1
|
Nghia NN, The Huy B, Hieu NH, Kim Phuong NT, Lee YI. A length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu 2. Analyst 2024. [PMID: 39641151 DOI: 10.1039/d4an01393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluorescence of OFL via static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu2+ complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6-120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Vietnam
| | - Bui The Huy
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Republic of Korea.
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Phuong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| |
Collapse
|
2
|
Nowakowska J, Radomska D, Czarnomysy R, Marciniec K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024; 29:3538. [PMID: 39124943 PMCID: PMC11314068 DOI: 10.3390/molecules29153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.
Collapse
Affiliation(s)
- Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Zhang S, Chen L, Zhou C, Gao C, Yang J, Liao X, Yang B. Supramolecular fluorescent probe based on acyclic cucurbituril for detection of cancer Labels in human urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122515. [PMID: 36842211 DOI: 10.1016/j.saa.2023.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Spermine (Spm) and spermidine (Spmd) are considered as potential biomarker for early diagnosis of human cancer. Herein, a novel acyclic cucurbituril derivative (UL-ACB) was firstly designed and synthesized, which fluoresces at 460 nm after excitation at 365 nm. UL-ACB is rich in oxygen atoms which are capable of forming coordinate bonds with copper (Cu2+) that cause quenching of UL-ACB fluorescence. Moreover, the addition of biological endogenous substances Spm and Spmd can turn on fluorescence of UL-ACB. Interestingly, the probe showed a remarkable detection efficiency for Spm and Spmd in human urine (the detection limits of Spm and Spmd were 0.156 μM and 0.762 μM, and the linear ranges are 0.156 ∼ 43.06 μM and 0.762 ∼ 29.10 μM), which completely covered the early diagnosis of urinary Spm (1 ∼ 10 μM) and urine Spmd (1 ∼ 20 μM) required concentration range in cancer patients. The probe for Spm and Spmd is simple, time-saving and selective, which may provide a new promising strategy for early cancer diagnosis.
Collapse
Affiliation(s)
- Shuqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Liyuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chao Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
4
|
Nghia NN, Huy BT, Khanh DNN, Van Cuong N, Li H, Lee YI. Straightforward smartphone assay for quantifying tannic acid in beverages based on colour change of Eu 3+/polyethyleneimine complex. Food Chem 2023; 410:135466. [PMID: 36646032 DOI: 10.1016/j.foodchem.2023.135466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tannic acid (TA)-a natural product-is a polyphenol derivative that occurs in certain kinds of beverages. A large amount of TA could give rise to an unpleasant flavour and could negatively affect the human body by causing stomach irritation, abdominal pain, nausea, vomiting, and even death. Thus, the need exists for a simple TA detection procedure that meets specific criteria such as on-site analysis, portability, and affordability. Herein, we present a new TA assay, which is based on the fluorescent quenching effect of an efficient fluorophore, and which comprises a smartphone-integrated homemade reader system. The fluorescent polyethyleneimine-derivatised polymer (FP), a strong emitter at 510 nm, was synthesised with the aid of a facile sonication method. In the presence of Eu3+ ions, TA quenches the fluorescence of the FP via electrostatic interaction. A smartphone was used to capture an image of the FP undergoing fluorescence for conversion to RGB values. The blue channel was chosen for further analysis because it offered the highest R2-value compared to the red and green channels. We verified these results using a commercial spectrofluorometer and calculated the limit of detection of this assay as 87 nM and 20 nM for the homemade reader and spectrofluorometer, respectively. The detection range for TA with the proposed assay is 0.16-66.66 μM. The application of the proposed method to real beverage samples for TA detection demonstrates its analytical applicability.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Dang Nguyen Nha Khanh
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Nguyen Van Cuong
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Hongchang Li
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Department of Pharmacy, Pharmaceutical Technical University, Tashkent 100084, Uzbekistan.
| |
Collapse
|
5
|
Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
A sustainable luminescence-enhanced tri-assembly of polyoxometalate-peptide-polyamine developed for ultrasensitive spermine determination and discrimination. Colloids Surf B Biointerfaces 2022; 212:112379. [PMID: 35123197 DOI: 10.1016/j.colsurfb.2022.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
A supramolecular strategy with sustainable emission amplification of an environmentally sensitive polyoxometalate, Na9[EuW10O36]·32H2O (EuW10), has been constructed for the Spm determination and discrimination. The EuW10 has no response to Put and other biogenic amine but a sensitive response to Spm (LOD = 0.56 nM) and Spd (LOD = 85.93 nM), respectively. Assembling with a cationic peptide from HPV E6, GL-22, achieved the EuW10/GL-22 assembly, which showed a unique enhanced emission response to Spm and distinguished it from Spd successfully. Furthermore, a synergistic rather than competitive binding of Spm to the EuW10/GL-22 assembly was revealed using FT-IR, and NMR titration spectra, together with DLS and TEM, essentially for the three-component sensing system. Besides, both EuW10 and EuW10/GL-22 assembly were successfully applied to the Spm determination in human urine and serum, suggesting the potential of these sensing approaches in detecting trace amounts of Spm in the clinic. Therefore, the constructed supramolecular assembly can detect the Spm sensitively (LOD = 2.0 nM) and efficiently distinguish it step-wise from other biogenic amines. It is a facile, straightforward, sensitive, and selective strategy for Spm determination and discrimination, which will be helpful in addressing the related biological and clinical requirements.
Collapse
|
7
|
A quantitative sensing system based on a 3D-printed ion-selective electrode for rapid and sensitive detection of bacteria in biological fluid. Talanta 2022; 238:123040. [PMID: 34801897 DOI: 10.1016/j.talanta.2021.123040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Bacterial infections, such as urinary tract infections, are crucial health problems. Here, we report a new potentiometric sensor to detect bacteria sensitively, accurately, and quickly. First, a customizable, 3D printed Ag+ selective electrode was fabricated as the probe. Our 3D printed electrode showed sensitive, linear, and selective responses to Ag+. Compared to commercial Ag+ selective electrodes, ours required less sample volume, shorter responding time, and lower costs. Next, a novel potentiometer was developed with Arduino to couple the electrode for data transducing and transferring, which was programmed to transfer results to cell phones wirelessly. Moreover, a filter was designed to quickly remove interfering species in a biofluid sample (e.g., Cl-). By detecting the lost Ag+ taken by bacteria, the bacterial number could be elucidated. With this sensor system, bacteria numbers could be detected as low as 80 CFU/mL (LOD) within 15 min, which is sufficient for many diagnoses (e.g., urinary tract infection >1000 CFU/mL). An amplification method was presented for single-digit bacteria detection. Overall, we are presenting a bacteria detector with three innovative components: the electrode (signal transduction and detection), the potentiometer (transducer and data processing), and the 3D printed filter (sample preparation), which showed robust and improved (than previously reported ones) analytical merits. The low-cost and customizable (the electrode and the open-source coding) nature enhances the transnationality of the system, especially in underdeveloped areas.
Collapse
|