1
|
Shengule S, Alai S, Bhandare S, Patil S, Gautam M, Mangaonkar B, Gupta S, Shaligram U, Gairola S. Validation and Suitability Assessment of Multiplex Mesoscale Discovery Immunogenicity Assay for Establishing Serological Signatures Using Vaccinated, Non-Vaccinated and Breakthrough SARS-CoV-2 Infected Cases. Vaccines (Basel) 2024; 12:433. [PMID: 38675815 PMCID: PMC11053742 DOI: 10.3390/vaccines12040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are multi-targeted and variable over time. Multiplex quantitative serological assays are needed to provide accurate and robust seropositivity data for the establishment of serological signatures during vaccination and or infection. We describe here the validation and evaluation of an electro-chemiluminescence (ECL)-based Mesoscale Discovery assay (MSD) for estimation of total and functional IgG relative to SARS-CoV-2 spike, nucleocapsid and receptor binding (RBD) proteins in human serum samples to establish serological signatures of SARS-CoV-2 natural infection and breakthrough cases. The 9-PLEX assay was validated as per ICH, EMA, and US FDA guidelines using a panel of sera samples, including the NIBSC/WHO reference panel (20/268). The assay demonstrated high specificity and selectivity in inhibition assays, wherein the homologous inhibition was more than 85% and heterologous inhibition was below 10%. The assay also met predetermined acceptance criteria for precision (CV < 20%), accuracy (70-130%) and dilutional linearity. The method's applicability to serological signatures was demonstrated using sera samples (n = 45) representing vaccinated, infected and breakthrough cases. The method was able to establish distinct serological signatures and thus provide a potential tool for seroprevalence of SARS-CoV-2 during vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sunil Gairola
- Clinical Bioanalytical Department, Serum Institute of India Pvt. Ltd., Pune 411028, India; (S.S.); (S.A.); (M.G.); (U.S.)
| |
Collapse
|
2
|
Alsaeed M, Alhamid G, Tombuloglu H, Kabanja JH, Karagoz A, Tombuloglu G, Rabaan AA, Al-Suhaimi E, Unver T. Ultrasensitive and fast detection of SARS-CoV-2 using RT-LAMP without pH-dependent dye. Funct Integr Genomics 2024; 24:16. [PMID: 38242999 DOI: 10.1007/s10142-024-01297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
This study investigates the performance of reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the colorimetric detection of SARS-CoV-2 using fluorometric dye, namely, calcein. The detection limit (LoD) with the N-ID1 primer set resulted in superior performance, corresponding to ~ 2 copies/reaction or ~ 0.1 copies/μL of the RNA sample. The color development can be observed by the naked eye, using an ultraviolet (UV) transilluminator or a hand-UV light without the requirement of expensive devices. The average time-to-reaction (TTR) value was 26.2 min in high-copy number samples, while it was about 50 min in rRT-PCR. A mobile application was proposed to quantify the positive and negative results based on the three-color spaces (RGB, Lab, and HSB). Compared to rRT-PCR (n = 67), this assay allows fast and sensitive visual detection of SARS-CoV-2, with high sensitivity (90.9%), selectivity (100%), and accuracy (94.03%). Besides, the assay was sensitive regardless of variants. Since this assay uses a fluorescent dye for visual observation, it can be easily adapted in RT-LAMP assays with high sensitivity. Thus, it can be utilized in low-source centers and field testing such as conferences, sports meetings, refugee camps, companies, and schools.
Collapse
Affiliation(s)
- Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Juma H Kabanja
- Department of Pathology & Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Aysel Karagoz
- Quality Assurance Department, Turk Pharmaceutical and Serum Ind. Inc., Ankara, Turkey
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Ebtesam Al-Suhaimi
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Turgay Unver
- Ficus Biotechnology, Ankara, Turkey
- Faculty of Engineering, Ostim Technical University, 06374, Ankara, Turkey
| |
Collapse
|
3
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Circulation of SARS-CoV-2 Omicron sub-lineages revealed by multiplex genotyping RT-qPCR assays for sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166300. [PMID: 37591390 DOI: 10.1016/j.scitotenv.2023.166300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Sewage surveillance has proven to be an essential complementary tool to clinical diagnosis in combating the COVID-19 pandemic by tracking the spread of the SARS-CoV-2 virus and evaluating infection levels in populations. With the striking spreading and continuous evolution of SARS-CoV-2 Omicron VOC that characterized with higher transmissibility and potential immune evasion, there is an urgent need for the rapid surveillance of this prevalent strain and its sub-lineages in sewage. In this study, based on three multiplex allele-specific (AS) RT-qPCR assays, we established a rapid and high-throughput detection workflow for the simultaneous discrimination of Omicron sub-lineages BA.2.2, BA.2.12.1, BA.4 and BA.5 (hereafter referred to as BA.4/BA.5) to track their community circulation in Hong Kong. All primer-probe sets in the multiplex assays could correctly discriminate and quantitate their target genotypes with high sensitivity and specificity, even when multiple variants co-existed in the sewage samples. Using the established multiplex assays, the trends of SARS-CoV-2 total viral load and variant dynamics in influent samples collected from 11 wastewater treatment plants (WWTPs) during June 2022 and September 2022, aligned with the clinical data, successfully unveiling the swift emergence and predominance of Omicron BA.4/BA.5 in Hong Kong. The study highlights the feasibility and applicability of multiplex RT-qPCR assays for monitoring epidemic trends and tracking variant displacement dynamics in sewage samples, providing a more rapid, high-throughput and cost-effective alternative to enhance the current sewage surveillance system.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
4
|
Abbasi H, Nikoo HR, Fotouhi F, Khosravi A. Development of a robust TaqMan probe-based one-step multiplex RT-qPCR for simultaneous detection of SARS-CoV-2 and Influenza A/B viruses. BMC Microbiol 2023; 23:335. [PMID: 37951883 PMCID: PMC10640757 DOI: 10.1186/s12866-023-03048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, the simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A, and Influenza B viruses is essential for rapid differential diagnosis in patients with similar symptoms, especially during "flu season" in the post-pandemic era. So far, several multiplex methods have been approved for the simultaneous detection of SARS-CoV-2, Influenza A, and Influenza B. However, due to the rapid mutation rate of the SARS-CoV-2 genome and the emergence of new variants, existing methods must be improved and updated. METHODS To identify a highly conserved region in the SARS-CoV-2 N-gene, a genomic survey was performed to increase the sensitivity and specificity of primer and probe sets targeting the SARS-CoV-2 genome. The 95% LLOD (95% lower limits of detection) were calculated by probit analysis. A total of 70 predetermined clinical samples using singleplex RT-qPCR assays, were included. The clinical performance of the multiplex RT-qPCR assay was determined and compared with a commercial multiplex kit. The Cohen's kappa coefficient, P-value (McNemar's test), Passing-Bablok regression, and Bland Altman agreement analysis were determined to monitor the agreement of the assays. RESULTS The novel SARS-CoV-2 primer and probe set designed in this assay was able to detect all variants of concern (VOCs) and variants of interest (VOIs) with high analytical and clinical performance. The 95% LLOD for the multiplex RT-qPCR was 20 copies per reaction for the N gene of SARS-CoV-2, 2 copies per reaction for M1 gene of Influenza A and NS1 gene of Influenza B. The diagnostic sensitivity of the multiplex RT-qPCR was 94.4%, 93.7%, and 100% for the detection of SARS-CoV-2, Influenza A, and Influenza B genomes, respectively. Moreover, the specificity was identical (100%) in both assays. According to the agreement analysis results, there was no statistical difference between our multiplex assay and the commercial kit. CONCLUSIONS In this study, we developed a novel in-house made multiplex RT-qPCR assay, with high sensitivity, specificity, and reliability for the diagnosis of SARS-CoV-2 infection in clinical samples. This is valuable during Influenza seasons when influenza co-circulates with SARS-CoV-2, as it saves costs, time, and thus specific and timely treatment of patients.
