1
|
Kim S, Wang SM, Kang DW, Um YH, Han EJ, Park SY, Ha S, Choe YS, Kim HW, Kim REY, Kim D, Lee CU, Lim HK. A Comparative Analysis of Two Automated Quantification Methods for Regional Cerebral Amyloid Retention: PET-Only and PET-and-MRI-Based Methods. Int J Mol Sci 2024; 25:7649. [PMID: 39062892 PMCID: PMC11276670 DOI: 10.3390/ijms25147649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate quantification of amyloid positron emission tomography (PET) is essential for early detection of and intervention in Alzheimer's disease (AD) but there is still a lack of studies comparing the performance of various automated methods. This study compared the PET-only method and PET-and-MRI-based method with a pre-trained deep learning segmentation model. A large sample of 1180 participants in the Catholic Aging Brain Imaging (CABI) database was analyzed to calculate the regional standardized uptake value ratio (SUVR) using both methods. The logistic regression models were employed to assess the discriminability of amyloid-positive and negative groups through 10-fold cross-validation and area under the receiver operating characteristics (AUROC) metrics. The two methods showed a high correlation in calculating SUVRs but the PET-MRI method, incorporating MRI data for anatomical accuracy, demonstrated superior performance in predicting amyloid-positivity. The parietal, frontal, and cingulate importantly contributed to the prediction. The PET-MRI method with a pre-trained deep learning model approach provides an efficient and precise method for earlier diagnosis and intervention in the AD continuum.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Psychiatry, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun Ji Han
- Division of Nuclear Medicine, Department of Radiology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sonya Youngju Park
- Division of Nuclear Medicine, Department of Radiology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yeong Sim Choe
- Research Institute, Neurophet Inc., Seoul 06234, Republic of Korea (R.E.K.)
| | - Hye Weon Kim
- Research Institute, Neurophet Inc., Seoul 06234, Republic of Korea (R.E.K.)
| | - Regina EY Kim
- Research Institute, Neurophet Inc., Seoul 06234, Republic of Korea (R.E.K.)
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul 06234, Republic of Korea (R.E.K.)
| | - Chang Uk Lee
- Department of Psychiatry, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, College of Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Bossa MN, Nakshathri AG, Berenguer AD, Sahli H. Generative AI unlocks PET insights: brain amyloid dynamics and quantification. Front Aging Neurosci 2024; 16:1410844. [PMID: 38952479 PMCID: PMC11215072 DOI: 10.3389/fnagi.2024.1410844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Studying the spatiotemporal patterns of amyloid accumulation in the brain over time is crucial in understanding Alzheimer's disease (AD). Positron Emission Tomography (PET) imaging plays a pivotal role because it allows for the visualization and quantification of abnormal amyloid beta (Aβ) load in the living brain, providing a powerful tool for tracking disease progression and evaluating the efficacy of anti-amyloid therapies. Generative artificial intelligence (AI) can learn complex data distributions and generate realistic synthetic images. In this study, we demonstrate for the first time the potential of Generative Adversarial Networks (GANs) to build a low-dimensional representation space that effectively describes brain amyloid load and its dynamics. Methods Using a cohort of 1,259 subjects with AV45 PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we develop a 3D GAN model to project images into a latent representation space and generate back synthetic images. Then, we build a progression model on the representation space based on non-parametric ordinary differential equations to study brain amyloid evolution. Results We found that global SUVR can be accurately predicted with a linear regression model only from the latent representation space (RMSE = 0.08 ± 0.01). We generated synthetic PET trajectories and illustrated predicted Aβ change in four years compared with actual progression. Discussion Generative AI can generate rich representations for statistical prediction and progression modeling and simulate evolution in synthetic patients, providing an invaluable tool for understanding AD, assisting in diagnosis, and designing clinical trials. The aim of this study was to illustrate the huge potential that generative AI has in brain amyloid imaging and to encourage its advancement by providing use cases and ideas for future research tracks.
