1
|
Sharma N, Das BK, Bhattacharjya BK, Chaudhari A, Behera BK, Kumar AP, Chakraborty HJ. Metagenomic insights into microbial community, functional annotation, and antibiotic resistance genes in Himalayan Brahmaputra River sediment, India. Front Microbiol 2024; 15:1426463. [PMID: 39633804 PMCID: PMC11614985 DOI: 10.3389/fmicb.2024.1426463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The Brahmaputra, a major transboundary river of the Himalayas flowing predominantly through Northeast India, particularly Assam, is increasingly endangered by contamination due to rapid urbanization and anthropogenic pressures. These environmental changes pose significant risks at the microbial level, affecting nutrient cycling and productivity, and thereby impacting river ecosystem health. The next-generation sequencing technology using a metagenomics approach has revolutionized our understanding of the microbiome and its critical role in various aquatic environments. Methods The present study aimed to investigate the structure of the bacterial community and its functional potentials within the sediments of the Brahmaputra River, India, using high-throughput shotgun metagenomics. Additionally, this study sought to explore the presence of antimicrobial resistance genes in the river's sediment. Results and discussion Shotgun metagenomics revealed a diverse bacterial community comprising 31 phyla, 52 classes, 291 families, 1,016 genera, and 3,630 species. Dominant phyla included Pseudomonadota (62.47-83.48%), Actinobacteria (11.10-24.89%), Bacteroidetes (0.97-3.82%), Firmicutes (0.54-3.94%), Cyanobacteria (0.14-1.70%), and Planctomycetes (0.30-0.78%). Functional profiling highlighted significant involvement in energy metabolism, amino acid and central carbon metabolism, stress response, and degradation pathways, emphasizing the microbial community's role in ecosystem functioning and resilience. Notably, 50 types of antibiotic resistance genes (ARGs) were detected, with resistance profiles spanning multidrug, aminoglycoside, β-lactam, fluoroquinolone, rifampicin, sulfonamide, and tetracycline classes. Network analysis underscored the intricate relationships among ARG subtypes, suggesting potential mechanisms of resistance propagation. Furthermore, plasmid-related genes and 185 virulence factor genes (VFGs) were identified, indicating additional layers of microbial adaptation and potential pathogenicity within the river sediments. This comprehensive microbial and functional profiling of the Brahmaputra's sediment metagenome provides crucial insights into microbial diversity, resistance potential, and ecological functions, offering a foundation for informed management and mitigation strategies to preserve river health and mitigate pollution impacts.
Collapse
Affiliation(s)
- Niti Sharma
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati, Assam, India
| | | | | | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Annam Pavan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | |
Collapse
|
2
|
Al-Awthan YS, Mir R, Alharbi BM, Alatawi AS, Almutairi FM, Khafaga T, Shohdi WM, Fakhry AM, Alatawi MM. Metagenomic Analysis of Sediment Bacterial Diversity and Composition in Natural Lakes and Artificial Waterpoints of Tabuk Region in King Salman Bin Abdulaziz Royal Natural Reserve, Saudi Arabia. Life (Basel) 2024; 14:1411. [PMID: 39598209 PMCID: PMC11595862 DOI: 10.3390/life14111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The Tabuk region is located in the northern part of Saudi Arabia, and it has an area of 117,000 km2 between longitudes 26° N and 29° N and latitudes 34° E and 38° E. King Salman Bin Abdulaziz Royal Natural Reserve (KSRNR) is the largest natural reserve in Saudi Arabia and covers about 130,700 km2. It represents a new tourist attraction area in the Tabuk region. Human activities around the lake may lead to changes in water quality, with subsequent changes in microenvironment components, including microbial diversity. The current study was designed to assess possible changes in bacterial communities of the water sediment at some natural lakes and artificial waterpoints of KSRNR. Water samples were collected from ten different locations within KSRNR: W1, W2, W3 (at the border of the royal reserve); W4, W5, W6, W7 (at the middle); and W8, W9, and W10 (artificial waterpoints). The total DNA of the samples was extracted and subjected to 16S rRNA sequencing and metagenomic analysis; also, the environmental parameters (temperature and humidity) were recorded for all locations. Metagenomic sequencing yielded a total of 24,696 operational taxonomic units (OTUs), which were subsequently annotated to 193 phyla, 215 classes, 445 orders, 947 families, and 3960 genera. At the phylum level, Pseudomonadota dominated the microbial communities across all samples. At the class level, Gammaproteobacteria, Clostridia, Alphaproteobacteria, Bacilli, and Betaproteobacteria were the most prevalent. The dominant families included Enterobacteriaceae, Pseudomonadaceae, Clostridiaceae, Comamonadaceae, and Moraxellaceae. At the genus level, Pseudomonas, Clostridium, Acinetobacter, Paenibacillus, and Acidovorax exhibited the highest relative abundances. The most abundant species were Hungatella xylanolytica, Pseudescherichia vulneris, Pseudorhizobium tarimense, Paenibacillus sp. Yn15, and Enterobacter sp. Sa187. The observed species richness revealed substantial heterogeneity across samples using species richness estimators, Chao1 and ACE, indicating particularly high diversity in samples W3, W5, and W6. Current study results help in recognizing the structure of bacterial communities at the Tubaiq area in relation to their surroundings for planning for environmental protection and future restoration of affected ecosystems. The findings highlight the dominance of various bacterial phyla, classes, families, and genera, with remarkable species richness in some areas. These results underscore the influence of human activities on microbial diversity, as well as the significance of monitoring and conserving the reserve's natural ecosystems.
