1
|
Huang Q, Shi C, Sonkusare S, Li C, Voon V, Pan J. The Abnormal N-Acetylaspartate to Creatine Ratio of the Right Putamen is Linked to Wakefulness in Patients with Insomnia Disorder. Nat Sci Sleep 2024; 16:1407-1418. [PMID: 39318395 PMCID: PMC11420893 DOI: 10.2147/nss.s468269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose Converging evidence implicates the putamen in sleep-wake regulation. However, its role remains unclear. We hypothesized that metabolic abnormalities in the putamen are linked to insomnia disorder, which has not been previously addressed, and investigated putaminal N-acetylaspartate (NAA), choline (Cho), and creatine (Cr) in patients with insomnia disorder compared to healthy controls. Participants and Methods In the present study, the concentrations of NAA, Cho, and Cr in the putamen of 23 patients with insomnia disorder and 18 healthy controls were determined using proton magnetic resonance spectroscopy. Sociodemographic, psychometric, and polysomnography data were obtained from all participants. Results We found that the mean NAA/Cr ratio of the right putamen was significantly greater in the insomnia group compared to the control group and also greater than the left putamen within the insomnia group. The NAA/Cr ratio of the right putamen distinguished insomnia disorder from normal sleep with 78.3% sensitivity and 61.1% specificity. Furthermore, this ratio positively correlated with both objective and subjective insomnia severity and sleep quality. Conclusion Our findings provide critical evidence for the dysfunctional putaminal metabolism of NAA/Cr in insomnia disorder, suggesting that the abnormal NAA/Cr ratio of the right putamen is linked to wakefulness in patients with insomnia disorder and may serve as a potential biomarker of insomnia disorder.
Collapse
Affiliation(s)
- Qiaoting Huang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | | | - Congrui Li
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Beyer JL, Dix E, Husain-Krautter S, Kyomen HH. Enhancing Brain Health and Well-Being in Older Adults: Innovations in Lifestyle Interventions. Curr Psychiatry Rep 2024; 26:405-412. [PMID: 38842654 DOI: 10.1007/s11920-024-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This article will provide clinicians with guidance on helping older adult patients make lifestyle changes to enhance brain health and well-being. RECENT FINDINGS Evidence suggests that physical activity might be helpful in improving cognitive functioning. The data on the benefits of cognitive activity is inconsistent and not as robust. The MediDiet, DASH, and MIND diets have been associated with better cognitive health. Sleep hygiene and cognitive behavioral therapies are considered first line evidence-based treatments for insomnia and the maintenance of healthy sleep patterns. Mindfulness based interventions have been shown to reduce anxiety, depression, and stress, and can help some older adults manage pain more constructively. Evidence-based information regarding the four topics of exercise, nutrition, sleep, and mindfulness is reviewed, so that clinicians may be better able to optimize care for their older adult patients.
Collapse
Affiliation(s)
- John L Beyer
- Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ebony Dix
- Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Helen H Kyomen
- Boston University Chobanian and Avedisian School of Medicine, Tufts University School of Medicine and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Yesilkaya HU, Chen X, Watford L, McCoy E, Genc I, Du F, Ongur D, Yuksel C. Poor Self-Reported Sleep is Associated with Prolonged White Matter T2 Relaxation in Psychotic Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601887. [PMID: 39005452 PMCID: PMC11244968 DOI: 10.1101/2024.07.03.601887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by white matter (WM) abnormalities, however, their relationship with illness presentation is not clear. Sleep disturbances are common in both disorders, and recent evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in patients with SZ spectrum disorders and BD with psychotic features. Methods 28 patients with psychosis (17 BD-I, with psychotic features and 11 SZ spectrum disorders) were included. Metabolite and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index. Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p<0.001). Linear regressions showed that this association was specific to sleep disturbance but was not a byproduct of exacerbation in depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Haluk Umit Yesilkaya
- McLean Hospital, Belmont, MA
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | - Fei Du
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Du Y, Li C, Zhao W, Li J, Zhao L, Guo H, Jiang Y, Liu WV, Zeng S, Zhang H, Guo H, Ouyang X, Liu J. Multimodal neuroimaging exploration of the mechanisms of sleep quality deterioration after SARS-CoV-2 Omicron infection. BMC Med 2024; 22:271. [PMID: 38926881 PMCID: PMC11210028 DOI: 10.1186/s12916-024-03487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To evaluate the neurological alterations induced by Omicron infection, to compare brain changes in chronic insomnia with those in exacerbated chronic insomnia in Omicron patients, and to examine individuals without insomnia alongside those with new-onset insomnia. METHODS In this study, a total of 135 participants were recruited between January 11 and May 4, 2023, including 26 patients with chronic insomnia without exacerbation, 24 patients with chronic insomnia