Collapse
Affiliation(s)
- Hamidreza Abbasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Fatemeh Fotouhi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
da Silva RC, de Lima SC, dos Santos Reis WPM, de Magalhães JJF, Magalhães RNDO, Rathi B, Kohl A, Bezerra MAC, Pena L. Comparison of DNA extraction methods for COVID-19 host genetics studies. PLoS One 2023; 18:e0287551. [PMID: 37903126 PMCID: PMC10615309 DOI: 10.1371/journal.pone.0287551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 11/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in global shortages in supplies for diagnostic tests, especially in the developing world. Risk factors for COVID-19 severity include pre-existing comorbidities, older age and male sex, but other variables are likely play a role in disease outcome. There is indeed increasing evidence that supports the role of host genetics in the predisposition to COVID-19 outcomes. The identification of genetic factors associated with the course of SARS-CoV-2 infections relies on DNA extraction methods. This study compared three DNA extraction methods (Chelex®100 resin, phenol-chloroform and the QIAamp DNA extraction kit) for COVID-19 host genetic studies using nasopharyngeal samples from patients. The methods were compared regarding number of required steps for execution, sample handling time, quality and quantity of the extracted material and application in genetic studies. The Chelex®100 method was found to be cheapest (33 and 13 times cheaper than the commercial kit and phenol-chloroform, respectively), give the highest DNA yield (306 and 69 times higher than the commercial kit and phenol-chloroform, respectively), with the least handling steps while providing adequate DNA quality for downstream applications. Together, our results show that the Chelex®100 resin is an inexpensive, safe, simple, fast, and suitable method for DNA extraction of nasopharyngeal samples from COVID-19 patients for genetics studies. This is particularly relevant in developing countries where cost and handling are critical steps in material processing.
Collapse
Affiliation(s)
- Ronaldo Celerino da Silva
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Suelen Cristina de Lima
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Wendell Palôma Maria dos Santos Reis
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Pernambuco State Central Laboratory (LACEN/PE), Serra Talhada, Pernambuco, Brazil
- University of Pernambuco (UPE), Serra Talhada Campus, Serra Talhada, Pernambuco, Brazil
| | | | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | | - Lindomar Pena
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Ko K, Takahashi K, Ito N, Sugiyama A, Nagashima S, Miwata K, Kitahara Y, Okimoto M, Ouoba S, Akuffo GA, E B, Akita T, Takafuta T, Tanaka J. Despite low viral titer in saliva samples, Sanger-based SARS-CoV-2 spike gene sequencing is highly applicable for the variant identification. BMC Med Genomics 2023; 16:199. [PMID: 37620887 PMCID: PMC10463848 DOI: 10.1186/s12920-023-01633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND This study aimed to compare the performance of Sanger-based SARS-CoV-2 spike gene sequencing and Next Generation Sequencing (NGS)-based full-genome sequencing for variant identification in saliva samples with low viral titer. METHODS Using 241 stocked saliva samples collected from confirmed COVID-19 patients between November 2020 and March 2022 in Hiroshima, SARS-CoV-2 spike gene sequencing (nt22735-nt23532) was performed by nested RT-PCR and Sanger platform using in-house primers. The same samples underwent full-genome sequencing by NGS using Illumina NextSeq2000. RESULTS Among 241 samples, 147 were amplified by both the Sanger and the Illumina NextSeq2000 NGS, 86 by Sanger only, and 8 were not amplified at all. The overall amplification rates of Illumina NextSeq2000 NGS and Sanger were 61% and 96.7%, respectively. At low viral titer (< 103 copies/mL), Illumina NextSeq2000 NGS provided 19.2% amplification, while Sanger was 89.7% (p < 0.0001). Both platforms identified 38 wild type, 54 Alpha variants, 84 Delta variants, and 57 Omicron variants. CONCLUSIONS Our study provided evidence to expand the capacity of Sanger-based SARS-CoV-2 spike gene sequencing for variants identification over full-genome by Illumina NextSeq2000 NGS for mass screening. Therefore, the feasible and simple Sanger-based SARS-CoV-2 spike gene sequencing is practical for the initial variants screening, which might reduce the gap between the rapid evolution of SARS-CoV-2 and its molecular surveillance.
Collapse
Affiliation(s)
- Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noriaki Ito
- Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Nagashima
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kei Miwata
- Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | | | - Mafumi Okimoto
- Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Serge Ouoba
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Unité de Recherche Clinique de Nanoro (URCN), Institut de Recherche en Science de La Santé (IRSS), Nanoro, Burkina Faso
| | - Golda Ataa Akuffo
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Bunthen E
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Payment Certification Agency (PCA), Ministry of Health, Phnom Penh, Cambodia
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | | | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
7
|
Cheng L, Lan L, Ramalingam M, He J, Yang Y, Gao M, Shi Z. A review of current effective COVID-19 testing methods and quality control. Arch Microbiol 2023; 205:239. [PMID: 37195393 DOI: 10.1007/s00203-023-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.
Collapse
Affiliation(s)
- Lijia Cheng
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Liang Lan
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Murugan Ramalingam
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Jianrong He
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Yimin Yang
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Min Gao
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
8
|
Matucci A, Stefani E, Tondo A, Righetti V, Bottinelli M, Gavazzi L, Merenda M, Catania S. Isolation and characterization of an atypical Mycoplasma gallisepticum strain showing a new mgc2 variant. Vet Microbiol 2023; 282:109768. [PMID: 37148622 DOI: 10.1016/j.vetmic.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Mycoplasma gallisepticum (MG) is an important pathogen of the poultry industry able to cause chronic respiratory disease in chickens and infectious sinusitis in turkeys. Despite the application of biosecurity measures and the availability of vaccines for chickens, monitoring systems routinely applied for MG detection are still essential for infection control. Pathogen isolation is time-consuming and not suitable for rapid detection, albeit it is a compulsory step for genetic typing and antimicrobial susceptibility evaluation of single strains. The mgc2 gene is a species-specific molecular target adopted by most of the PCR protocols available for MG diagnosis, which are also included in the WOAH Terrestrial Manual. We describe the case of an atypical MG strain, isolated in 2019 from Italian turkeys, characterized by an mgc2 sequence not detectable by common endpoint PCR primers. Considering the potential risk of false negative results during diagnostic screenings with the endpoint protocol, the authors propose an alternative mgc2 PCR endpoint protocol, named MG600, which should be considered as a further diagnostic tool.