Collapse
Affiliation(s)
- Matías Nicolás Bossa
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Akshaya Ganesh Nakshathri
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Abel Díaz Berenguer
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hichem Sahli
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
3
|
Cerina V, Crivellaro C, Morzenti S, Pozzi FE, Bigiogera V, Jonghi-Lavarini L, Moresco RM, Basso G, De Bernardi E. A ROI-based quantitative pipeline for 18F-FDG PET metabolism and pCASL perfusion joint analysis: Validation of the 18F-FDG PET line. Heliyon 2024; 10:e23340. [PMID: 38163125 PMCID: PMC10755331 DOI: 10.1016/j.heliyon.2023.e23340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
In Mild Cognitive Impairment (MCI), the study of brain metabolism, provided by 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) can be integrated with brain perfusion through pseudo-Continuous Arterial Spin Labeling Magnetic Resonance sequences (MR pCASL). Cortical hypometabolism identification generally relies on wide control group datasets; pCASL control groups are instead not publicly available yet, due to lack of standardization in the acquisition parameters. This study presents a quantitative pipeline to be applied to PET and pCASL data to coherently analyze metabolism and perfusion inside 16 matching cortical regions of interest (ROIs) derived from the AAL3 atlas. The PET line is tuned on 36 MCI patients and 107 healthy control subjects, to agree in identifying hypometabolic regions with clinical reference methods (visual analysis supported by a vendor tool and Statistical Parametric Mapping, SPM, with two parametrizations here identified as SPM-A and SPM-B). The analysis was conducted for each ROI separately. The proposed PET analysis pipeline obtained accuracy 78 % and Cohen's к 60 % vs visual analysis, accuracy 79 % and Cohen's к 58 % vs SPM-A, accuracy 77 % and Cohen's к 54 % vs SPM-B. Cohen's к resulted not significantly different from SPM-A and SPM-B Cohen's к when assuming visual analysis as reference method (p-value 0.61 and 0.31 respectively). Considering SPM-A as reference method, Cohen's к is not significantly different from SPM-B Cohen's к as well (p-value = 1.00). The complete PET-pCASL pipeline was then preliminarily applied on 5 MCI patients and metabolism-perfusion regional correlations were assessed. The proposed approach can be considered as a promising tool for PET-pCASL joint analyses in MCI, even in the absence of a pCASL control group, to perform metabolism-perfusion regional correlation studies, and to assess and compare perfusion in hypometabolic or normo-metabolic areas.
Collapse
Affiliation(s)
- Valeria Cerina
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Cinzia Crivellaro
- Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Sabrina Morzenti
- Medical Physics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Federico E. Pozzi
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
| | | | | | - Rosa M. Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Gianpaolo Basso
- Milan center for Neuroscience (NeuroMI), University of Milano-Bicocca, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Neuroradiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | | |
Collapse
|
4
|
Bollack A, Pemberton HG, Collij LE, Markiewicz P, Cash DM, Farrar G, Barkhof F. Longitudinal amyloid and tau PET imaging in Alzheimer's disease: A systematic review of methodologies and factors affecting quantification. Alzheimers Dement 2023; 19:5232-5252. [PMID: 37303269 DOI: 10.1002/alz.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.