Collapse
Affiliation(s)
- Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (A.S.A.); (M.M.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (A.S.A.); (M.M.A.)
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulaziz S. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (A.S.A.); (M.M.A.)
| | - Fahad M. Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Tamer Khafaga
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Wael M. Shohdi
- King Salman Bin Abdulaziz Royal Natural Reserve Development Authority, Riyadh 12213, Saudi Arabia; (T.K.); (W.M.S.)
| | - Amal M. Fakhry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt;
| | - Mashari M. Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (A.S.A.); (M.M.A.)
| |
Collapse
|
3
|
Kumari S, Choudhary G, Anu K, Devi S. Metagenomics insight into Puga geothermal geyser located in Himalayan Geothermal Belt (Trans-Himalayan Plateau) Ladakh, India. Braz J Microbiol 2024; 55:2321-2334. [PMID: 38874746 PMCID: PMC11405596 DOI: 10.1007/s42770-024-01408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
Puga geothermal geyser and surrounding area, located in the Himalayan Geothermal Belt of the Trans-Himalayan Plateau in Ladakh, India, are very geographically isolated and considered pristine and free of anthropogenic activities. In this study, we have conducted the first metagenomic investigation of the microbes in and around the geyser. The whole genome sequencing analysis showed the presence of a total of 44.8%, 39.7% and 41.4% bacterial phyla in the PugW, PugS, and PugSo samples respectively, 8.6% of archaeal phyla (in all the samples), unclassified (derived from other sequences, PugW: 27.6%, PugS: 27.6%, and PugSo: 15.5%) and unclassified (derived from bacteria, PugW: 12%, PugS: 13.8%, and PugSo: 13.8%). The majority of archaeal sequences were linked to Euryarchaeota (2.84%) while the majority of the bacterial communities that predominated in most geothermal locations were linked to Pseudomonadota (67.14%) and Bacteroidota (12.52%). The abundant bacterial strains at the species level included Dechloromonas aromatica, Acinetobacter baumannii, and Arcobacter butzleri, in all the samples while the most abundant archaeal species were Methanosaeta thermophile, Methanoregula boonei, and Methanosarcina berkeri. Further, this geothermal geyser metagenome has a large number of unique sequences linked to unidentified and unclassified lineages, suggesting a potential source for novel species of microbes and their products. The present study which only examined one of the many geothermal geysers and springs in the Puga geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the geothermal springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Puga geothermal area, which serve as a repository for unidentified microbial lineages.
Collapse
Affiliation(s)
- Shalini Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geetanjli Choudhary
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarita Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box 06, Himachal Pradesh, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Md Lasim A, Mohd Ngesom AM, Nathan S, Abdul Razak F, Abdul Halim M, Mohd-Saleh W, Zainul Abidin K, Mohd-Taib FS. Bacterial community profiles within the water samples of leptospirosis outbreak areas. PeerJ 2024; 12:e17096. [PMID: 38699181 PMCID: PMC11064854 DOI: 10.7717/peerj.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/21/2024] [Indexed: 05/05/2024] Open
Abstract
Background Leptospirosis is a water-related zoonotic disease. The disease is primarily transmitted from animals to humans through pathogenic Leptospira bacteria in contaminated water and soil. Rivers have a critical role in Leptospira transmissions, while co-infection potentials with other waterborne bacteria might increase the severity and death risk of the disease. Methods The water samples evaluated in this study were collected from four recreational forest rivers, Sungai Congkak, Sungai Lopo, Hulu Perdik, and Gunung Nuang. The samples were subjected to next-generation sequencing (NGS) for the 16S rRNA and in-depth metagenomic analysis of the bacterial communities. Results The water samples recorded various bacterial diversity. The samples from the Hulu Perdik and Sungai Lopo downstream sampling sites had a more significant diversity, followed by Sungai Congkak. Conversely, the upstream samples from Gunung Nuang exhibited the lowest bacterial diversity. Proteobacteria, Firmicutes, and Acidobacteria were the dominant phyla detected in downstream areas. Potential pathogenic bacteria belonging to the genera Burkholderiales and Serratia were also identified, raising concerns about co-infection possibilities. Nevertheless, Leptospira pathogenic bacteria were absent from all sites, which is attributable to its limited persistence. The bacteria might also be washed to other locations, contributing to the reduced environmental bacterial load. Conclusion The present study established the presence of pathogenic bacteria in the river ecosystems assessed. The findings offer valuable insights for designing strategies for preventing pathogenic bacteria environmental contamination and managing leptospirosis co-infections with other human diseases. Furthermore, closely monitoring water sample compositions with diverse approaches, including sentinel programs, wastewater-based epidemiology, and clinical surveillance, enables disease transmission and outbreak early detections. The data also provides valuable information for suitable treatments and long-term strategies for combating infectious diseases.