Collapse
Affiliation(s)
- A Matucci
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy.
| | - E Stefani
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| | - A Tondo
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| | - V Righetti
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| | - M Bottinelli
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| | - L Gavazzi
- Company Veterinarian, Gesco, S. Vittore di Cesena, Forlì-Cesena 47522, Italy
| | - M Merenda
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| | - S Catania
- Mycoplasma Unit, WOAH Reference Laboratory for Avian Mycoplasmosis, SCT-1, Istituto Zooprofilattico Sperimentale delle Venezie, Via Bovolino 1/C, Buttapietra, Verona 37060, Italy
| |
Collapse
|
9
|
Hossain MM, Talukder MA. Graphene surface plasmon sensor for ultra-low-level SARS-CoV-2 detection. PLoS One 2023; 18:e0284812. [PMID: 37098037 PMCID: PMC10128942 DOI: 10.1371/journal.pone.0284812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Precisely detecting the ultra-low-level severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial. The detection mechanism must be sensitive, low-cost, portable, fast, and easy to operate to tackle coronavirus disease 19 (COVID-19). This work proposes a sensor exploiting graphene surface plasmon resonance to detect SARS-CoV-2. The graphene layer functionalized with angiotensin-converting enzyme 2 (ACE2) antibodies will help efficient adsorption of the SARS-CoV-2. In addition to the graphene layer, ultra-thin layers of novel two-dimensional materials tungsten disulfide (WS2), potassium niobate (KNbO3), and black phosphorus (BP) or blue phosphorus (BlueP) used in the proposed sensor will increase the light absorption to detect an ultra-low SARS-CoV-2 concentration. The analysis presented in this work shows that the proposed sensor will detect SARS-CoV-2 as small as ∼1 fM. The proposed sensor also offers a minimum sensitivity of 201 degrees/RIU, a figure-of-merit of 140 RIU-1, and enhanced binding kinetics of the SARS-CoV-2 to the sensor surface.
Collapse
Affiliation(s)
- Md. Mahbub Hossain
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Muhammad Anisuzzaman Talukder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
10
|
Alhamid G, Tombuloglu H, Al-Suhaimi E. Development of loop-mediated isothermal amplification (LAMP) assays using five primers reduces the false-positive rate in COVID-19 diagnosis. Sci Rep 2023; 13:5066. [PMID: 36977756 PMCID: PMC10044074 DOI: 10.1038/s41598-023-31760-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is a cheaper and faster testing alternative for detecting SARS-CoV-2. However, a high false-positive rate due to misamplification is one of the major limitations. To overcome misamplifications, we developed colorimetric and fluorometric RT-LAMP assays using five LAMP primers, instead of six. The gold-standard RT-PCR technique verified the assays' performance. Compared to other primer sets with six primers (N, S, and RdRp), the E-ID1 primer set, including five primers, performed superbly on both colorimetric and fluorometric assays. The sensitivity of colorimetric and fluorometric assays was 89.5% and 92.2%, respectively, with a limit of detection of 20 copies/µL. The colorimetric RT-LAMP had a specificity of 97.2% and an accuracy of 94.5%, while the fluorometric RT-LAMP obtained 99% and 96.7%, respectively. No misamplification was evident even after 120 min, which is crucial for the success of this technique. These findings are important to support the use of RT-LAMP in the healthcare systems in fighting COVID-19.
Collapse
Affiliation(s)
- Galyah Alhamid
- Master Program of Biotechnology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
11
|
Chavda VP, Valu DD, Parikh PK, Tiwari N, Chhipa AS, Shukla S, Patel SS, Balar PC, Paiva-Santos AC, Patravale V. Conventional and Novel Diagnostic Tools for the Diagnosis of Emerging SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:374. [PMID: 36851252 PMCID: PMC9960989 DOI: 10.3390/vaccines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The "coronavirus disease 2019 (COVID-19)" outbreak, caused by the virus "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the "World Health Organization (WHO, Geneva, Switzerland)". The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome's RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Disha D. Valu
- Formulation and Drug Product Development, Biopharma Division, Intas Pharmaceutical Ltd., 3000-548 Moraiya, Ahmedabad 380054, Gujarat, India
| | - Palak K. Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Nikita Tiwari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Somanshi Shukla
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Pankti C. Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
12
|
COVID-19 diagnostics: Molecular biology to nanomaterials. Clin Chim Acta 2023; 538:139-156. [PMID: 36403665 PMCID: PMC9673061 DOI: 10.1016/j.cca.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.
Collapse
|
13
|
Tsang HF, Yu ACS, Yim AKY, Jin N, Wu YO, Cheng HYL, Cheung WL, Leung WMS, Lam KW, Hung TN, Chan L, Chiou J, Pei XM, Lee OYA, Cho WCS, Wong SCC. The clinical characteristics of pediatric patients infected by SARS-CoV-2 Omicron variant and whole viral genome sequencing analysis. PLoS One 2023; 18:e0282389. [PMID: 36897843 PMCID: PMC10004545 DOI: 10.1371/journal.pone.0282389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Pediatric population was generally less affected clinically by SARS-CoV-2 infection. Few pediatric cases of COVID-19 have been reported compared to those reported in infected adults. However, a rapid increase in the hospitalization rate of SARS-CoV-2 infected pediatric patients was observed during Omicron variant dominated COVID-19 outbreak. In this study, we analyzed the B.1.1.529 (Omicron) genome sequences collected from pediatric patients by whole viral genome amplicon sequencing using Illumina next generation sequencing platform, followed by phylogenetic analysis. The demographic, epidemiologic and clinical data of these pediatric patients are also reported in this study. Fever, cough, running nose, sore throat and vomiting were the more commonly reported symptoms in children infected by Omicron variant. A novel frameshift mutation was found in the ORF1b region (NSP12) of the genome of Omicron variant. Seven mutations were identified in the target regions of the WHO listed SARS-CoV-2 primers and probes. On protein level, eighty-three amino acid substitutions and fifteen amino acid deletions were identified. Our results indicate that asymptomatic infection and transmission among children infected by Omicron subvariants BA.2.2 and BA.2.10.1 are not common. Omicron may have different pathogenesis in pediatric population.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail: (HFT); (SCCW)
| | | | | | - Nana Jin
- Codex Genetics Limited, Hong Kong, China
| | - Yu On Wu
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hennie Yuk Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - WL Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai Ming Stanley Leung
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Ka Wai Lam
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Tin Nok Hung
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Loiston Chan
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Jiachi Chiou
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- * E-mail: (HFT); (SCCW)
| |
Collapse
|
14
|
Shoaib N, Iqbal A, Shah FA, Zainab W, Qasim M, Zerqoon N, Naseem MO, Munir R, Zaidi N. Population-level median cycle threshold (Ct) values for asymptomatic COVID-19 cases can predict the trajectory of future cases. PLoS One 2023; 18:e0281899. [PMID: 36893098 PMCID: PMC9997994 DOI: 10.1371/journal.pone.0281899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Recent studies indicate that the population-level SARS-CoV-2 cycle threshold (Ct) values can inform the trajectory of the pandemic. The presented study investigates the potential of Ct values in predicting the future of COVID-19 cases. We also determined whether the presence of symptoms could change the correlation between Ct values and future cases. METHODS We examined the individuals (n = 8660) that consulted different sample collection points of a private diagnostic center in Pakistan for COVID-19 testing between June 2020 and December 2021. The medical assistant collected clinical and demographic information. The nasopharyngeal swab specimens were taken from the study participants and real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect SARS-CoV-2 in these samples. RESULTS We observed that median Ct values display significant temporal variations, which show an inverse relationship with future cases. The monthly overall median Ct values negatively correlated with the number of cases occurring one month after specimen collection (r = -0.588, p <0.05). When separately analyzed, Ct values for symptomatic cases displayed a weak negative correlation (r = -0.167, p<0.05), while Ct values from asymptomatic cases displayed a stronger negative correlation (r = -0.598, p<0.05) with the number of cases in the subsequent months. Predictive modeling using these Ct values closely forecasted the increase or decrease in the number of cases of the subsequent month. CONCLUSIONS Decreasing population-level median Ct values for asymptomatic COVID-19 cases appear to be a leading indicator for predicting future COVID-19 cases.
