1
|
Wang F. Interleukin‑18 binding protein: Biological properties and roles in human and animal immune regulation (Review). Biomed Rep 2024; 20:87. [PMID: 38665423 PMCID: PMC11040224 DOI: 10.3892/br.2024.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/11/2024] [Indexed: 04/28/2024] Open
Abstract
IL-18 binding protein (IL-18BP) is a natural regulatory molecule of the proinflammatory cytokine IL-18. It can regulate activity of IL-18 by high affinity binding. The present review aimed to highlight developments, characteristics and functions of IL-18BP. IL-18BP serves biological and anti-pathological roles in treating disease. In humans, it modulates progression of a number of chronic diseases, such as adult-onset Still's disease. The present review summarizes molecular structure, role of IL-18BP in disease and interaction with other proteins in important pathological processes.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Disease at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, P.R. China
| |
Collapse
|
2
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
3
|
Janho dit Hreich S, Juhel T, Leroy S, Ghinet A, Brau F, Hofman V, Hofman P, Vouret-Craviari V. Activation of the P2RX7/IL-18 pathway in immune cells attenuates lung fibrosis. eLife 2024; 12:RP88138. [PMID: 38300690 PMCID: PMC10945561 DOI: 10.7554/elife.88138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFβ. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.
Collapse
Affiliation(s)
| | - Thierry Juhel
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Sylvie Leroy
- FHU OncoAgeNiceFrance
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Pneumology DepartmentNiceFrance
| | - Alina Ghinet
- Inserm U995, LIRIC, Université de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place VerdunLilleFrance
- Hautes Etudes d’Ingénieur (HEI), JUNIA Hauts-de-France, UCLille, Laboratoire de chimie durable et santéLilleFrance
- ‘Al. I. Cuza’ University of Iasi, Faculty of ChemistryIasiRomania
| | - Frederic Brau
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
| | - Veronique Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | | |
Collapse
|
4
|
Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues. Inflammopharmacology 2024; 32:287-305. [PMID: 37991660 DOI: 10.1007/s10787-023-01389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Pulmonary fibrosis is a devastating disorder distinguished by redundant inflammation and matrix accumulation in the lung interstitium. The early inflammatory cascade coupled with recurring tissue injury orchestrates a set of events marked by perturbed matrix hemostasis, deposition of matrix proteins, and remodeling in lung tissue. Numerous investigations have corroborated a direct correlation between the NLR family pyrin domain-containing 3 (NLRP3) activation and the development of pulmonary fibrosis. Dysregulated activation of NLRP3 within the pulmonary microenvironment exacerbates inflammation and may incite fibrogenic responses. Nevertheless, the precise mechanisms through which the NLRP3 inflammasome elicits pro-fibrogenic responses remain inadequately defined. Contemporary findings suggest that the pro-fibrotic consequences stemming from NLRP3 signaling primarily hinge on the action of interleukin-1β (IL-1β). IL-1β instigates IL-1 receptor signaling, potentiating the activity of transforming growth factor-beta (TGF-β). This signaling cascade, in turn, exerts influence over various transcription factors, including SNAIL, TWIST, and zinc finger E-box-binding homeobox 1 (ZEB 1/2), which collectively foster myofibroblast activation and consequent lung fibrosis. Here, we have connected the dots to illustrate how the NLRP3 inflammasome orchestrates a multitude of signaling events, including the activation of transcription factors that facilitate myofibroblast activation and subsequent lung remodeling. In addition, we have highlighted the prominent role played by various cells in the formation of myofibroblasts, the primary culprit in lung fibrosis. We also provided a concise overview of various compounds that hold the potential to impede NLRP3 inflammasome signaling, thus offering a promising avenue for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Shobhit Gairola
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Kyun ML, Park T, Jung H, Kim I, Kwon JI, Jeong SY, Choi M, Park D, Lee YB, Moon KS. Development of an In Vitro Model for Inflammation Mediated Renal Toxicity Using 3D Renal Tubules and Co-Cultured Human Immune Cells. Tissue Eng Regen Med 2023; 20:1173-1190. [PMID: 37843784 PMCID: PMC10645777 DOI: 10.1007/s13770-023-00602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND The emergence of various infectious diseases and the toxic effects of hyperinflammation by biotherapeutics have highlighted the need for in vitro preclinical models mimicking the human immune system. In vitro models studying the relationship between hyperinflammation and acute renal injury mainly rely on 2D culture systems, which have shown limitations in recapitulating kidney function. Herein, we developed an in vitro kidney toxicity model by co-culturing 3D engineered kidney proximal tubules cells (RPTEC/TERT1) with human peripheral blood mononuclear cells (PBMC). METHODS RPTEC/TERT1 were sandwich cultured to form 3D renal tubules for 16 days. The tubules were then co-cultured with PBMC using transwell (0.4 μm pores) for 24 h. Hyperinflammation of PBMC was induced during co-culture using polyinosinic-polycytidylic acid (polyI:C) and lipopolysaccharide (LPS) to investigate the effects of the induced hyperinflammation on the renal tubules. RESULTS Encapsulated RPTEC/TERT1 cells in Matrigel exhibited elevated renal function markers compared to 2D culture. The coexistence of PBMC and polyI:C induced a strong inflammatory response in the kidney cells. This hyperinflammation significantly reduced primary cilia formation and upregulated kidney injury markers along the 3D tubules. Similarly, treating co-cultured PBMC with LPS to induce hyperinflammation resulted in comparable inflammatory responses and potential kidney injury. CONCLUSION The model demonstrated similar changes in kidney injury markers following polyI:C and LPS treatment, indicating its suitability for detecting immune-associated kidney damage resulting from infections and biopharmaceutical applications.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