Collapse
Affiliation(s)
- Asmalia Md Lasim
- Department of Herbal Medicine Research Centre, Insitute for Medical Research, Setia Alam, Malaysia
- Department of Biological Science and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Sheila Nathan
- Department of Biological Science and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Fatimah Abdul Razak
- Department of Biological Science and Biotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mardani Abdul Halim
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Wardah Mohd-Saleh
- Department of Herbal Medicine Research Centre, Insitute for Medical Research, Setia Alam, Malaysia
| | - Kamaruddin Zainul Abidin
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Cawangan Pahang, Bandar Tun Razak, Pahang, Malaysia
| | | |
Collapse
|
5
|
Wang H, Wang Z, Yu J, Ma C, Liu L, Xu D, Zhang J. The function and keystone microbiota in typical habitats under the influence of anthropogenic activities in Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2024; 247:118196. [PMID: 38253195 DOI: 10.1016/j.envres.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Microbe is an essential driver in regulating the biochemical cycles of carbon, nitrogen, and sulfur. In freshwater lake, microbial communities and functions are influenced by multiple factors, especially anthropogenic activities. Baiyangdian Lake consisted of various habitats, and was frequently interfered with human activities. In this study, 16 S rRNA sequencing and metagenomic sequencing were performed to characterize the microbial communities, determine keystone taxa and reveal dominated metabolic functions in typical habitats in Baiyangdian Lake. The results showed that the diversity of microbial community was significantly higher in sediment compared with corresponding water sample. Microbial community showed strong spatial heterogeneity in sediment, and temporal heterogeneity in water. As for different habitats, significantly higher alpha diversity was observed in ecotone, where the interference of human activities was relatively weak. The shared OTUs were distinguished from the keystone taxa, which indicated the uniqueness of microbiota in different ecological habitat. Moreover, the interactions of microbial in ecological restoration area (abandoned fish pond) were relatively simple, suggesting that this ecosystem was relatively fragile compared with others. Based on the metagenomic sequencing, we recognized that the canal, open water, and abandoned fish pond were beneficial for methanogenic and the ecotone might be a hot zone for the oxidation of methane. Notably, most of the microbes that participated in these predominant metabolisms were unclassified, which indicated the hug potential for exploring functional microorganisms in Baiyangdian Lake. This study provided a comprehensive understanding of the ecology characteristics of microbiota in habitats undergoing various human interference in Baiyangdian Lake.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Zhixin Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Dong Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
6
|
Dwivedi S, Yadav K, Gupta S, Tanveer A, Yadav S, Yadav D. Fungal pectinases: an insight into production, innovations and applications. World J Microbiol Biotechnol 2023; 39:305. [PMID: 37691054 DOI: 10.1007/s11274-023-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The fungal system holds morphological plasticity and metabolic versatility which makes it unique. Fungal habitat ranges from the Arctic region to the fertile mainland, including tropical rainforests, and temperate deserts. They possess a wide range of lifestyles behaving as saprophytic, parasitic, opportunistic, and obligate symbionts. These eukaryotic microbes can survive any living condition and adapt to behave as extremophiles, mesophiles, thermophiles, or even psychrophile organisms. This behaviour has been exploited to yield microbial enzymes which can survive in extreme environments. The cost-effective production, stable catalytic behaviour and ease of genetic manipulation make them prominent sources of several industrially important enzymes. Pectinases are a class of pectin-degrading enzymes that show different mechanisms and substrate specificities to release end products. The pectinase family of enzymes is produced by microbial sources such as bacteria, fungi, actinomycetes, plants, and animals. Fungal pectinases having high specificity for natural sources and higher stabilities and catalytic activities make them promising green catalysts for industrial applications. Pectinases from different microbial sources have been investigated for their industrial applications. However, their relevance in the food and textile industries is remarkable and has been extensively studied. The focus of this review is to provide comprehensive information on the current findings on fungal pectinases targeting diverse sources of fungal strains, their production by fermentation techniques, and a summary of purification strategies. Studies on pectinases regarding innovations comprising bioreactor-based production, immobilization of pectinases, in silico and expression studies, directed evolution, and omics-driven approaches specifically by fungal microbiota have been summarized.
