1
|
Nestor BJ, Bird T, Severn-Ellis AA, Bayer PE, Ranathunge K, Prodhan MA, Dassanayake M, Batley J, Edwards D, Lambers H, Finnegan PM. Identification and expression analysis of Phosphate Transporter 1 (PHT1) genes in the highly phosphorus-use-efficient Hakea prostrata (Proteaceae). PLANT, CELL & ENVIRONMENT 2024; 47:5021-5038. [PMID: 39136390 DOI: 10.1111/pce.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 11/06/2024]
Abstract
Heavy and costly use of phosphorus (P) fertiliser is often needed to achieve high crop yields, but only a small amount of applied P fertiliser is available to most crop plants. Hakea prostrata (Proteaceae) is endemic to the P-impoverished landscape of southwest Australia and has several P-saving traits. We identified 16 members of the Phosphate Transporter 1 (PHT1) gene family (HpPHT1;1-HpPHT1;12d) in a long-read genome assembly of H. prostrata. Based on phylogenetics, sequence structure and expression patterns, we classified HpPHT1;1 as potentially involved in Pi uptake from soil and HpPHT1;8 and HpPHT1;9 as potentially involved in Pi uptake and root-to-shoot translocation. Three genes, HpPHT1;4, HpPHT1;6 and HpPHT1;8, lacked regulatory PHR1-binding sites (P1BS) in the promoter regions. Available expression data for HpPHT1;6 and HpPHT1;8 indicated they are not responsive to changes in P supply, potentially contributing to the high P sensitivity of H. prostrata. We also discovered a Proteaceae-specific clade of closely-spaced PHT1 genes that lacked conserved genetic architecture among genera, indicating an evolutionary hot spot within the genome. Overall, the genome assembly of H. prostrata provides a much-needed foundation for understanding the genetic mechanisms of novel adaptations to low P soils in southwest Australian plants.
Collapse
Affiliation(s)
- Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Toby Bird
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - M Asaduzzaman Prodhan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Centre for Applied Bioinformatics, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Pearman WS, Arranz V, Carvajal JI, Whibley A, Liau Y, Johnson K, Gray R, Treece JM, Gemmell NJ, Liggins L, Fraser CI, Jensen EL, Green NJ. A cry for kelp: Evidence for polyphenolic inhibition of Oxford Nanopore sequencing of brown algae. JOURNAL OF PHYCOLOGY 2024. [PMID: 39435595 DOI: 10.1111/jpy.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Genomic resources have yielded unprecedented insights into ecological and evolutionary processes, not to mention their importance in economic and conservation management of specific organisms. However, the field of macroalgal genomics is hampered by difficulties in the isolation of suitable DNA. Even when DNA that appears high quality by standard metrics has been isolated, such samples may not perform well during the sequencing process. We here have compared Oxford Nanopore long-read sequencing results for three species of macroalgae to those of nonmacroalgal species and determined that when using macroalgal samples, sequencing activity declined rapidly, resulting in reduced sequencing yield. Chemical analysis of macroalgal DNA that would be considered suitable for sequencing revealed that DNA derived from dried macroalgae was enriched for polyphenol-DNA adducts (DNA with large polyphenols chemically attached to it), which may have led to sequencing inhibition. Of note, we observed the strongest evidence of sequencing inhibition and reduced sequence output when using samples dried using silica gel-suggesting that such storage approaches may not be appropriate for samples destined for Oxford Nanopore sequencing. Our findings have wide-ranging implications for the generation of genomic resources from macroalgae and suggest a need to develop new storage methods that are more amenable to Oxford Nanopore sequencing or to use fresh flash-frozen tissue wherever possible for genome sequencing.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Vanessa Arranz
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jose I Carvajal
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Annabel Whibley
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
- School of Biological Sciences, University of Auckland - City Campus, Auckland, New Zealand
| | - Yusmiati Liau
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
| | - Katherine Johnson
- Genomics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jackson M Treece
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Libby Liggins
- School of Biological Sciences, University of Auckland - City Campus, Auckland, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas J Green
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Ferguson S, Bar-Ness YD, Borevitz J, Jones A. A telomere-to-telomere Eucalyptus regnans genome: unveiling haplotype variance in structure and genes within one of the world's tallest trees. BMC Genomics 2024; 25:913. [PMID: 39350032 PMCID: PMC11443909 DOI: 10.1186/s12864-024-10810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the world's tallest flowering plant. RESULTS Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species. CONCLUSIONS Our study provides a foundation for future research into E. regnans environmental adaptation, and the high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Vigouroux M, Novák P, Oliveira LC, Santos C, Cheema J, Wouters RHM, Paajanen P, Vickers M, Koblížková A, Vaz Patto MC, Macas J, Steuernagel B, Martin C, Emmrich PMF. A chromosome-scale reference genome of grasspea (Lathyrus sativus). Sci Data 2024; 11:1035. [PMID: 39333203 PMCID: PMC11437036 DOI: 10.1038/s41597-024-03868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Grasspea (Lathyrus sativus L.) is an underutilised but promising legume crop with tolerance to a wide range of abiotic and biotic stress factors, and potential for climate-resilient agriculture. Despite a long history and wide geographical distribution of cultivation, only limited breeding resources are available. This paper reports a 5.96 Gbp genome assembly of grasspea genotype LS007, of which 5.03 Gbp is scaffolded into 7 pseudo-chromosomes. The assembly has a BUSCO completeness score of 99.1% and is annotated with 31719 gene models and repeat elements. This represents the most contiguous and accurate assembly of the grasspea genome to date.