Collapse
Affiliation(s)
- Ariane Bollack
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Hugh G Pemberton
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- GE Healthcare, Amersham, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Pawel Markiewicz
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - David M Cash
- UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | | | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- UCL Queen Square Institute of Neurology, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Peretti DE, Ribaldi F, Scheffler M, Mu L, Treyer V, Gietl AF, Hock C, Frisoni GB, Garibotto V. ATN profile classification across two independent prospective cohorts. Front Med (Lausanne) 2023; 10:1168470. [PMID: 37559930 PMCID: PMC10407659 DOI: 10.3389/fmed.2023.1168470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background The ATN model represents a research framework used to describe in subjects the presence or absence of Alzheimer's disease (AD) pathology through biomarkers. The aim of this study was to describe the prevalence of different ATN profiles using quantitative imaging biomarkers in two independent cohorts, and to evaluate the pertinence of ATN biomarkers to identify comparable populations across independent cohorts. Methods A total of 172 subjects from the Geneva Memory Clinic and 113 volunteers from a study on healthy aging at the University Hospital of Zurich underwent amyloid (A) and tau (T) PET, as well as T1-weigthed MRI scans using site-specific protocols. Subjects were classified by cognition (cognitively unimpaired, CU, or impaired, CI) based on clinical assessment by experts. Amyloid data converted into the standardized centiloid scale, tau PET data normalized to cerebellar uptake, and hippocampal volume expressed as a ratio over total intracranial volume ratio were considered as biomarkers for A, T, and neurodegeneration (N), respectively. Positivity for each biomarker was defined based on previously published thresholds. Subjects were then classified according to the ATN model. Differences among profiles were tested using Kruskal-Wallis ANOVA, and between cohorts using Wilcoxon tests. Results Twenty-nine percent of subjects from the Geneva cohorts were classified with a normal (A-T-N-) profile, while the Zurich cohort included 64% of subjects in the same category. Meanwhile, 63% of the Geneva and 16% of the Zurich cohort were classified within the AD continuum (being A+ regardless of other biomarkers' statuses). Within cohorts, ATN profiles were significantly different for age and mini-mental state examination scores, but not for years of education. Age was not significantly different between cohorts. In general, imaging A and T biomarkers were significantly different between cohorts, but they were no longer significantly different when stratifying the cohorts by ATN profile. N was not significantly different between cohorts. Conclusion Stratifying subjects into ATN profiles provides comparable groups of subjects even when individual recruitment followed different criteria.
Collapse
Affiliation(s)
- Débora E. Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Anton F. Gietl
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christoph Hock
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- Center for Biomedical Imaging, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
7
|
Mejia AF, Koppelmans V, Jelsone-Swain L, Kalra S, Welsh RC. Longitudinal surface-based spatial Bayesian GLM reveals complex trajectories of motor neurodegeneration in ALS. Neuroimage 2022; 255:119180. [PMID: 35395402 PMCID: PMC9580623 DOI: 10.1016/j.neuroimage.2022.119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 11/13/2022] Open
Abstract
Longitudinal fMRI studies hold great promise for the study of neurodegenerative diseases, development and aging, but realizing their full potential depends on extracting accurate fMRI-based measures of brain function and organization in individual subjects over time. This is especially true for studies of rare, heterogeneous and/or rapidly progressing neurodegenerative diseases. These often involve small samples with heterogeneous functional features, making traditional group-difference analyses of limited utility. One such disease is amyotrophic lateral sclerosis (ALS), a severe disease resulting in extreme loss of motor function and eventual death. Here, we use an advanced individualized task fMRI analysis approach to analyze a rich longitudinal dataset containing 190 hand clench fMRI scans from 16 ALS patients (78 scans) and 22 age-matched healthy controls (112 scans) Specifically, we adopt our cortical surface-based spatial Bayesian general linear model (GLM), which has high power and precision to detect activations in individual subjects, and propose a novel longitudinal extension to leverage information shared across visits. We perform all analyses in native surface space to preserve individua anatomical and functional features. Using mixed-effects models to subsequently study the relationship between size of activation and ALS disease progression, we observe for the first time an inverted U-shaped trajectory o motor activations: at relatively mild motor disability we observe enlarging activations, while at higher levels of motor disability we observe severely diminished activation, reflecting progression toward complete loss of motor function. We further observe distinct trajectories depending on clinical progression rate, with faster progressors exhibiting more extreme changes at an earlier stage of disability. These differential trajectories suggest that initial hyper-activation is likely attributable to loss of inhibitory neurons, rather than functional compensation as earlier assumed. These findings substantially advance scientific understanding of the ALS disease process. This study also provides the first real-world example of how surface-based spatial Bayesian analysis of task fMRI can further scientific understanding of neurodegenerative disease and other phenomena. The surface-based spatial Bayesian GLM is implemented in the BayesfMRI R package
Collapse
Affiliation(s)
- Amanda F Mejia
- Department of Statistics, Indiana University, Bloomington, IN, USA.
| | | | - Laura Jelsone-Swain
- Department of Psychology, University of South Carolina Aiken, Aiken, SC, USA
| | - Sanjay Kalra
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models. Neurobiol Dis 2021; 161:105558. [PMID: 34767943 PMCID: PMC10112395 DOI: 10.1016/j.nbd.2021.105558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.
Collapse
|