Collapse
Affiliation(s)
- Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
7
|
Xing W, Qi B, Chen R, Ding W, Zhang F. Metagenomic analysis reveals taxonomic and functional diversity of microbial communities on the deteriorated wall paintings of Qinling Tomb in the Southern Tang Dynasty, China. BMC Microbiol 2023; 23:140. [PMID: 37202728 DOI: 10.1186/s12866-023-02887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
The microbial colonization on ancient murals attracts more and more attention since the threaten by microorganisms was first reported in Lascaux, Spain. However, the biodeterioration or biodegradation of mural paintings resulted by microorganisms is not clear yet. Especially the biological function of microbial communities in different conditions remained largely unaddressed. The two mausoleums of the Southern Tang Dynasty are the largest group of emperor mausoleums during the Five Dynasties and Ten Kingdoms period in China, which are of great significance to the study of the architecture, imperial mausoleum systems and art in the Tang and Song Dynasties. To make clear the species composition and metabolic functions of different microbial communities (MID and BK), we analyzed the samples from the wall paintings in one of the two mausoleums of the Southern Tang Dynasty with metagenomics method. The result showed totally 55 phyla and 1729 genera were detected in the mural paintings. The two microbial community structure were similar with the dominance of Proteobacteria, Actinobacteria and Cyanobacteria. However, the species abundance presented a significant difference between two communities at genus level --- MID is Lysobacter, Luteimonas are predominant in MID while Sphingomonas and Streptomyces are popular in BK, which is partially attributed to the different substrate materials of murals. As a result, the two communities presented the different metabolic patterns that MID community was mainly participated in the formation of biofilm as well as the degradation of exogenous pollutants while the BK was predominantly related to the photosynthesis process and biosynthesis of secondary metabolites. Taken together, these findings indicated the effect of environmental factor on the taxonomic composition and functional diversity of the microbial populations. The installation of artificial lighting needs to be considered carefully in the future protection of cultural relics.
Collapse
Affiliation(s)
- Wei Xing
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Binjie Qi
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Rulong Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
| |
Collapse
|
8
|
Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. Bacterial diversity in the aquatic system in India based on metagenome analysis-a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28383-28406. [PMID: 36680718 PMCID: PMC9862233 DOI: 10.1007/s11356-023-25195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023]
Abstract
Microbial analysis has become one of the most critical areas in aquatic ecology and a crucial component for assessing the contribution of microbes in food web dynamics and biogeochemical processes. Initial research was focused on estimating the abundance and distribution of the microbes using microscopy and culture-based analysis, which are undoubtedly complex tasks. Over the past few decades, microbiologists have endeavored to apply and extend molecular techniques to address pertinent questions related to the function and metabolism of microbes in aquatic ecology. Metagenomics analysis has revolutionized aquatic ecology studies involving the investigation of the genome of a mixed community of organisms in an ecosystem to identify microorganisms, their functionality, and the discovery of novel proteins. This review discusses the metagenomics analysis of bacterial diversity in and around different aquatic systems in India.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India.
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Abdulla Mohamed Hatha Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
9
|
Noman SM, Shafiq M, Bibi S, Mittal B, Yuan Y, Zeng M, Li X, Olawale OA, Jiao X, Irshad M. Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2977-2990. [PMID: 35939194 DOI: 10.1007/s11356-022-22197-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propagation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial community structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assessment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people's lives at risk of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches.
Collapse
Affiliation(s)
- Sohail M Noman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Milat University, Islamabad, 43600, Pakistan
- Department of Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Yunnan, Kunming, 650091, China
| | - Bharti Mittal
- Department of Science Education and Research, Nitte University, Deralakatte, Mangalore, 575018, India
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Muhammad Irshad
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, 0000, Hong Kong
| |
Collapse
|
10
|
Singh AK, Kumari M, Sharma N, Rai AK, Singh SP. Metagenomic views on taxonomic and functional profiles of the Himalayan Tsomgo cold lake and unveiling its deterzome potential. Curr Genet 2022; 68:565-579. [PMID: 35927361 DOI: 10.1007/s00294-022-01247-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Megha Kumari
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India.