Collapse
Affiliation(s)
- Marielle Vigouroux
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Petr Novák
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ, 37005, Czech Republic
| | - Ludmila Cristina Oliveira
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ, 37005, Czech Republic
| | - Carmen Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD, Cambridge, United Kingdom
| | - Roland H M Wouters
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Pirita Paajanen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Martin Vickers
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Andrea Koblížková
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ, 37005, Czech Republic
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Jiří Macas
- Institute of Plant Molecular Biology, Biology Centre CAS, Branisovska 31, Ceske Budejovice, CZ, 37005, Czech Republic
| | | | - Cathie Martin
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Peter M F Emmrich
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
- Norwich Institute for Sustainable Development, School of International Development, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
5
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
Ahrens CW, Murray K, Mazanec RA, Ferguson S, Jones A, Tissue DT, Byrne M, Borevitz JO, Rymer PD. Genomic determinants, architecture, and constraints in drought-related traits in Corymbia calophylla. BMC Genomics 2024; 25:640. [PMID: 38937661 PMCID: PMC11209971 DOI: 10.1186/s12864-024-10531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla. RESULTS We found 273 genomic variants determining traits with moderate heritability (h2SNP = 0.26-0.64). Significant variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chromosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions. CONCLUSIONS Our results on the genetic basis for drought traits in Corymbia calophylla have several implications for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait predictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex genomic architecture potentially limiting trees response to climate change.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
- Cesar Australia, Brunswick, VIC, 3058, Australia.
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Richard A Mazanec
- Biodiversity and Conservation Science, Western Australian Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Western Australian Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
7
|
Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J. Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence. Genome Res 2024; 34:606-619. [PMID: 38589251 PMCID: PMC11146599 DOI: 10.1101/gr.277999.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence, genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and the subsequent divergence beyond recognition of rearrangements become the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence but at a slower pace than that of rearrangements. We hypothesize that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia;
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia;
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
- Weigel Department, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Rose Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
8
|
Massaro I, Poethig RS, Sinha NR, Leichty AR. Chromosome-level genome of the transformable northern wattle, Acacia crassicarpa. G3 (BETHESDA, MD.) 2024; 14:jkad284. [PMID: 38096217 PMCID: PMC10917515 DOI: 10.1093/g3journal/jkad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 03/08/2024]
Abstract
The genus Acacia is a large group of woody legumes containing an enormous amount of morphological diversity in leaf shape. This diversity is at least in part the result of an innovation in leaf development where many Acacia species are capable of developing leaves of both bifacial and unifacial morphologies. While not unique in the plant kingdom, unifaciality is most commonly associated with monocots, and its developmental genetic mechanisms have yet to be explored beyond this group. In this study, we identify an accession of Acacia crassicarpa with high regeneration rates and isolate a clone for genome sequencing. We generate a chromosome-level assembly of this readily transformable clone, and using comparative analyses, confirm a whole-genome duplication unique to Caesalpinoid legumes. This resource will be important for future work examining genome evolution in legumes and the unique developmental genetic mechanisms underlying unifacial morphogenesis in Acacia.
