1
|
Cross J, Honnavar P, Quidet XLT, Butler T, Shivaprasad A, Christian L. Assessing Freshwater Microbiomes from Different Storage Sources in the Caribbean Using DNA Metabarcoding. Microorganisms 2023; 11:2945. [PMID: 38138089 PMCID: PMC10745428 DOI: 10.3390/microorganisms11122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Next-generation sequencing (NGS) and the technique of DNA metabarcoding have provided more efficient and comprehensive options for testing water quality compared to traditional methods. Recent studies have shown the efficacy of DNA metabarcoding in characterizing the bacterial microbiomes of varied sources of drinking water, including rivers, reservoirs, wells, tanks, and lakes. We asked whether DNA metabarcoding could be used to characterize the microbiome of different private sources of stored freshwater on the Caribbean Island nation of Antigua and Barbuda. Two replicate water samples were obtained from three different private residential sources in Antigua: a well, an above-ground tank, and a cistern. The bacterial microbiomes of different freshwater sources were assessed using 16S rRNA metabarcoding. We measured both alpha diversity (species diversity within a sample) and beta diversity (species diversity across samples) and conducted a taxonomic analysis. We also looked for the presence of potentially pathogenic species. Major differences were found in the microbiome composition and relative abundances depending on the water source. A lower alpha diversity was observed in the cistern sample compared to the others, and distinct differences in the microbiome composition and relative abundance were noted between the samples. Notably, pathogenic species, or genera known to harbor such species, were detected in all the samples. We conclude that DNA metabarcoding can provide an effective and comprehensive assessment of drinking water quality and has the potential to identify pathogenic species overlooked using traditional methods. This method also shows promise for tracing the source of disease outbreaks due to waterborne microorganisms. This is the first study from small island countries in the Caribbean where metabarcoding has been applied for assessing freshwater water quality.
Collapse
Affiliation(s)
- Joseph Cross
- Department of Biochemistry, Cell Biology and Genetics, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
- Department of Microbial Pathogenesis and Immunology, Texas A&M University School of Medicine, College Station, TX 77843, USA
| | - Prasanna Honnavar
- Department of Microbiology and Immunology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
| | - Xegfred Lou T. Quidet
- Basic Medical Sciences, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda; (X.L.T.Q.); (T.B.)
| | - Travis Butler
- Basic Medical Sciences, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda; (X.L.T.Q.); (T.B.)
| | - Aparna Shivaprasad
- Department of Microbiology and Immunology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda;
| | - Linroy Christian
- Department of Analytical Services, St. Johns 1451, Antigua and Barbuda;
| |
Collapse
|
2
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
3
|
Dong H, Zhang F, Xu T, Liu Y, Du Y, Wang C, Liu T, Gao J, He Y, Wang X, Sun S, She Y. Culture-dependent and culture-independent methods reveal microbe-clay mineral interactions by dissimilatory iron-reducing bacteria in an integral oilfield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156577. [PMID: 35688243 DOI: 10.1016/j.scitotenv.2022.156577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Fe(III) may be reasonably considered as one of the most important electron acceptors in petroleum reservoir ecosystems. The microbial mineralization of clay minerals, especially montmorillonite, is also of great significance to the exploration of petroleum and gas reservoirs. The bioreduction mechanisms of iron-poor minerals in petroleum reservoirs have been poorly investigated. This study investigated the bioreduction of montmorillonite by dissimilatory iron-reducing bacteria (DIRB) in petroleum reservoirs based on culture-independent and culture-dependent methods. Microbial diversity analysis revealed that Halolactibacillus, Bacillus, Alkaliphilus, Shewanella, Clostridium, and Pseudomonas were the key genera involved in the bioreduction of Fe(III). Through the traditional culture-dependent method, most of the key genera were isolated from the samples collected from petroleum reservoirs. Traditional culture-dependent methods can be used to reveal the metabolic characteristics of microorganisms (such as iron-reduction efficiency) to further elucidate the roles of different species (B. subtilis and B. alkalitelluris) in the environment. Moreover, many species with high iron-reduction efficiencies and relatively low abundances in the samples, such as Tessaracoccus and Flaviflexus, were isolated from petroleum reservoirs for the first time. The combination of culture-dependent and culture-independent methods can be used to further the understanding of the microbial communities and the metabolic characteristics of DIRB in petroleum reservoirs. Structural alterations that occurred during the interactions of microorganisms and montmorillonite were revealed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The physical and chemical analysis results demonstrated that microorganisms from petroleum reservoirs can dissolve iron-poor montmorillonite and promote the release of interlayer water. The secondary minerals illite and clinoptilolite were observed in bioreduced smectite. The formation of secondary minerals was closely related to the dissolution degrees of minerals based on iron reduction.