| |
Collapse
|
11
|
Rout AK, Dehury B, Parida PK, Sarkar DJ, Behera B, Das BK, Rai A, Behera BK. Taxonomic profiling and functional gene annotation of microbial communities in sediment of river Ganga at Kanpur, India: insights from whole-genome metagenomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82309-82323. [PMID: 35750913 DOI: 10.1007/s11356-022-21644-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The perennial river Ganga is recognized as one of India's largest rivers of India, but due to continuous anthropogenic activities, the river's ecosystem is under threat. Next-generation sequencing technology has transformed metagenomics in the exploration of microbiome and their imperative function in diverse aquatic ecosystems. In this study, we have uncovered the structure of community microbiome and their functions in sediments of river Ganga at Kanpur, India, at three polluted stretches through a high-resolution metagenomics approach using Illumina HiSeq 2500. Among the microbes, bacteria dominate more than 82% in the three polluted sediment samples of river Ganga. Pseudomonadota (alpha, beta, and gamma) is the major phylum of bacteria that dominates in three sediment samples. Genes involved in degradation of xenobiotic compounds involving nitrotoluene, benzoate, aminobenzoate, chlorocyclohexane, and chlorobenzene were significantly enriched in the microbiome of polluted stretches. Pathway analysis using KEGG database revealed a higher abundance of genes involved in energy metabolism such as oxidative phosphorylation, nitrogen, methane, sulfur, and carbon fixation pathways in the sediment metagenome data from the river Ganga. A higher abundance of pollutant degrading enzymes like 4-hydroxybenzoate 3-monooxygenase, catalase-peroxidase, and altronate hydrolase in the polluted microbiome indicates their role in degradation of plastics and dyes. Overall, our study has provided bacterial diversity and their dynamics in community structure and function from polluted river microbiome, which is expected to open up better avenues for exploration of novel functional genes/enzymes with potential application in health and bioremediation.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, 756089, Odisha, India
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, 756089, Odisha, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| |
Collapse
|
12
|
Retraction: Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban fresh water lake. PLoS One 2022; 17:e0275944. [PMID: 36269715 PMCID: PMC9586345 DOI: 10.1371/journal.pone.0275944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Parida PK, Behera BK, Dehury B, Rout AK, Sarkar DJ, Rai A, Das BK, Mohapatra T. Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71311-71325. [PMID: 35596862 DOI: 10.1007/s11356-022-20766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The large population residing in the northern region of India surrounding Delhi mostly depends on water of River Yamuna, a tributary of mighty Ganga for agriculture, drinking and various religious activities. However, continuous anthropogenic activities mostly due to pollution mediated by rapid urbanization and industrialization have profoundly affected river microflora and their function thus its health. In this study, potential of whole-genome metagenomics was exploited to unravel the novel consortia of microbiome and their functional potential in the polluted sediments of the river at Delhi. Analysis of high-quality metagenome data from Illumina NextSeq500 revealed substantial differences in composition of microbiota at different sites dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Chloroflexi phyla. The presence of highly dominant anaerobic bacteria like Dechloromonas aromatica (benzene reducing and denitrifying), Rhodopseudomonas palustris (organic matter reducing), Syntrophus aciditrophicus (fatty acid reducing) and Syntrophobacter fumaroxidans (sulphate reducing) in the polluted river Yamuna signifies the impact of unchecked pollution in declining health of the river ecosystem. A decline in abundance of phages was also noticed along the downstream river Yamuna. Mining of mycobiome reads uncovered plethora of fungal communities (i.e. Nakaseomyces, Aspergillus, Schizosaccharomyces and Lodderomyces) in the polluted stretches due to the availability of higher organic carbon and total nitrogen (%) could be decoded as promising bioindicators of river trophic status. Pathway analysis through KEGG revealed higher abundance of genes involved in energy metabolism (nitrogen and sulphur), methane metabolism, degradation of xenobiotics (Nitrotoluene, Benzoate and Atrazine), two-component system (atoB, cusA and silA) and membrane transport (ABC transporters). Catalase-peroxidase and 4-hydroxybenzoate 3-monooxygenase were the most enriched pollution degrading enzymes in the polluted study sites of river Yamuna. Overall, our results provide crucial insights into microbial dynamics and their function in response to high pollution and could be insightful to the ongoing remediation strategies to clean river Yamuna.
Collapse
Affiliation(s)
- Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India.