Collapse
Affiliation(s)
- Isabelle Massaro
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Neelima R Sinha
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Aaron R Leichty
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA
- USDA Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
- 800 Buchanan Street, Albany, CA 94710, USA
| |
Collapse
|
9
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
10
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Shioya N, Ogiso-Tanaka E, Watanabe M, Anai T, Hoshino T. Development of a High-Quality/Yield Long-Read Sequencing-Adaptable DNA Extraction Method for Crop Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2971. [PMID: 37631182 PMCID: PMC10457885 DOI: 10.3390/plants12162971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Genome sequencing is important for discovering critical genes in crops and improving crop breeding efficiency. Generally, fresh, young leaves are used for DNA extraction from plants. However, seeds, the storage form, are more efficient because they do not require cultivation and can be ground at room temperature. Yet, only a few DNA extraction kits or methods suitable for seeds have been developed to date. In this study, we introduced an improved (IMP) Boom method that is relatively low-cost, simple to operate, and yields high-quality DNA that can withstand long-read sequencing. The method successfully extracted approximately 8 µg of DNA per gram of seed weight from soybean seeds at an average concentration of 48.3 ng/µL, approximately 40-fold higher than that extracted from seeds using a common extraction method kit. The A260/280 and A260/230 values of the DNA were 1.90 and 2.43, respectively, which exceeded the respective quality thresholds of 1.8 and 2.0. The DNA also had a DNA integrity number value (indicating the degree of DNA degradation) of 8.1, higher than that obtained using the kit and cetyltrimethylammonium bromide methods. Furthermore, the DNA showed a read length N50 of 20.96 kbp and a maximum read length of 127.8 kbp upon long-read sequencing using the Oxford Nanopore sequencer, with both values being higher than those obtained using the other methods. DNA extracted from seeds using the IMP Boom method showed an increase in the percentage of the nuclear genome with a decrease in the relative ratio of chloroplast DNA. These results suggested that the proposed IMP Boom method can extract high-quality and high-concentration DNA that can be used for long-read sequencing, which cannot be achieved from plant seeds using other conventional DNA extraction methods. The IMP Boom method could also be adapted to crop seeds other than soybeans, such as pea, okra, maize, and sunflower. This improved method is expected to improve the efficiency of various crop-breeding operations, including seed variety determination, testing of genetically modified seeds, and marker-assisted selection.
Collapse
Affiliation(s)
- Naohiro Shioya
- Laboratory of Crop Breeding, Graduate School of Agricultural Sciences, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Yamagata, Japan;
| | - Eri Ogiso-Tanaka
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| | - Masanori Watanabe
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Yamagata, Japan;
| | - Toyoaki Anai
- Laboratory of Agroecology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Fukuoka, Japan;
| | - Tomoki Hoshino
- Laboratory of Crop Breeding, Graduate School of Agricultural Sciences, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Yamagata, Japan;
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka 997-8555, Yamagata, Japan;
| |
Collapse
|
12
|
De La Cerda GY, Landis JB, Eifler E, Hernandez AI, Li F, Zhang J, Tribble CM, Karimi N, Chan P, Givnish T, Strickler SR, Specht CD. Balancing read length and sequencing depth: Optimizing Nanopore long-read sequencing for monocots with an emphasis on the Liliales. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11524. [PMID: 37342170 PMCID: PMC10278932 DOI: 10.1002/aps3.11524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/22/2023]
Abstract
Premise We present approaches used to generate long-read Nanopore sequencing reads for the Liliales and demonstrate how modifications to standard protocols directly impact read length and total output. The goal is to help those interested in generating long-read sequencing data determine which steps may be necessary for optimizing output and results. Methods Four species of Calochortus (Liliaceae) were sequenced. Modifications made to sodium dodecyl sulfate (SDS) extractions and cleanup protocols included grinding with a mortar and pestle, using cut or wide-bore tips, chloroform cleaning, bead cleaning, eliminating short fragments, and using highly purified DNA. Results Steps taken to maximize read length can decrease overall output. Notably, the number of pores in a flow cell is correlated with the overall output, yet we did not see an association between the pore number and the read length or the number of reads produced. Discussion Many factors contribute to the overall success of a Nanopore sequencing run. We showed the direct impact that several modifications to the DNA extraction and cleaning steps have on the total sequencing output, read size, and number of reads generated. We show a tradeoff between read length and the number of reads and, to a lesser extent, the total sequencing output, all of which are important factors for successful de novo genome assembly.