6
|
He J, Hu J, Liu H. A three-gene random forest model for diagnosing idiopathic pulmonary fibrosis based on circadian rhythm-related genes in lung tissue. Expert Rev Respir Med 2023; 17:1307-1320. [PMID: 38285622 DOI: 10.1080/17476348.2024.2311262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND The disorder of circadian rhythm could be a key factor mediating fibrotic lung disease Therefore, our study aims to determine the diagnostic value of circadian rhythm-related genes (CRRGs) in IPF. METHODS We retrieved the data on CRRGs from previous studies and the GSE150910 dataset. The participants from the GSE150910 dataset were divided into training and internal validation sets. Next, we used several various bioinformatics methods and machine learning algorithms to screen genes. Next, we identified SEMA5A, COL7A1, and TUBB3, which were included in the random forest (RF) diagnostic model. Finally, external validation was conducted on data retrieved from the GSE184316 datasets. RESULTS The results revealed that the RF diagnostic model could diagnose patients with IPF in the internal validation set with the area under the ROC curve (AUC) value of 0.905 and in the external validation with the AUC value of 0.767. Furthermore, real-time quantitative PCR and western blotting results revealed a significant decrease in SEMA5A (p < 0.05) expression level and an increase in COL7A1 and TUBB3 expression levels in TGF-β1-treated normal human lung fibroblasts. CONCLUSION We constructed an RF diagnostic model based on SEMA5A, COL7A1, and TUBB3 expression in lung tissue for diagnosing patients with IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Hu
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hairong Liu
- Clinical Medical College of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Geriatric Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Eriksen E, Afanou AK, Straumfors A, Graff P. Bioaerosol-induced in vitro activation of toll-like receptors and inflammatory biomarker expression in waste workers. Int Arch Occup Environ Health 2023; 96:985-998. [PMID: 37243736 PMCID: PMC10361871 DOI: 10.1007/s00420-023-01984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE Occupational exposure to bioaerosols during waste handling remains a health concern for exposed workers. However, exposure-related health effects and underlying immunological mechanisms are still poorly described. METHODS The present study assessed the inflammatory potential of work-air samples (n = 56) in vitro and investigated biomarker expression in exposed workers (n = 69) compared to unexposed controls (n = 25). These quantitative results were compared to self-reported health conditions. RESULTS Personal air samples provoked an activation of TLR2 and TLR4 HEK reporter cells in one-third of all samples, indicating that the work environment contained ligands capable of inducing an immune response in vitro. Monocyte levels, as well as plasma biomarker levels, such as IL-1Ra, IL-18 and TNFα were significantly higher in exposed workers, compared to the control group when confounding factors such as BMI, sex, age and smoking habits were accounted for. Furthermore, a significant exposure-related increase in midweek IL-8 levels was measured among exposed workers. Tendencies of increased prevalence of health effects of the respiratory tract were identified in exposed workers. CONCLUSION Inhalable dust provoked TLR activation in vitro, indicating that an exposure-related immune response may be expected in susceptible workers. However, despite significant differences in inflammatory plasma biomarker levels between exposed and unexposed workers, prevalence of self-reported health effects did not differ between the groups. This may be due to the healthy worker effect, or other factors such as adequate use of personal protective respiratory devices or adaptation to the work environment with reduced activation of the immune system.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
8
|
Bakalović G, Bokonjić D, Mihajlović D, Čolić M, Mališ V, Drakul M, Tomić S, Jojić I, Rakočević S, Popović D, Kozić L, Vasiljević M, Bekić M, Mašić S, Ljuboja O. Dysfunctions of Neutrophils in the Peripheral Blood of Children with Cystic Fibrosis. Biomedicines 2023; 11:1725. [PMID: 37371820 DOI: 10.3390/biomedicines11061725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunction of neutrophils in patients with cystic fibrosis (CF) is best characterized in bronchoalveolar lavage (BAL), whereas peripheral blood neutrophils are less examined, and the results are contradictory, especially in younger populations. Therefore, this work aimed to study functional and phenotypic changes in circulating neutrophils in children with CF. The study included 19 CF children (5-17 years) and 14 corresponding age-matched healthy children. Isolated neutrophils were cultured either alone or with different stimuli. Several functions were studied: apoptosis, NET-osis, phagocytosis, and production of reactive oxygen species (ROS), neutrophil elastase (NE), and 11 cytokines. In addition, the expression of 20 molecules involved in different functions of neutrophils was evaluated by using flow cytometry. CF neutrophils showed reduced apoptosis and lower production of NE and IL-18 compared to the healthy controls, whereas IL-8 was augmented. All of these functions were further potentiated after neutrophil stimulation, which included higher ROS production and the up-regulation of CD11b and IL-10 expression. NET-osis was higher only when neutrophils from moderate-severe CF were treated with Pseudomonas aeruginosa, and the process correlated with forced expiratory volume in the first second (FEV1). Phagocytosis was not significantly changed. In conclusion, circulating neutrophils from children with CF showed fewer impaired changes in phenotype than in function. Functional abnormalities, which were already present at the baseline levels in neutrophils, depended on the type of stimuli that mimicked different activation states of these cells at the site of infection.