Collapse
Affiliation(s)
- Naila Shoaib
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Asim Iqbal
- Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Farhad Ali Shah
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| | - Wajeeha Zainab
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maham Qasim
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Omer Naseem
- Hormone Lab, Lahore, Pakistan.,Institute of Learning Emergency Medicine, University of Health Sciences, Lahore, Pakistan
| | | | - Nousheen Zaidi
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Cancer Research Centre (CRC), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Heckel S, Pacini A, Paredes F, Petreli MV, Perez M, Adriani N, Ibarra G, Menzella H, Colaneri A, Sesma J. Practical considerations to establish a validated platform for pooled detection of SARS-CoV-2 by droplet digital PCR. PLoS One 2022; 17:e0271860. [PMID: 36331920 PMCID: PMC9635689 DOI: 10.1371/journal.pone.0271860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Detection of SARS-CoV-2 has created an enormous workload for laboratories worldwide resulting in a restriction at the time of massive testing. Pool testing is a strategy that reduces time and costs. However, beyond the detection of infectious diseases in blood banks, this approach is rarely implemented in routine laboratories. Therefore, what was learned from the SARS-CoV-2 pool testing should represent an opportunity to increase diagnostic capabilities. The present work, carried out in the context of a diagnostic laboratory of a public hospital during the COVID-19 pandemic, represents a contribution to this end. The main limitation of pool testing is the risk of false negatives that could have been identified by individual tests. These limitations are the dilution of samples with a low virus load during pooling and that the integrity of the sample may be affected by the quality of the sample collection. Fortunately, both limitations coincide with the main strengths of droplet digital PCR (ddPCR). ddPCR is a third-generation PCR that splits the amplification into thousands of droplets that work in parallel, increasing sensitivity and resistance to inhibitors. Therefore, ddPCR is particularly useful for pool testing. Here we show how to factor between test sensitivity and savings in test time and resources. We have identified and optimized critical parameters for pool testing. The present study, which analyzed 1000 nasopharyngeal samples, showed that the pool testing could detect even a single positive sample with a CT value of up to 30 in pools of 34 samples. This test was performed using three different standard extraction methods, the simplest being heating only, which resulted in substantial savings of extraction reagents in addition to PCR reagents. Moreover, we show that pooling can be extended to use saliva, which is less invasive and allows self-collection, reducing the risk for health personnel.
Collapse
Affiliation(s)
- Sofía Heckel
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario (FBioyF), Rosario, Santa Fe, Argentina
| | - Antonella Pacini
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Santa Fe, Argentina
| | - Franco Paredes
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario (FBioyF), Rosario, Santa Fe, Argentina
| | - Ma. Victoria Petreli
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario (FBioyF), Rosario, Santa Fe, Argentina
| | - Marilina Perez
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
| | - Natalia Adriani
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
| | - Guadalupe Ibarra
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario (FBioyF), Rosario, Santa Fe, Argentina
| | - Hugo Menzella
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROByQ), Rosario, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro Colaneri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Sesma
- Molecular Biology Department, Hospital Provincial de Rosario (HPR), Rosario, Santa Fe, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas (FCM-UNR), Rosario, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
16
|
Identification of mutations in SARS-CoV-2 PCR primer regions. Sci Rep 2022; 12:18651. [PMID: 36333366 PMCID: PMC9636223 DOI: 10.1038/s41598-022-21953-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Due to the constantly increasing number of mutations in the SARS-CoV-2 genome, concerns have emerged over the possibility of decreased diagnostic accuracy of reverse transcription-polymerase chain reaction (RT-PCR), the gold standard diagnostic test for SARS-CoV-2. We propose an analysis pipeline to discover genomic variations overlapping the target regions of commonly used PCR primer sets. We provide the list of these mutations in a publicly available format based on a dataset of more than 1.2 million SARS-CoV-2 samples. Our approach distinguishes among mutations possibly having a damaging impact on PCR efficiency and ones anticipated to be neutral in this sense. Samples are categorized as "prone to misclassification" vs. "likely to be correctly detected" by a given PCR primer set based on the estimated effect of mutations present. Samples susceptible to misclassification are generally present at a daily rate of 2% or lower, although particular primer sets seem to have compromised performance when detecting Omicron samples. As different variant strains may temporarily gain dominance in the worldwide SARS-CoV-2 viral population, the efficiency of a particular PCR primer set may change over time, therefore constant monitoring of variations in primer target regions is highly recommended.
Collapse
|
17
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
18
|
Xu Z, Chen D, Li T, Yan J, Zhu J, He T, Hu R, Li Y, Yang Y, Liu M. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat Commun 2022; 13:6480. [PMID: 36309521 PMCID: PMC9617605 DOI: 10.1038/s41467-022-34086-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Fast, inexpensive, and multiplexed detection of multiple nucleic acids is of great importance to human health, yet it still represents a significant challenge. Herein, we propose a nucleic acid testing platform, named MiCaR, which couples a microfluidic device with CRISPR-Cas12a and multiplex recombinase polymerase amplification. With only one fluorescence probe, MiCaR can simultaneously test up to 30 nucleic acid targets through microfluidic space coding. The detection limit achieves 0.26 attomole, and the multiplexed assay takes only 40 min. We demonstrate the utility of MiCaR by efficiently detecting the nine HPV subtypes targeted by the 9-valent HPV vaccine, showing a sensitivity of 97.8% and specificity of 98.1% in the testing of 100 patient samples at risk for HPV infection. Additionally, we also show the generalizability of our approach by successfully testing eight of the most clinically relevant respiratory viruses. We anticipate this effective, undecorated and versatile platform to be widely used in multiplexed nucleic acid detection.