Collapse
Affiliation(s)
- Gisel Y. De La Cerda
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Evan Eifler
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Adriana I. Hernandez
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| | - Fay‐Wei Li
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Jing Zhang
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Carrie M. Tribble
- School of Life SciencesUniversity of Hawaiʻi, MānoaHonoluluHawaiʻi96822USA
| | - Nisa Karimi
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Patricia Chan
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Thomas Givnish
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Susan R. Strickler
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
- Present address:
Plant Science and ConservationChicago Botanic GardenGlencoeIllinois60022USA
- Present address:
Plant Biology and Conservation ProgramNorthwestern UniversityEvanstonIllinois60208USA
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| |
Collapse
|
13
|
Kang M, Chanderbali A, Lee S, Soltis DE, Soltis PS, Kim S. High-molecular-weight DNA extraction for long-read sequencing of plant genomes: An optimization of standard methods. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11528. [PMID: 37342161 PMCID: PMC10278927 DOI: 10.1002/aps3.11528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Premise Developing an effective and easy-to-use high-molecular-weight (HMW) DNA extraction method is essential for genomic research, especially in the era of third-generation sequencing. To efficiently use technologies capable of generating long-read sequences, it is important to maximize both the length and purity of the extracted DNA; however, this is frequently difficult to achieve with plant samples. Methods and Results We present a HMW DNA extraction method that combines (1) a nuclei extraction method followed by (2) a traditional cetyltrimethylammonium bromide (CTAB) DNA extraction method for plants with optimized extraction conditions that influence HMW DNA recovery. Our protocol produced DNA fragments (percentage of fragments >20 kbp) that were, on average, ca. five times longer than those obtained using a commercial kit, and contaminants were removed more effectively. Conclusions This effective HMW DNA extraction protocol can be used as a standard protocol for a diverse array of taxa, which will enhance plant genomic research.
Collapse
Affiliation(s)
- Myoungbo Kang
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| | - Andre Chanderbali
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Seungyeon Lee
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Sangtae Kim
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| |
Collapse
|
14
|
Xie P, Ke Y, Kuo L. Modified CTAB protocols for high-molecular-weight DNA extractions from ferns. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11526. [PMID: 37342164 PMCID: PMC10278929 DOI: 10.1002/aps3.11526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Premise Efficient protocols for extracting high-molecular-weight (HMW) DNA from ferns facilitate the long-read sequencing of their large and complex genomes. Here, we perform two cetyltrimethylammonium bromide (CTAB)-based protocols to extract HMW DNA and evaluate their applicability in diverse fern taxa for the first time. Methods and Results We describe two modified CTAB protocols, with key adjustments to minimize mechanical disruption during lysis to prevent DNA shearing. One of these protocols uses a small amount of fresh tissue but yields a considerable quantity of HMW DNA with high efficiency. The other accommodates a large amount of input tissue, adopts an initial step of nuclei isolation, and thus ensures a high yield in a short period of time. Both methods were proven to be robust and effective in obtaining HMW DNA from diverse fern lineages, including 33 species in 19 families. The DNA extractions mostly had high DNA integrity, with mean sizes larger than 50 kbp, as well as high purity (A260/A230 and A260/A280 > 1.8). Conclusions This study provides HMW DNA extraction protocols for ferns in the hope of facilitating further attempts to sequence their genomes, which will bridge our genomic understanding of land plant diversity.