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | | |
Collapse
|
14
|
Mandal M, Mandal S. Cross-biome metagenomic analyses of the impact of pollutants on taxonomic and functional diversity of bacterial communities from different geographical regions. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Obieze CC, Wani GA, Shah MA, Reshi ZA, Comeau AM, Khasa DP. Anthropogenic activities and geographic locations regulate microbial diversity, community assembly and species sorting in Canadian and Indian freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154292. [PMID: 35248630 DOI: 10.1016/j.scitotenv.2022.154292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Freshwater lakes are important reservoirs and sources of drinking water globally. However, the microbiota, which supports the functionality of these ecosystems is threatened by the influx of nutrients, heavy metals and other toxic chemical substances from anthropogenic activities. The influence of these factors on the diversity, assembly mechanisms and co-occurrence patterns of bacterial communities in freshwater lakes is not clearly understood. Hence, samples were collected from six different impacted lakes in Canada and India and examined by 454-pyrosequencing technology. The trophic status of these lakes was determined using specific chemical parameters. Our results revealed that bacterial diversity and community composition was altered by both the lake water chemistry and geographic distance. Anthropogenic activities pervasively influenced species distribution. Dispersal limitation (32.3%), homogenous selection (31.8%) and drift (20%) accounted for the largest proportions of the bacterial community assembly mechanisms. Homogenous selection increased in lakes with higher nutrient concentration, while stochasticity reduced. Community functional profiles revealed that deterministic processes dominated the assembly mechanisms of phylotypes with higher potential for biodegradation, while stochasticity dominated the assembly of phylotypes with potential for antimicrobial resistance. Bacteroidota (44%) and Proteobacteria (34%) were the most abundant phyla. Co-occurrence network analysis revealed that complexity increased in more impacted lakes, while competition and the nature of anthropogenic activity contributed to species sorting. Overall, this study demonstrates that bacterial community changes in freshwater lakes are linked to anthropogenic activities, with corresponding consequences on the distribution of phylotypes of environmental and human health interest.
Collapse
Affiliation(s)
- Chinedu C Obieze
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada.
| | - Gowher A Wani
- Centre for Forest Research, Institute of Integrative Biology and Systems, Université Laval, Quebec, QC G1V0A6, Canada; Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, NS, Canada
| | - Damase P Khasa
- Centre for Forest Research, Institute of Integrative Biology and Systems and Canada Research Chair in Forest Genomics, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
16
|
Dose–Response Effect of Nitrogen on Microbial Community during Hydrocarbon Biodegradation in Simplified Model System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Knowledge about the influence of C:N ratio on the biodegradation process of hydrocarbon compounds is of significant importance in the development of biostimulation techniques. The purpose of this study was to assess the impact of nitrogen compounds on the environmental consortium during the process of biological decomposition of hydrocarbons. The experimental variants represented low, moderate, and excessive biostimulation with nitrogen compounds. The metabolic activity of the consortium was tested using the flow cytometry technique. The efficiency of the biodegradation of hydrocarbons of the consortium, based on the gas chromatography method, and metapopulation changes, based on the analysis of V4 16srRNA sequencing data, were assessed. The results of the research confirm the positive effect of properly optimized biostimulation with nitrogen compounds on the biological decomposition of polycyclic aromatic hydrocarbons. The negative impact of excessive biostimulation on the biodegradation efficiency and metabolic activity of microorganisms is also proven. Low resistance to changes in the supply of nitrogen compounds is demonstrated among the orders Xanthomonadales, Burkholderiales, Sphingomonadales, Flavobacteriales, and Sphingobacteriales. It is proven that quantitative analysis of the order of Rhizobiales, characterized by a high-predicted potential for the decomposition of polycyclic aromatic hydrocarbons, may be helpful during biostimulation optimization processes in areas with a high nitrogen deficiency.
Collapse
|
17
|
A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice. Mar Drugs 2022; 20:md20060390. [PMID: 35736193 PMCID: PMC9230221 DOI: 10.3390/md20060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Epidemiology and animal studies suggest that a paternal history of toxicant exposure contributes to the developmental origins of health and disease. Using a mouse model, our laboratory previously reported that a paternal history of in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased his offspring’s risk of developing necrotizing enterocolitis (NEC). Additionally, our group and others have found that formula supplementation also increases the risk of NEC in both humans and mice. Our murine studies revealed that intervening with a paternal fish oil diet preconception eliminated the TCDD-associated outcomes that are risk factors for NEC (e.g., intrauterine growth restriction, delayed postnatal growth, and preterm birth). However, the efficacy of a paternal fish oil diet in eliminating the risk of disease development in his offspring was not investigated. Herein, reproductive-age male mice exposed to TCDD in utero were weaned to a standard or fish oil diet for one full cycle of spermatogenesis, then mated to age-matched unexposed females. Their offspring were randomized to a strict maternal milk diet or a supplemental formula diet from postnatal days 7–10. Offspring colon contents and intestines were collected to determine the onset of gut dysbiosis and NEC. We found that a paternal fish oil diet preconception reduced his offspring’s risk of toxicant-driven NEC, which was associated with a decrease in the relative abundance of the Firmicutes phylum, but an increase in the relative abundance of the Negativicutes class.