Collapse
Affiliation(s)
- Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiayu Yan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- School of Physical Education, China University of Geosciences, Wuhan, 430074, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
19
|
Razu MH, Ahmed ZB, Hossain MI, Rabbi MFA, Nayem MR, Hassan MA, Paul GK, Khan MR, Moniruzzaman M, Karmaker P, Khan M. Performance Evaluation of Developed Bangasure™ Multiplex rRT-PCR Assay for SARS-CoV-2 Detection in Bangladesh: A Blinded Observational Study at Two Different Sites. Diagnostics (Basel) 2022; 12:diagnostics12112617. [PMID: 36359461 PMCID: PMC9689614 DOI: 10.3390/diagnostics12112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.
Collapse
Affiliation(s)
- Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Iqbal Hossain
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mohammad Fazle Alam Rabbi
- DNA Solutions Ltd., Dhaka 1207, Bangladesh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Moniruzzaman
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
- Correspondence:
| |
Collapse
|
20
|
Lindqvist R, Benz C, Sereikaite V, Maassen L, Laursen L, Jemth P, Strømgaard K, Ivarsson Y, Överby AK. A Syntenin Inhibitor Blocks Endosomal Entry of SARS-CoV-2 and a Panel of RNA Viruses. Viruses 2022; 14:v14102202. [PMID: 36298757 PMCID: PMC9610207 DOI: 10.3390/v14102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are dependent on host factors in order to efficiently establish an infection and replicate. Targeting the interactions of such host factors provides an attractive strategy to develop novel antivirals. Syntenin is a protein known to regulate the architecture of cellular membranes by its involvement in protein trafficking and has previously been shown to be important for human papilloma virus (HPV) infection. Here, we show that a highly potent and metabolically stable peptide inhibitor that binds to the PDZ1 domain of syntenin inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking the endosomal entry of the virus. Furthermore, we found that the inhibitor also hampered chikungunya infection and strongly reduced flavivirus infection, which is completely dependent on receptor-mediated endocytosis for their entry. In conclusion, we have identified a novel broad spectrum antiviral inhibitor that efficiently targets a broad range of RNA viruses.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186 Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lars Maassen
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
| | - Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 75123 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 75123 Uppsala, Sweden
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ylva Ivarsson
- Department of Chemistry—BMC, Uppsala University, Box 576, Husargatan 3, 75123 Uppsala, Sweden
- Correspondence: (Y.I.); (A.K.Ö.)
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186 Umeå, Sweden
- Correspondence: (Y.I.); (A.K.Ö.)
| |
Collapse
|
21
|
Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci 2022; 29:103465. [PMID: 36186678 PMCID: PMC9512523 DOI: 10.1016/j.sjbs.2022.103465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
The ongoing novel COVID-19 has remained the center of attention, since its declaration as a pandemic in March 2020, due to its rapid and uncontrollable worldwide spread. Diagnostic tests are the first line of defense against the transmission of this infectious disease among individuals, with reverse-transcription quantitative polymerase chain reaction (RT-qPCR) being the approved gold standard for showing high sensitivity and specificity in detecting SARS-CoV-2. However, alternative tests are being invested due to the global demand for facilities, reagents, and healthcare workers needed for rapid population-based testing. Also, the rapid evolution of the viral genome and the emergence of new variants necessitates updating the existing methods. Scientists are aiming to improve tests to be affordable, simple, fast, and at the same time accurate, and efficient, as well as friendly user testing. The current diagnostic methods are either molecular-based that detect nucleic acids abundance, like RT-qPCR and reverse-transcription loop-mediated isothermal amplification (RT-LAMP); or immunologically based that detect the presence of antigens or antibodies in patients’ specimens, like enzyme-linked immunosorbent assay (ELISA), lateral flow assay (LFA), chemiluminescent immunoassay (CLIA), and neutralization assay. In addition to these strategies, sensor-based or CRISPR applications are promising tools for the rapid detection of SARS-CoV-2. This review summarizes the most recent updates on the SARS-CoV-2 detection methods with their limitations. It will guide researchers, epidemiologists, and clinicians in identifying a more rapid, reliable, and sensitive method of diagnosing SARS-CoV-2 including the most recent variant of concern Omicron.
Collapse
Affiliation(s)
- Galyah Alhamid
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.,Biotechnology Master Program, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ebtesam Al-Suhaimi
- Department of Biology, College of Science and Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Colorimetric and fluorometric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for diagnosis of SARS-CoV-2. Funct Integr Genomics 2022; 22:1391-1401. [PMID: 36089609 PMCID: PMC9464610 DOI: 10.1007/s10142-022-00900-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/19/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since it infected humans almost 3 years ago. Improvements of current assays and the development of new rapid tests or to diagnose SARS-CoV-2 are urgent. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and propitious assay, allowing to detect both colorimetric and/or fluorometric nucleic acid amplifications. This study describes the analytical and clinical evaluation of RT-LAMP assay for detection of SARS-CoV-2, by designing LAMP primers targeting N (nucleocapsid phosphoprotein), RdRp (polyprotein), S (surface glycoprotein), and E (envelope protein) genes. The assay’s performance was compared with the gold standard RT-PCR, yielding 94.6% sensitivity and 92.9% specificity. Among the tested primer sets, the ones for S and N genes had the highest analytical sensitivity, showing results in about 20 min. The colorimetric and fluorometric comparisons revealed that the latter is faster than the former. The limit of detection (LoD) of RT-LAMP reaction in both assays is 50 copies/µl of the reaction mixture. However, the simple eye-observation advantage of the colorimetric assay (with a color change from yellow to red) serves a promising on-site point-of-care testing method anywhere, including, for instance, laboratory and in-house applications.
Collapse
|
23
|
Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M, Patekar RR. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:111. [PMID: 36092513 PMCID: PMC9444098 DOI: 10.1186/s43088-022-00293-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression.
Main body
Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed.
Short conclusion
The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.