with exacerbation, 40 patients with no sleep disorder, and 30 patients with new-onset insomnia after infection with Omicron (a total of 120 participants with different sleep statuses after infection), as well as 15 healthy controls who were never infected with Omicron. Neuropsychiatric data, clinical symptoms, and multimodal magnetic resonance imaging data were collected. The gray matter thickness and T1, T2, proton density, and perivascular space values were analyzed. Associations between changes in multimodal magnetic resonance imaging findings and neuropsychiatric data were evaluated with correlation analyses. RESULTS Compared with healthy controls, gray matter thickness changes were similar in the patients who have and do not have a history of chronic insomnia groups after infection, including an increase in cortical thickness near the parietal lobe and a reduction in cortical thickness in the frontal, occipital, and medial brain regions. Analyses showed a reduced gray matter thickness in patients with chronic insomnia compared with those with an aggravation of chronic insomnia post-Omicron infection, and a reduction was found in the right medial orbitofrontal region (mean [SD], 2.38 [0.17] vs. 2.67 [0.29] mm; P < 0.001). In the subgroups of Omicron patients experiencing sleep deterioration, patients with a history of chronic insomnia whose insomnia symptoms worsened after infection displayed heightened medial orbitofrontal cortical thickness and increased proton density values in various brain regions. Conversely, patients with good sleep quality who experienced a new onset of insomnia after infection exhibited reduced cortical thickness in pericalcarine regions and decreased proton density values. In new-onset insomnia patients post-Omicron infection, the thickness in the right pericalcarine was negatively correlated with the Self-rating Anxiety Scale (r = - 0.538, P = 0.002, PFDR = 0.004) and Self-rating Depression Scale (r = - 0.406, P = 0.026, PFDR = 0.026) scores. CONCLUSIONS These findings help us understand the pathophysiological mechanisms involved when Omicron invades the nervous system and induces various forms of insomnia after infection. In the future, we will continue to pay attention to the dynamic changes in the brain related to insomnia caused by Omicron infection.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Cong Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China
| | - Jinyue Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Linlin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Huili Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | - Yingjia Jiang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China
| | | | - Song Zeng
- MR Product, GE Healthcare, Guangzhou, 510000, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers, Wuhan, 430000, China
| | - Hu Guo
- MR Application, Siemens Healthineers, Guangzhou, 510000, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province, 410011, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, 410011, China.
- Department of Radiology Quality Control Center, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Liao QM, Zhang ZJ, Yang X, Wei JX, Wang M, Dou YK, Du Y, Ma XH. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder. J Affect Disord 2024; 351:259-267. [PMID: 38266932 DOI: 10.1016/j.jad.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zi-Jian Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Kai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Jeong H, Yeo H, Lee KH, Kim N, Shin J, Seo MC, Jeon S, Lee YJ, Kim SJ. Brain structural correlates of subjective sleepiness and insomnia symptoms in shift workers. Front Neurosci 2024; 18:1330695. [PMID: 38440391 PMCID: PMC10909910 DOI: 10.3389/fnins.2024.1330695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Background Studies on the brain structures of shift workers are limited; thus, this cross-sectional study aimed to compare the brain structures and the brain structural correlates of subjective sleepiness and insomnia symptoms between shift workers and non-shift workers. Methods Shift workers (n = 63) and non-shift workers (n = 58) completed questionnaires assessing subjective sleepiness and insomnia symptoms. Cortical thickness, cortical surface area, and subcortical volumes were measured by magnetic resonance imaging. The brain morphometric measures were compared between the groups, and interaction analyses using the brain morphometric measures as the dependent variable were performed to test the interactions between the study group and measures of sleep disturbance (i.e., subjective sleepiness and insomnia symptoms). Results No differences in cortical thickness, cortical surface area, or subcortical volumes were detected between shift workers and non-shift workers. A single cluster in the left motor cortex showed a significant interaction between the study group and subjective sleepiness in the cortical surface area. The correlation between the left motor cortex surface area and the subjective sleepiness level was negative in shift workers and positive in non-shift workers. Significant interaction between the study group and insomnia symptoms was present for the left/right putamen volumes. The correlation between the left/right putamen volumes and insomnia symptom levels was positive in shift workers and negative in non-shift workers. Conclusion Left motor cortex surface area and bilateral putamen volumes were unique structural correlates of subjective sleepiness and insomnia symptoms in shift workers, respectively.