Collapse
|
18
|
Baeshen M, Alkaladi A, Alhejen A, Bataweel N, Abdelkader H, Suliman abuzahrah S. Exploring the Taxonomic and Functional Diversity of Marine Benthic Micro-Eukaryotes Along the Red Sea Coast of Jeddah City. Saudi J Biol Sci 2022; 29:103342. [PMID: 35846388 PMCID: PMC9278075 DOI: 10.1016/j.sjbs.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Backgrounds Diverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential. Methods Next-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples. Results Blast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c). Conclusion Results showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.
Collapse
|
19
|
Alotaibi MO, Mohammed AE, Eltom KH. Metagenomic analysis of bacterial communities of Wadi Namar Lake, Riyadh, Saudi Arabia. Saudi J Biol Sci 2022; 29:3749-3758. [PMID: 35844383 PMCID: PMC9280250 DOI: 10.1016/j.sjbs.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Wadi Namar lake is a new touristic attraction area in the south of Riyadh. Human activities around the lake may lead to changes in water quality with subsequent changes in microenvironment components including microbial diversity. The current study was designed to assess possible changes in bacterial communities of the water at Wadi Namar Lake. Therefore, water samples were collected from three different locations along the lake: L1 (no human activities, no plants), L2 (no human activity, some plants) and L3 (human activities, municipal wastes and some plants). The total DNA of the samples was extracted and subjected to 16S rDNA sequencing and metagenomic analysis; water pH, electrical conductivity (EC), total dissolved solids (TDS) as well as the concentration of Na+1, K+1, Cl-1 and total N were analysed. Metagenomic analysis showed variations in relative abundance of 17 phyla, 31 families, 43 genera and 19 species of bacteria between the locations. Proteobacteria was the most abundant phylum in all locations; however, its highest abundance was in L1. Planctomycete phylum was highly abundant in L1 and L3, while its abundance in L2 was low. The phyla Acidobacteria, Candidatus Saccharibacteria, Nitrospirae and Chloroflexi were associated with high TDS, EC, K+1 and Cl-1 concentrations in L3; various human activities around this location had possibly affected microbial diversity. Current study results help in recognising the structure of bacterial communities at Wadi Namar Lake in relation to their surroundings for planning to environment protection and future restoration of affected ecosystems.
Collapse
Affiliation(s)
- Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kamal H. Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat Postal Code 13314, Khartoum North, Sudan
| |
Collapse
|
20
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Pacheco A, Yebra-Montes C, Gradilla-Hernández MS, Senés-Guerrero C. Bacterial Dynamics and Their Influence on the Biogeochemical Cycles in a Subtropical Hypereutrophic Lake During the Rainy Season. Front Microbiol 2022; 13:832477. [PMID: 35479621 PMCID: PMC9037096 DOI: 10.3389/fmicb.2022.832477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Lakes in subtropical regions are highly susceptible to eutrophication due to the heavy rainfall, which causes significant runoff of pollutants (e.g., nutrients) to reach surface waters, altering the water quality and influencing the microbial communities that regulate the biogeochemical cycles within these ecosystems. Lake Cajititlán is a shallow, subtropical, and endorheic lake in western Mexico. Nutrient pollution from agricultural activity and wastewater discharge have affected the lake's water quality, leading the reservoir to a hypereutrophic state, resulting in episodes of fish mortality during the rainy season. This study investigated the temporal dynamics of bacterial communities within Lake Cajititlán and their genes associated with the nitrogen, phosphorus, sulfur, and carbon biogeochemical cycles during the rainy season, as well as the influences of physicochemical and environmental variables on such dynamics. Significant temporal variations were observed in the composition of bacterial communities, of which Flavobacterium and Pseudomonas were the dominant genera. The climatological parameters that were most correlated with the bacterial communities and their functional profiles were pH, DO, ORP, turbidity, TN, EC, NH4 +, and NO3 -. The bacterial communities displayed variations in their functional composition for nitrogen, phosphorus, and sulfur metabolisms during the sampling months. The bacterial communities within the lake are highly susceptible to nutrient loads and low DO levels during the rainy season. Bacterial communities had a higher relative abundance of genes associated with denitrification, nitrogen fixation, assimilatory sulfate reduction, cysteine, SOX system, and all phosphorus metabolic pathways. The results obtained here enrich our understanding of the bidirectional interactions between bacterial communities and major biogeochemical processes in eutrophic subtropical lakes.