Collapse
|
24
|
Valadan R, Golchin S, Alizadeh-Navaei R, Haghshenas M, Zargari M, Mousavi T, Ghamati M. Differential gene expression analysis of common target genes for the detection of SARS-CoV-2 using real time-PCR. AMB Express 2022; 12:112. [PMID: 36053466 PMCID: PMC9438354 DOI: 10.1186/s13568-022-01454-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
COVID-19 currently is the main cause of the severe acute respiratory disease and fatal outcomes in human beings worldwide. Several genes are used as targets for the detection of SARS-CoV-2, including the RDRP, N, and E genes. The present study aimed to determine the RDRP, N, and E genes expressions of SARS-CoV- 2 in clinical samples. For this purpose, 100 SARS-CoV-2 positive samples were collected from diagnostic laboratories of Mazandaran province, Iran. After RNA extraction, the real-time reverse transcription PCR (real-time RT-PCR) assay was performed for differential gene expressions' analysis of N, E, and RDRP. The threshold cycle (Ct) values for N, RDRP, and E targets of 100 clinical samples for identifying SARS-CoV-2 were then evaluated using quantitative real-time PCR (qRT-PCR). This result suggests N gene as a potential target for the detection of the SARS-CoV-2, since it was observed to be highly expressed in the nasopharyngeal or oropharynges of COVID-19 patients (P < 0.0001). Herein, we showed that SARS-CoV- 2 genes were differentially expressed in the host cells. Therefore, to reduce obtaining false negative results and to increase the sensitivity of the available diagnostic tests, the target genes should be carefully selected based on the most expressed genes in the cells.
Collapse
Affiliation(s)
- Reza Valadan
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soheila Golchin
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammadreza Haghshenas
- Department of Microbiology, Molecular and Cell-Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry and Genetics, Molecular and cell biology research center, Faculty of Medicine, Mazandaran University of medical sciences, Sari, Iran
| | - Tahoora Mousavi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Molecular and Cell Biology Research Center, Hemoglobinopathy Research Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Ghamati
- Medical student, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Diagnostic value of SARS-CoV-2 RDT-Ab with RT-PCR: Secondary data at Diponegoro National Hospital. JOURNAL OF BIOMEDICINE AND TRANSLATIONAL RESEARCH 2022. [DOI: 10.14710/jbtr.v1i1.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The SARS-CoV-2 rapid diagnostic test antibody (RDT-Ab) was most often used as an early detection tool for COVID-19 at the beginning of pandemic. Whereas the antibody response was formed in the second week after the onset of symptoms.Objective: To evaluate the diagnostic value of the SARS-CoV-2 RDT-Ab, including sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR), in patients at Diponegoro National Hospital, Semarang, Indonesia.Methods: Data subjects have been selected retrospectively using purposive sampling based on inclusion criteria (patients who had shortness of breath, pneumonia, suspected, possible, or confirmed COVID-19, and data on the results of the SARS-CoV-2 RDT-Ab IgM and/or IgG (Leccurate® SARS-CoV-2 Antibody Rapid Test Kit) with a valid RT-PCR as gold standard) and exclusion criteria (patients who only had one of either SARS-CoV-2 RDT-Ab or RT-PCR). Researchers analyzed the diagnostic value of SARS-CoV-2 RDT-Ab with RT-PCR which gave the possibility of true-positive, false-positive, true-negative, and false-negative results arranged in a 2x2 table. According to WHO, the diagnostic value is said to be good at least having a sensitivity value of 80% and specificity of 97%.Results: The diagnostic value of SARS-CoV-2 RDT-Ab with RT-PCR, which was evaluated from 1142 patients retrospectively, included IgM (Se 65.25%, Sp 89.51%, PPV 46.70%, NPV 94.81%, PLR 6.22, NLR 0.39), IgG (Se 58.16%, Sp 93.01%, PPV 53.95%, NPV 94.04%, PLR 8.32, NLR 0.45), IgM and IgG (Se 53.90%, Sp 94.21%, PPV 56.72%, NPV 93.55%, PLR 9.30, NLR 0.49), IgM and/or IgG (Se 69.50%, Sp 88.31%, PPV 45.58%, NPV 95.36%, PLR 5.95, NLR 0.35).Conclusion: SARS-CoV-2 RDT-Ab (Leccurate® SARS-CoV-2 Antibody Rapid Test Kit) is not ideal to be used as a rapid diagnostic test for COVID-19.Keywords: COVID-19, Rapid diagnostic test, RT-PCR, SARS-CoV-2 antibody
Collapse
|
26
|
Zhang D, Duran SSF, Lim WYS, Tan CKI, Cheong WCD, Suwardi A, Loh XJ. SARS-CoV-2 in wastewater: From detection to evaluation. MATERIALS TODAY. ADVANCES 2022; 13:100211. [PMID: 35098102 PMCID: PMC8786653 DOI: 10.1016/j.mtadv.2022.100211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for potential virus transmission via contaminated water. In this review, we summarized the latest understanding on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability and comparability of studies reported by various communities across the world. Overall, this review provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.
Collapse
Affiliation(s)
- Danwei Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Solco S Faye Duran
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wei Yang Samuel Lim
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Ady Suwardi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| |
Collapse
|
27
|
Dhar BC. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal Bioanal Chem 2022; 414:2903-2934. [PMID: 35211785 PMCID: PMC8872642 DOI: 10.1007/s00216-022-03918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has transmitted to humans in practically all parts of the world, producing socio-economic turmoil. There is an urgent need for precise, fast, and affordable diagnostic testing to be widely available for detecting SARS-CoV-2 and its mutations in various phases of the disease. Early diagnosis with great precision has been achieved using real-time polymerase chain reaction (RT-PCR) and similar other molecular methods, but theseapproaches are costly and involve rigorous processes that are not easily obtainable. Conversely, immunoassays that detect a small number of antibodies have been employed for quick, low-cost tests, but their efficiency in diagnosing infected people has been restricted. The use of biosensors in the detection of SARS-CoV-2 is vital for the COVID-19 pandemic’s control. This review gives an overview of COVID-19 diagnostic approaches that are currently being developed as well as nanomaterial-based biosensor technologies, to aid future technological advancement and innovation. These approaches can be integrated into point-of-care (POC) devices to quickly identify a large number of infected patients and asymptomatic carriers. The ongoing research endeavors and developments in complementary technologies will play a significant role in curbing the spread of the COVID-19 pandemic and fill the knowledge gaps in current diagnostic accuracy and capacity.
Collapse
Affiliation(s)
- Bidhan C Dhar
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC), 205 S Columbia St, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
28
|
Multiplex real-time RT-PCR method for the diagnosis of SARS-CoV-2 by targeting viral N, RdRP and human RP genes. Sci Rep 2022; 12:2853. [PMID: 35181721 PMCID: PMC8857243 DOI: 10.1038/s41598-022-06977-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has brought the world to a standstill and threatened human lives. Many methods are known to date to detect this virus. Due to their relative sensitivity, polymerase chain reaction (PCR)-based assays are the most frequently applied and considered the gold standard. However, due to the rapid mutation rate of the viral genome and the emergence of new variants, existing protocols need to be updated and improved. Designing a fast and accurate PCR-based assay is of great importance for the early detection of this virus and more efficient control of the spread of this disease. This study describes a fast, reliable, easy-to-use, and high-throughput multiplex SARS-CoV-2 RT-PCR detection method. The assay was designed to detect two viral genes (N and RdRP) and a human gene (RP) simultaneously. The performance and the sensitivity of the assay were tested in 28 SARS-CoV-2 positive samples and compared with commercial kits, which showed 100% positive percent agreement with a limit of detection (LOD) value of 1.40 and 0.81 copies/µL or 35.13 and 20.31 copies/reaction for RdRP and N genes, respectively. The current assay is found accurate, reliable, simple, sensitive, and specific. It can be used as an optimized SARS-CoV-2 diagnostic assay in hospitals, medical centers, and diagnostic laboratories as well as for research purposes.