Collapse
Affiliation(s)
- Hyunwoo Jeong
- Department of Education and Training, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyewon Yeo
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Kyung Hwa Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nambeom Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Jiyoon Shin
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Cheol Seo
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sehyun Jeon
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seog Ju Kim
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhu X, Ren Y, Tan S, Ma X. Efficacy of transcranial alternating current stimulation in treating chronic insomnia and the impact of age on its effectiveness: A multisite randomized, double-blind, parallel-group, placebo-controlled study. J Psychiatr Res 2024; 170:253-261. [PMID: 38176353 DOI: 10.1016/j.jpsychires.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Insomnia is a significant health issue associated with various systemic diseases. Transcranial alternating current stimulation (tACS) has been proposed as a potential intervention for insomnia. However, the efficacy and mechanisms of tACS in chronic insomnia remain unclear. Accordingly, this study aimed to investigate the efficacy of tACS in treating chronic insomnia in adults and assess the impact of age on its effectiveness using a large sample from two centers. METHODS A total of 120 participants with chronic insomnia underwent 20 daily sessions of tACS (duration: 40 min, frequency: 77.5 Hz, and intensity: 15 mA) or sham tACS targeting the forehead and both mastoid areas over 4 weeks. Assessments were conducted at baseline, post-treatment, and 4-week follow-up. Primary outcomes included sleep quality and efficiency, onset latency, total sleep time, and daily disturbances. Secondary outcomes included depression, anxiety, and clinical impression. RESULTS Compared with the control group, the tACS group demonstrated improved sleep quality and efficiency, increased total sleep time, and reduced daily disturbance (all ps < 0.01). Moreover, tACS had a significant effect on clinical impression (p < 0.001), but not depression and anxiety scores. Subgroup analyses revealed that older participants experienced significant benefits from tACS in sleep quality, efficiency, and overall insomnia reduction at post-treatment and follow-up (p < 0.001). Notably, improved insomnia correlated with attenuated depressive and anxiety symptoms. CONCLUSIONS These findings suggest that tACS may be an effective intervention for chronic insomnia within an eight-week timeframe, and age affects the response to tACS in terms of insomnia improvement.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yanping Ren
- Being An-ding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing, 100088, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| | - Xin Ma
- Being An-ding Hospital, Capital Medical University, 5 Ankang Lane, Deshengmenwai Avenue, Xicheng District, Beijing, 100088, China.
| |
Collapse
|
8
|
Nielson SA, Kay DB, Dzierzewski JM. Sleep and Depression in Older Adults: A Narrative Review. Curr Psychiatry Rep 2023; 25:643-658. [PMID: 37740851 DOI: 10.1007/s11920-023-01455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE OF REVIEW The sleep-depression association has been recognized for decades. Efforts to clarify this association continue at an increasing pace. This review summarizes recent research on the sleep-depression association in older adults. RECENT FINDINGS Research over the past 4 years has utilized cross-sectional, longitudinal, cohort, and intervention designs to examine these associations. Short (< 7 h) and long (> 8-9 h) sleep durations and insomnia symptoms are risk factors for depression in older adults. Similarly, short sleep, long sleep, insomnia symptoms, and depression are all risk factors for poorer health in late life, including increased risk of cognitive decline, falls, and poorer quality-of-life. Intervention studies have produced mixed findings, with some studies suggesting that sleep interventions may be potentially effective in improving both insomnia and mood symptoms. Intervention studies incorporating both behavioral and physiological measures of sleep, and larger and diverse samples may enhance the field's understanding of the complex interplay between sleep and mood in older adults.