Collapse
Affiliation(s)
- Ganimeta Bakalović
- Pediatric Clinic, Clinical Center of the University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Dejan Bokonjić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Department of Pediatrics, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vanja Mališ
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Marija Drakul
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia
| | - Ivan Jojić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Sara Rakočević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Darinka Popović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Ljiljana Kozić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia
| | - Srđan Mašić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Olivera Ljuboja
- Clinic for Children's Diseases, University Clinical Center of Banja Luka, 51000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
9
|
A Novel 5-Methylcytosine- and Immune-Related Prognostic Signature Is a Potential Marker of Idiopathic Pulmonary Fibrosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1685384. [PMID: 36262873 PMCID: PMC9574547 DOI: 10.1155/2022/1685384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and highly lethal pulmonary interstitial lung disease. The current study is aimed at investigating reliable markers suitable for the treatment and identification of IPF. This study constructed the first 5-methylcytosine- (m5C-) and immune-related prognostic signature (m5CPS) based on coexpressed genes of m5C regulatory genes and immune-related genes. The m5CPS was established using the training cohort (n = 68) and verified using the test (n = 44) and validation (n = 64) cohorts. The area under the curve (AUC) values were utilized to evaluate the accuracy of m5CPS in predicting the survival of IPF patients. The Kaplan-Meier curves and Cox regression analyses were used to assess the prognostic effect of m5CPS. The AUC was utilized to evaluate the reliability of m5CPS in distinguishing IPF patients from healthy individuals. In terms of the results, m5CPS could predict the one-, three-, and five-year survival rates of IPF patients with high accuracy (AUC = .803–.973). In fact, m5CPS is not only an independent indicator of the poor prognosis of IPF patients (hazard ratio > 1; p < .05) but can also distinguish IPF patients from healthy individuals (AUC = .862). Also, m5CPS may affect the immune response and inflammatory response, and it was positively associated with the infiltration levels of active mast cells (p < .05). In sum, the current study establishes a novel m5CPS for IPF and reveals the role of m5CPS as a reliable marker for predicting the prognosis and disease status of IPF patients.
Collapse
|
10
|
Zhou L, Tian H, Wang Q, Xiong W, Zhou X, Yan J. Effect of Qingfei Huaxian Decoction combined with prednisone acetate on serum inflammatory factors and pulmonary function of patients with idiopathic pulmonary fibrosis. Am J Transl Res 2022; 14:5905-5914. [PMID: 36105016 PMCID: PMC9452306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the effect of Qingfei Huaxian Decoction combined with prednisone acetate on serum inflammatory factors and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). METHODS The clinical data of 118 patients with IPF treated in Wuhan Hospital of Traditional Chinese Medicine from June 2019 to August 2021 were retrospectively analyzed. Among the patients, 56 patients treated with prednisone acetate were assigned to the control group, and the remaining 62 patients treated with Qingfei Huaxian Decoction combined with prednisone acetate were assigned to the observation group. The efficacy and incidence of adverse reactions were compared between the two groups, and forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC, interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-18 (IL-18), hyaluronic acid (HA) and laminin (LN) in the two groups were evaluated before and after therapy. Logistic regression was conducted to analyze the risk factors impacting the treatment efficacy in patients. RESULTS After therapy, the observation group showed significantly higher efficacy than the control group. Compared with the control group, the observation group showed significantly higher levels of FEV1, FVC and FEV1/FVC, significantly lower levels of HA and LN, and a significantly higher IL-12 level (all P < 0.05). Therapeutic regimen, IL-6, IL-12, IL-18 and HA were independent risk factors impacting the efficacy of treatment in patients (P < 0.05). CONCLUSION Qingfei Huaxian Decoction combined with prednisone acetate has greater treatmetn efficacy in patients with IPF by improving the serum inflammatory factors and pulmonary function.
Collapse
Affiliation(s)
- Lei Zhou
- Nephrology Department, Wuhan Hospital of Traditional Chinese MedicineNo. 303 Sixin Avenue, Hanyang District, Wuhan 430050, Hubei, China
| | - Hui Tian
- Department of Pulmonary Diseases, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Qiong Wang
- Endocrine Department, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Wuzhong Xiong
- Endocrine Department, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Xiang Zhou
- Clinical Laboratory, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Jingjing Yan
- Department of Pulmonary Diseases, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| |
Collapse
|