Collapse
|
29
|
Suh IB, Lim J, Kim HS, Rhim G, Kim H, Kim H, Lee SM, Park HS, Song HJ, Hong M, Shin GS, Kim MJ. Development and Evaluation of AccuPower COVID-19 Multiplex Real-Time RT-PCR Kit and AccuPower SARS-CoV-2 Multiplex Real-Time RT-PCR Kit for SARS-CoV-2 Detection in Sputum, NPS/OPS, Saliva and Pooled Samples. PLoS One 2022; 17:e0263341. [PMID: 35143538 PMCID: PMC8830688 DOI: 10.1371/journal.pone.0263341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Rapid and accurate detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the successful control of the current global COVID-19 pandemic. The real-time reverse transcription polymerase chain reaction (Real-time RT-PCR) is the most widely used detection technique. This research describes the development of two novel multiplex real-time RT-PCR kits, AccuPower® COVID-19 Multiplex Real-Time RT-PCR Kit (NCVM) specifically designed for use with the ExiStation™48 system (comprised of ExiPrep™48 Dx and Exicycler™96 by BIONEER, Korea) for sample RNA extraction and PCR detection, and AccuPower® SARS-CoV-2 Multiplex Real-Time RT-PCR Kit (SCVM) designed to be compatible with manufacturers' on-market PCR instruments. The limit of detection (LoD) of NCVM was 120 copies/mL and the LoD of the SCVM was 2 copies/μL for both the Pan-sarbecovirus gene and the SARS-CoV-2 gene. The AccuPower® kits demonstrated high precision with no cross reactivity to other respiratory-related microorganisms. The clinical performance of AccuPower® kits was evaluated using the following clinical samples: sputum and nasopharyngeal/oropharyngeal swab (NPS/OPS) samples. Overall agreement of the AccuPower® kits with a Food and Drug Administration (FDA) approved emergency use authorized commercial kit (STANDARD™ M nCoV Real-Time Detection kit, SD BIOSENSOR, Korea) was above 95% (Cohen's kappa coefficient ≥ 0.95), with a sensitivity of over 95%. The NPS/OPS specimen pooling experiment was conducted to verify the usability of AccuPower® kits on pooled samples and the results showed greater than 90% agreement with individual NPS/OPS samples. The clinical performance of AccuPower® kits with saliva samples was also compared with NPS/OPS samples and demonstrated over 95% agreement (Cohen's kappa coefficient > 0.95). This study shows the BIONEER NCVM and SCVM assays are comparable with the current standard confirmation assay and are suitable for effective clinical management and control of SARS-CoV-2.
Collapse
Affiliation(s)
- In Bum Suh
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jaegyun Lim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Hyo Seon Kim
- Research Administration Team, Institute of Clinical Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Guil Rhim
- Department of General Affairs, Korean Association of Otorhinolaryngologists, Seoul, Korea
| | - Heebum Kim
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hana Kim
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Sae-Mi Lee
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyun-sang Park
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyun Ju Song
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - MyungKook Hong
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Gyung Sook Shin
- Department of Laboratory Medicine, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Moon Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea
| |
Collapse
|
30
|
Svobodova M, Skouridou V, Jauset-Rubio M, Viéitez I, Fernández-Villar A, Cabrera Alvargonzalez JJ, Poveda E, Bofill CB, Sans T, Bashammakh A, Alyoubi AO, O’Sullivan CK. Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen. ACS OMEGA 2021; 6:35657-35666. [PMID: 34957366 PMCID: PMC8691202 DOI: 10.1021/acsomega.1c05521] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 05/10/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) emerged at the end of 2019, resulting in the ongoing COVID-19 pandemic. The high transmissibility of the virus and the substantial number of asymptomatic individuals have led to an exponential rise in infections worldwide, urgently requiring global containment strategies. Reverse transcription-polymerase chain reaction is the gold standard for the detection of SARS-CoV-2 infections. Antigen tests, targeting the spike (S) or nucleocapsid (N) viral proteins, are considered as complementary tools. Despite their shortcomings in terms of sensitivity and specificity, antigen tests could be deployed for the detection of potentially contagious individuals with high viral loads. In this work, we sought to develop a sandwich aptamer-based assay for the detection of the S protein of SARS-CoV-2. A detailed study on the binding properties of aptamers to the receptor-binding domain of the S protein in search of aptamer pairs forming a sandwich is presented. Screening of aptamer pairs and optimization of assay conditions led to the development of a laboratory-based sandwich assay able to detect 21 ng/mL (270 pM) of the protein with negligible cross-reactivity with the other known human coronaviruses. The detection of 375 pg of the protein in viral transport medium demonstrates the compatibility of the assay with clinical specimens. Finally, successful detection of the S antigen in nasopharyngeal swab samples collected from suspected patients further establishes the suitability of the assay for screening purposes as a complementary tool to assist in the control of the pandemic.
Collapse
Affiliation(s)
- Marketa Svobodova
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Vasso Skouridou
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
| | - Irene Viéitez
- Rare
Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | - Alberto Fernández-Villar
- Pneumology
Service, Galicia Sur Health Research Institute
(IIS Galicia Sur), SERGAS-Uvigo, Vigo 36213, Spain
| | | | - Eva Poveda
- Group
of Virology and Pathogenesis, Galicia Sur
Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario
Universitario de Vigo, SERGAS-UVigo, Vigo 36213, Spain
| | - Clara Benavent Bofill
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Teresa Sans
- Laboratori
Clinic ICS Camp de Tarragona, Hospital Universitari
de Tarragona Joan XXIII, Avda. Dr. Mallafré Guasch, 4, Tarragona 43007, Spain
| | - Abdulaziz Bashammakh
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Abdulrahman O. Alyoubi
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, Jeddah 80215, Kingdom of Saudi Arabia
| | - Ciara K. O’Sullivan
- INTERFIBIO
Research Group, Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans
26, Tarragona 43007, Spain
- Institució
Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
31
|
Soleimani G, Akbarirad F, Shafighi Shahri E, Sajjadi SM. Demographic, clinical, and paraclinical characteristics of COVID-19 pediatric cases in southeast Iran. Antimicrob Resist Infect Control 2021; 10:165. [PMID: 34838145 PMCID: PMC8626734 DOI: 10.1186/s13756-021-01020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Even though children seem to be less vulnerable to the Coronavirus disease 2019 (COVID-19) infection, still a diverse range of clinical presentations and symptoms have been reported in children. Few studies assessed the clinical presentations of COVID-19 among Iranian children. We aimed to evaluate the clinical and paraclinical characteristics of COVID-19 infected children. METHODS All COVID-19 suspected and confirmed children were referred to the Ali-ibn-Abitaleb Hospital, Zahedan, Iran. Patients were included in this longitudinal study. Patients were evaluated at admission and during hospitalization. Patients with some of the main COVID symptoms with positive PCR test were defined as confirmed cases. Clinical, imaging and laboratory results were collected for all patients. RESULTS A total of 62 patients participated in this study. The male:female ratio was 1:1.03. There was a significant difference in fatigue prevalence between age groups (P = 0.002). There was no significant difference between groups in terms of fever duration (P = 0.624) and maximum temperature (P = 0.629). There was a significant difference between PCR positive and negative patients in terms of neurologic signs (P = 0.003), Intensive care unit admission (P = 0.001), white blood cell (P = 0.047). CONCLUSIONS Even though our population was small, most of the findings matched other studies conducted on pediatric cases in Iran or other countries. It was also found that some clinical features such as pneumonia, cough, diarrhea, and tachycardia at admission time were statistically different among age groups.