Collapse
Affiliation(s)
- Spencer A Nielson
- Department of Psychology, Virginia Commonwealth University, Richmond, USA
| | - Daniel B Kay
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Joseph M Dzierzewski
- National Sleep Foundation, 2001 Massachusetts Ave NW, Washington, DC, 20036, USA.
| |
Collapse
|
9
|
Wang Q, Hu S, Qi L, Wang X, Jin G, Wu D, Wang Y, Ren L. Causal associations between sleep traits and brain structure: a bidirectional Mendelian randomization study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:17. [PMID: 37784181 PMCID: PMC10544625 DOI: 10.1186/s12993-023-00220-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Emerging evidence suggests bidirectional causal relationships between sleep disturbance and psychiatric disorders, but the underlying mechanisms remain unclear. Understanding the bidirectional causality between sleep traits and brain imaging-derived phenotypes (IDPs) will help elucidate the mechanisms. Although previous studies have identified a range of structural differences in the brains of individuals with sleep disorders, it is still uncertain whether grey matter (GM) volume alterations precede or rather follow from the development of sleep disorders. RESULTS After Bonferroni correction, the forward MR analysis showed that insomnia complaint remained positively associated with the surface area (SA) of medial orbitofrontal cortex (β, 0.26; 95% CI, 0.15-0.37; P = 5.27 × 10-6). In the inverse MR analysis, higher global cortical SA predisposed individuals less prone to suffering insomnia complaint (OR, 0.89; 95%CI, 0.85-0.94; P = 1.51 × 10-5) and short sleep (≤ 6 h; OR, 0.98; 95%CI, 0.97-0.99; P = 1.51 × 10-5), while higher SA in posterior cingulate cortex resulted in a vulnerability to shorter sleep durations (β, - 0.09; 95%CI, - 0.13 to - 0.05; P = 1.21 × 10-5). CONCLUSIONS Sleep habits not only result from but also contribute to alterations in brain structure, which may shed light on the possible mechanisms linking sleep behaviours with neuropsychiatric disorders, and offer new strategies for prevention and intervention in psychiatric disorders and sleep disturbance.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Xiaopeng Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Guangyuan Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Di Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Yuke Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China.
- National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
10
|
Huang H, Cheng S, Yang X, Liu L, Cheng B, Meng P, Pan C, Wen Y, Jia Y, Liu H, Zhang F. Dissecting the Association between Gut Microbiota and Brain Structure Change Rate: A Two-Sample Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4227. [PMID: 37836511 PMCID: PMC10574136 DOI: 10.3390/nu15194227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The connection between the gut microbiota and brain structure changes is still unclear. We conducted a Mendelian randomization (MR) study to examine the bidirectional causality between the gut microbiota (211 taxa, including 131 genera, 35 families, 20 orders, 16 classes and 9 phyla; N = 18,340 individuals) and age-independent/dependent longitudinal changes in brain structure across the lifespan (N = 15,640 individuals aged 4~99 years). We identified causal associations between the gut microbiota and age-independent/dependent longitudinal changes in brain structure, such as family Peptostreptococcaceae with age-independent longitudinal changes of cortical gray matter (GM) volume and genus Faecalibacterium with age-independent average cortical thickness and cortical GM volume. Taking age-independent longitudinal changes in brain structure across the lifespan as exposures, there were causal relationships between the surface area and genus Lachnospiraceae. Our findings may serve as fundamentals for further research on the genetic mechanisms and biological treatment of complex traits and diseases associated with the gut microbiota and the brain structure change rate.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Nephrology, Xi’an Children’s Hospital, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an 710003, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.C.); (X.Y.); (L.L.); (B.C.); (P.M.); (C.P.); (Y.W.); (Y.J.); (H.L.)
| |
Collapse
|
11
|
Bresser T, Leerssen J, Hölsken S, Groote I, Foster-Dingley JC, van den Heuvel MP, Van Someren EJW. The role of brain white matter in depression resilience and response to sleep interventions. Brain Commun 2023; 5:fcad210. [PMID: 37554956 PMCID: PMC10406158 DOI: 10.1093/braincomms/fcad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Insomnia poses a high risk for depression. Brain mechanisms of sleep and mood improvement following cognitive behavioural therapy for insomnia remain elusive. This longitudinal study evaluated whether (i) individual differences in baseline brain white matter microstructure predict improvements and (ii) intervention affects brain white matter microstructure. People meeting the Diagnostic and Statistical Manual of Mental Disorders-5 criteria for Insomnia Disorder (n = 117) participated in a randomized controlled trial comparing 6 weeks of no treatment with therapist-guided digital cognitive behavioural therapy for insomnia, circadian rhythm support or their combination (cognitive behavioural therapy for insomnia + circadian rhythm support). Insomnia Severity Index and Inventory of Depressive Symptomatology-Self Report were assessed at baseline and followed up at Weeks 7, 26, 39 and 52. Diffusion-weighted magnetic resonance images were acquired at baseline and Week 7. Skeletonized white matter tracts, fractional anisotropy and mean diffusivity were quantified both tract-wise and voxel-wise using tract-based spatial statistics. Analyses used linear and mixed effect models while correcting for multiple testing using false discovery rate and Bonferroni for correlated endpoint measures. Our results show the following: (i) tract-wise lower fractional anisotropy in the left retrolenticular part of the internal capsule at baseline predicted both worse progression of depressive symptoms in untreated participants and more improvement in treated participants (fractional anisotropy × any intervention, PFDR = 0.053, Pcorr = 0.045). (ii) Only the cognitive behavioural therapy for insomnia + circadian rhythm support intervention induced a trend-level mean diffusivity decrease in the right superior corona radiata (PFDR = 0.128, Pcorr = 0.108), and individuals with a stronger mean diffusivity decrease showed a stronger alleviation of insomnia (R = 0.20, P = 0.035). In summary, individual differences in risk and treatment-supported resilience of depression involve white matter microstructure. Future studies could target the role of the left retrolenticular part of the internal capsule and right superior corona radiata and the brain areas they connect.
