40121-022-00647-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change is adversely affecting the burden of infectious disease throughout the world, which is a health security threat. Climate-sensitive infectious disease includes vector-borne diseases such as malaria, whose transmission potential is expected to increase because of enhanced climatic suitability for the mosquito vector in Asia, sub-Saharan Africa, and South America. Climatic suitability for the mosquitoes that can carry dengue, Zika, and chikungunya is also likely to increase, facilitating further increases in the geographic range and longer transmission seasons, and raising concern for expansion of these diseases into temperate zones, particularly under higher greenhouse gas emission scenarios. Early spring temperatures in 2018 seem to have contributed to the early onset and extensive West Nile virus outbreak in Europe, a pathogen expected to expand further beyond its current distribution, due to a warming climate. As for tick-borne diseases, climate change is projected to continue to contribute to the spread of Lyme disease and tick-borne encephalitis, particularly in North America and Europe. Schistosomiasis is a water-borne disease and public health concern in Africa, Latin America, the Middle East, and Southeast Asia; climate change is anticipated to change its distribution, with both expansions and contractions expected. Other water-borne diseases that cause diarrheal diseases have declined significantly over the last decades owing to socioeconomic development and public health measures but changes in climate can reverse some of these positive developments. Weather and climate events, population movement, land use changes, urbanization, global trade, and other drivers can catalyze a succession of secondary events that can lead to a range of health impacts, including infectious disease outbreaks. These cascading risk pathways of causally connected events can result in large-scale outbreaks and affect society at large. We review climatic and other cascading drivers of infectious disease with projections under different climate change scenarios. Supplementary file1 (MP4 328467 KB).
Collapse
Affiliation(s)
- Jan C Semenza
- Heidelberg Institute of Global Health, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Joacim Rocklöv
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
- Heidelberg Institute of Global Health (HIGH), Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Kristie L Ebi
- Center for Health and the Global Environment (CHanGE), University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
The Utility of a Maximum Entropy Species Distribution Model for Ixodes scapularis in Predicting the Public Health Risk of Lyme Disease in Ontario, Canada. Ticks Tick Borne Dis 2022; 13:101969. [DOI: 10.1016/j.ttbdis.2022.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022]
|