Collapse
Affiliation(s)
- Osiris Díaz-Torres
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - Ofelia Yadira Lugo-Melchor
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad de Servicios Analiticos y Metrologicos, Guadalajara, Mexico
| | - José de Anda
- Departamento de Tecnologia Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Mexico
| | | | | | | |
Collapse
|
21
|
Nagarajan V, Tsai HC, Chen JS, Hussain B, Fan CW, Asif A, Hsu BM. The Evaluation of Bacterial Abundance and Functional Potentials in the Three Major Watersheds, Located in the Hot Spring Zone of the Tatun Volcano Group Basin, Taiwan. Microorganisms 2022; 10:500. [PMID: 35336075 PMCID: PMC8949176 DOI: 10.3390/microorganisms10030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The Tatun Volcanic Group (TVG), located in northern Taiwan, is characterized by acidic hot springs where the outflow of the hot springs may affect the properties of the associated lotic water bodies. We investigated the bacterial diversity and functional profiles of the Peihuang (PHC), HuangGang (HGC), and Nanhuang Creeks (NHC) located in the TVG basin using 16S rRNA gene sequencing coupled with statistical analyses. Water samples were collected from various streams of the creeks for two months of the year. The NHC showed the highest diversity, richness, and a unique number of phyla, which was followed by the HGC. A reduced number of phyla and a lower diversity was noticed in the PHC. The NHC was found to be abundant in the genera Armatimonas, Prosthecobacter, Pirellula, and Bdellovibrio, whereas the HGC was rich in Thiomonas, Acidiphilium, Prevotella, Acidocella, Acidithiobacillus, and Metallibacterium. The PHC was abundant in Thiomonsa, Legionella, Acidocella, and Sulfuriferula. The samples did not show any strong seasonal variations with the bacterial diversity and abundance; however, the relative abundance of each sampling site varied within the sampling months. The iron transport protein- and the sulfur metabolism-related pathways were predicted to be the key functions in all the creeks, whereas the heavy metal-related functions, such as the cobalt/nickel transport protein and the cobalt-zinc-cadmium efflux system were found to be abundant in the HGC and PHC, respectively. The abundance of Bdellovibrio in the NHC, Diplorickettsia in the HGC, and Legionella in the PHC samples indicated a higher anthropogenic impact over the creek water quality. This study provides the data to understand the distinct bacterial community structure, as well as the functional potentials of the three major watersheds, and helps the knowledge of the impact of the physicochemical properties of the TVG hot springs upon the watersheds.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
- Doctoral Program in Science, Technology, Environment and Mathematics (STEM), National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; (V.N.); (B.H.); (C.-W.F.); (A.A.)
| |
Collapse
|
22
|
Shifts in Bacterial Community Composition and Functional Traits at Different Time Periods Post-deglaciation of Gangotri Glacier, Himalaya. Curr Microbiol 2022; 79:91. [PMID: 35129698 DOI: 10.1007/s00284-022-02779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
Abstract
Climate change causes an unprecedented increase in glacial retreats. The melting ice exposes land for colonization and diversification of bacterial communities leading to soil development, changes in plant community composition, and ecosystem functioning. Although a few studies have focused on macro-level deglaciation impacts, little is known about such effects on the bacterial community succession. Here, we provide meta-barcoding-based insight into the ecological attributes of bacterial community across different retreating periods of the Gangotri glacier, western Himalaya. We selected three sites along a terminal moraine representing recent (~ 20 yrs), intermediate (~ 100 yrs), and late (~ 300 yrs) deglaciation periods. Results showed that the genus Mycobacterium belonging to phylum Actinobacteria dominated recently deglaciated land. Relative abundance of these pioneer bacterial taxa decreased by 20-50% in the later stages with the emergence of new and rising of the less abundant members of the phyla Proteobacteria, Firmicutes, Planctomycetes, Acidobacteria, Verrucomicrobia, Candidatus TM6, and Chloroflexi. The community in the recent stage was less rich and harbored competitive interactions, while the later stages experienced a surge in bacterial diversity with cooperative interactions. The shift in α-diversity and composition was strongly influenced by soil organic carbon, carbon to nitrogen ratio, and soil moisture content. The functional analyses revealed a progression from a metabolism focused to a functionally progressive community required for bacterial co-existence and succession in plant communities. Overall, the findings indicate that the bacterial communities inhabit, diversify, and develop specialized functions post-deglaciation leading to nutrient inputs to soil and vegetation development, which may provide feedback to climate change.
Collapse
|
23
|
Behera BK, Dehury B, Rout AK, Patra B, Mantri N, Chakraborty HJ, Sarkar DJ, Kaushik NK, Bansal V, Singh I, Das BK, Rao AR, Rai A. Metagenomics study in aquatic resource management: Recent trends, applied methodologies and future needs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|