Collapse
Affiliation(s)
- Gholamreza Soleimani
- Department of Pediatrics, School of Medicine, Children and Adolescents Health Research Center, Ali-Ibn-Abitaleb Hospital, Zahedan, Iran
| | - Fatemeh Akbarirad
- Department of Pediatrics, Ali-ebne-Abitaleb Hospital, Zehedan University of Medical Sciences, Zahedan, Iran
| | - Elham Shafighi Shahri
- Department of Pediatrics, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyyed Masoud Sajjadi
- Department of Cardiovascular Disease, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
32
|
Montalvo Villalba MC, Sosa Glaria E, Rodriguez Lay LDLA, Valdés Ramirez O, Vallina García D, Arencibia Garcia A, Martinez Alfonso J, Menes Llerena DM, Torres Pérez L, Resik Aguirre SR, Guzman Tirado MG. Performance evaluation of Elecsys SARS-CoV-2 Antigen immunoassay for diagnostic of COVID-19. J Med Virol 2021; 94:1001-1008. [PMID: 34676585 PMCID: PMC8662245 DOI: 10.1002/jmv.27412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022]
Abstract
One of the challenges for control and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the early diagnostic at the point of care. Several tests based on qualitative antigen detection have been developed; one of these is Elecsys SARS-CoV-2 Antigen immunoassay (Roche Diagnostics). In total, 523 nasopharyngeal swabs were randomly selected with the aims to evaluate sensitivity, specificity, cross-reactivity, positive and negative predictive value (PPV, NPV), and agreement of Elecsys SARS-CoV-2 Antigen immunoassay using reverse transcription-polymerase chain reaction (RT-PCR) STAT-NAT® coronavirus disease-2019 as reference test. Cross-reactivity was estimated using samples positive by RT-PCR to other respiratory viruses (influenza virus, parainfluenza virus, rhinovirus, coronavirus OC43, and HKU1). The overall sensitivity of Elecsys SARS-CoV-2 Antigen was 89.72% (288/321); specificity was 90.59% (183/202); and cross-reactivity to other respiratory viruses were not detected. Elecsys SARS-CoV-2 Antigen immunoassay showed a high sensitivity in samples with cycle threshold value <30, which ranged from 92.81% to 95.40%, independently of symptoms. PPV and NPV were 93.81% and 84.72%, respectively. The κ coefficient was 0.79 (95% confidence interval: 0.73-0.84), showing substantial agreement between both tests. The results suggest Elecsys SARS-CoV-2 Antigen immunoassay could be used as an alternative to RT-PCR testing, or in complement with it, to identify infectious individuals and reduce SARS-CoV-2 transmission.
Collapse
Affiliation(s)
| | - Elena Sosa Glaria
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Havana, Cuba
| | | | | | | | | | | | | | - Loida Torres Pérez
- Department of Clincal Laboratory, Health International Centre ¨Las Praderas¨, Siboney, La Habana, Cuba
| | | | | |
Collapse
|
33
|
Xi H, Jiang H, Juhas M, Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS OMEGA 2021; 6:25846-25859. [PMID: 34632242 PMCID: PMC8491437 DOI: 10.1021/acsomega.1c04024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become the world's largest public health emergency of the past few decades. Thousands of mutations were identified in the SARS-CoV-2 genome. Some mutants are more infectious and may replace the original strains. Recently, B.1.1.7(Alpha), B1.351(Beta), and B.1.617.2(Delta) strains, which appear to have increased transmissibility, were detected. These strains accounting for the high proportion of newly diagnosed cases spread rapidly over the world. Particularly, the Delta variant has been reported to account for a vast majority of the infections in several countries over the last few weeks. The application of biosensors in the detection of SARS-CoV-2 is important for the control of the COVID-19 pandemic. Due to high demand for SARS-CoV-2 genotyping, it is urgent to develop reliable and efficient systems based on integrated multiple biosensor technology for rapid detection of multiple SARS-CoV-2 mutations simultaneously. This is important not only for the detection and analysis of the current but also for future mutations. Novel biosensors combined with other technologies can be used for the reliable and effective detection of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Hui Xi
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Hanlin Jiang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mario Juhas
- Medical
and Molecular Microbiology Unit, Department of Medicine, Faculty of
Science and Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Yang Zhang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
34
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Nagata SI. Robustness of digital PCR and real-time PCR against inhibitors in transgene detection for gene doping control in equestrian sports. Drug Test Anal 2021; 13:1768-1775. [PMID: 34270866 DOI: 10.1002/dta.3131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Gene doping is a threat to fair competition in sports, both human and equestrian. One method of gene doping is to administer exogenous genetic materials, called transgenes, into the bodies of postnatal humans and horses. Polymerase chain reaction (PCR)-based transgene detection methods such as digital PCR and real-time PCR have been developed for gene doping testing in humans and horses. However, the significance of PCR inhibitors in gene doping testing has not been well evaluated. In this study, we evaluated the effects of PCR inhibitors on transgene detection using digital PCR and real-time PCR against gene doping. Digital PCR amplification was significantly inhibited by high concentrations of proteinase K (more than 0.1 μg/μl), ethylenediaminetetraacetic acid (more than 5 nmol/μl), and heparin (more than 0.05 unit/μl) but not by ethanol or genomic DNA. In addition, phenol affected droplet formation in the digital PCR amplification process. Real-time PCR amplification was inhibited by high concentrations of phenol (more than 1% v/v), proteinase K (more than 0.001 μg/μl), ethylenediaminetetraacetic acid (more than 1 nmol/μl), heparin (more than 0.005 unit/μl), and genomic DNA (more than 51.9 ng/μl) but not by ethanol. Although both PCR systems were inhibited by nearly the same substances, digital PCR was more robust than real-time PCR against the inhibitors. We believe that our findings are important for the development of better methods for transgene detection and prevention of false negative results in gene doping testing.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, Minato, Tokyo, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|