Collapse
Affiliation(s)
- Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China.
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, College of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ting Xu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Yulong Liu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Ying Du
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Chen Wang
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Tiansheng Liu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Ji Gao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Yanlong He
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xiaotong Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Sun
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yuehui She
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China.
| |
Collapse
|
4
|
Lai KP, Tsang CF, Li L, Yu RMK, Kong RYC. Microplastics act as a carrier for wastewater-borne pathogenic bacteria in sewage. CHEMOSPHERE 2022; 301:134692. [PMID: 35504476 DOI: 10.1016/j.chemosphere.2022.134692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution, a pressing global environmental problem, has a severe impact on both aquatic ecosystems and public health worldwide. Due to the small size of microplastics, they are able to pass through the filtration systems of municipal wastewater treatment works (WWTWs). In recent years, studies have focused on the environmental abundance and ecotoxicological effects of microplastics, but there are limited studies investigating the colonization of microplastics by bacteria, especially those pathogenic ones. In this study, we examined the colonization and composition of the bacterial communities on polyethylene microbeads after incubation in raw sewage collected from three municipal WWTWs in Hong Kong (Sha Tin Sewage Treatment Works, Stonecutters Island Sewage Treatment Works, and Shek Wu Hui Sewage Treatment Works). Scanning electron microscopy (SEM) results indicate that bacterial cells were colonized on the surfaces of the microbeads and formed biofilms after sewage incubation. Metagenomic sequencing data demonstrated an increase in bacterial diversity after 21 days of sewage incubation when compared to shorter incubation periods of 6, 11 and 16 days. Importantly, human and fish pathogens such as Arcobacter cryaerophilus, Aeromonas salmonicida, Vibrio areninigrae and Vibrio navarrensis were found in the resident bacterial communities. Taken together, our results demonstrate that microplastics could act as a carrier for wastewater-borne pathogenic bacteria in municipal sewage.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Chau Fong Tsang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Monitoring Bacterial Community Dynamics in a Drinking Water Treatment Plant: An Integrative Approach Using Metabarcoding and Microbial Indicators in Large Water Volumes. WATER 2022. [DOI: 10.3390/w14091435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monitoring bacterial communities in a drinking water treatment plant (DWTP) may help to understand their regular operations. Bacterial community dynamics in an advanced full-scale DWTP were analyzed by 16S rRNA metabarcoding, and microbial water quality indicators were determined at nine different stages of potabilization: river water and groundwater intake, decantation, sand filtration, ozonization, carbon filtration, reverse osmosis, mixing chamber and post-chlorination drinking water. The microbial content of large water volumes (up to 1100 L) was concentrated by hollow fiber ultrafiltration. Around 10 million reads were obtained and grouped into 10,039 amplicon sequence variants. Metabarcoding analysis showed high bacterial diversity at all treatment stages and above all in groundwater intake, followed by carbon filtration and mixing chamber samples. Shifts in bacterial communities occurred downstream of ozonization, carbon filtration, and, more drastically, chlorination. Proteobacteria and Bacteroidota predominated in river water and throughout the process, but in the final drinking water, the strong selective pressure of chlorination reduced diversity and was clearly dominated by Cyanobacteria. Significant seasonal variation in species distribution was observed in decantation and carbon filtration samples. Some amplicon sequence variants related to potentially pathogenic genera were found in the DWTP. However, they were either not detected in the final water or in very low abundance (<2%), and all EU Directive quality standards were fully met. A combination of culture and high-throughput sequencing techniques may help DWTP managers to detect shifts in microbiome, allowing for a more in-depth assessment of operational performance.
Collapse
|