Collapse
Affiliation(s)
- Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Stefanie Hölsken
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg Essen, 45122, Essen, Germany
| | - Inge Groote
- Computational Radiology and Artificial Intelligence (CRAI), Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0372, Oslo, Norway
- Department of Radiology, Vestfold Hospital Trust, 3116, Tønsberg, Norway
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universtiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry, Vrije Universtiteit Amsterdam, Amsterdam UMC, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Zhao J, Kong Q, Zhou X, Zhang Y, Yu Z, Qu W, Huang H, Luo X. Differences in Gray Matter Volume in Cerebral Small Vessel Disease Patients with and without Sleep Disturbance. Brain Sci 2023; 13:294. [PMID: 36831837 PMCID: PMC9953873 DOI: 10.3390/brainsci13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Recently, there has been increased interest in the relationship between cerebral small vessel disease (CSVD) and circadian rhythm disruption, particularly sleep disturbance. However, the neural mechanism of sleep disturbance in CSVD patients remains poorly understood. The purpose of this study is to explore the gray matter alterations in CSVD patients with and without sleep disturbance. 59 patients with CSVD and 40 healthy controls (HC) were recruited for the present study. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. CSVD patients were categorized into either the good sleepers group (CSVD-GS, n = 23) or the poor sleepers group (CSVD-PS, n = 36) based on PSQI score. Voxel-based morphometry (VBM) analysis was used to assess differences in gray matter volume (GMV) between groups. Multivariate regression analyses were performed to investigate the relationships between sleep quality, GMV, and white matter hyperintensities (WMH). We observed GMV differences between the three groups in the bilateral caudate, right thalamus, bilateral calcarine cortex, left precentral gyrus, right orbitofrontal cortex, left cingulate gyrus, and right sub-gyral temporal lobe. Additionally, the CSVD-PS group exhibited decreased GMV in the bilateral calcarine cortex yet increased GMV in the right caudate compared to the CSVD-GS group. In fully adjusted models, GMV of the right caudate and bilateral calcarine cortex was associated with sleep quality in CSVD patients. The present study revealed structural brain alterations in CSVD patients with sleep disturbance. These findings may provide novel insights into the neural mechanisms of sleep disturbance in CSVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
13
|
Wang Y, Li M, Li W, Xiao L, Huo X, Ding J, Sun T. Is the insula linked to sleep? A systematic review and narrative synthesis. Heliyon 2022; 8:e11406. [DOI: 10.1016/j.heliyon.2022.e11406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
14
|
Calderón-Garcidueñas L, Hernández-Luna J, Mukherjee PS, Styner M, Chávez-Franco DA, Luévano-Castro SC, Crespo-Cortés CN, Stommel EW, Torres-Jardón R. Hemispheric Cortical, Cerebellar and Caudate Atrophy Associated to Cognitive Impairment in Metropolitan Mexico City Young Adults Exposed to Fine Particulate Matter Air Pollution. TOXICS 2022; 10:toxics10040156. [PMID: 35448417 PMCID: PMC9028857 DOI: 10.3390/toxics10040156] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
- Correspondence: ; Tel.: +1-406-243-4785
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| | - Martin Styner
- Neuro Image Research and Analysis Lab, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Diana A. Chávez-Franco
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Samuel C. Luévano-Castro
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Celia Nohemí Crespo-Cortés
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|