Collapse
Affiliation(s)
- Pei‐Jun Xie
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Ya‐Ting Ke
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Li‐Yaung Kuo
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| |
Collapse
|
15
|
Ferguson S, Jones A, Murray K, Schwessinger B, Borevitz JO. Interspecies genome divergence is predominantly due to frequent small scale rearrangements in Eucalyptus. Mol Ecol 2023; 32:1271-1287. [PMID: 35810343 DOI: 10.1111/mec.16608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
Synteny, the ordering of sequences within homologous chromosomes, must be maintained within the genomes of sexually reproducing species for the sharing of alleles and production of viable, reproducing offspring. However, when the genomes of closely related species are compared, a loss of synteny is often observed. Unequal homologous recombination is the primary mechanism behind synteny loss, occurring more often in transposon rich regions, and resulting in the formation of chromosomal rearrangements. To examine patterns of synteny among three closely related, interbreeding, and wild Eucalyptus species, we assembled their genomes using long-read DNA sequencing and de novo assembly. We identify syntenic and rearranged regions between these genomes and estimate that ~48% of our genomes remain syntenic while ~36% is rearranged. We observed that rearrangements highly fragment microsynteny. Our results suggest that synteny between these species is primarily lost through small-scale rearrangements, not through sequence loss, gain, or sequence divergence. Further examination of identified rearrangements suggests that rearrangements may be altering the phenotypes of Eucalyptus species. Our study also underscores that the use of single reference genomes in genomic variation studies could lead to reference bias, especially given the scale at which we show potentially adaptive loci have highly diverged, deleted, duplicated and/or rearranged. This study provides an unbiased framework to look at potential speciation and adaptive loci among a rapidly radiating foundation species of woodland trees that are free from selective breeding seen in most crop species.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Weigel Department, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
16
|
Patin NV, Goodwin KD. Capturing marine microbiomes and environmental DNA: A field sampling guide. Front Microbiol 2023; 13:1026596. [PMID: 36713215 PMCID: PMC9877356 DOI: 10.3389/fmicb.2022.1026596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The expanding interest in marine microbiome and eDNA sequence data has led to a demand for sample collection and preservation standard practices to enable comparative assessments of results across studies and facilitate meta-analyses. We support this effort by providing guidelines based on a review of published methods and field sampling experiences. The major components considered here are environmental and resource considerations, sample processing strategies, sample storage options, and eDNA extraction protocols. It is impossible to provide universal recommendations considering the wide range of eDNA applications; rather, we provide information to design fit-for-purpose protocols. To manage scope, the focus here is on sampling collection and preservation of prokaryotic and microeukaryotic eDNA. Even with a focused view, the practical utility of any approach depends on multiple factors, including habitat type, available resources, and experimental goals. We broadly recommend enacting rigorous decontamination protocols, pilot studies to guide the filtration volume needed to characterize the target(s) of interest and minimize PCR inhibitor collection, and prioritizing sample freezing over (only) the addition of preservation buffer. An annotated list of studies that test these parameters is included for more detailed investigation on specific steps. To illustrate an approach that demonstrates fit-for-purpose methodologies, we provide a protocol for eDNA sampling aboard an oceanographic vessel. These guidelines can aid the decision-making process for scientists interested in sampling and sequencing marine microbiomes and/or eDNA.
Collapse
Affiliation(s)
- Nastassia Virginia Patin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States,*Correspondence: Nastassia Virginia Patin,
| | - Kelly D. Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| |
Collapse
|
17
|
Cost-conscious generation of multiplexed short-read DNA libraries for whole-genome sequencing. PLoS One 2023; 18:e0280004. [PMID: 36706059 PMCID: PMC9882895 DOI: 10.1371/journal.pone.0280004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/19/2022] [Indexed: 01/28/2023] Open
Abstract
Massively parallel, second-generation short-read DNA sequencing has become an integral tool in biology for genomic studies. Offering highly accurate base-pair resolution at the most competitive price, the technology has become widespread. However, high-throughput generation of multiplexed DNA libraries can be costly and cumbersome. Here, we present a cost-conscious protocol for generating multiplexed short-read DNA libraries using a bead-linked transposome from Illumina. We prepare libraries in high-throughput with small reaction volumes that use 1/50th the amount of transposome compared to Illumina DNA Prep tagmentation protocols. By reducing transposome usage and optimising the protocol to circumvent magnetic bead-based clean-ups between steps, we reduce costs, labour time and DNA input requirements. Developing our own dual index primers further reduced costs and enables up to nine 96-well microplate combinations. This facilitates efficient usage of large-scale sequencing platforms, such as the Illumina NovaSeq 6000, which offers up to three terabases of sequencing per S4 flow cell. The protocol presented substantially reduces the cost per library by approximately 1/20th compared to conventional Illumina methods.
Collapse
|
18
|
Chen SH, Martino AM, Luo Z, Schwessinger B, Jones A, Tolessa T, Bragg JG, Tobias PA, Edwards RJ. A high-quality pseudo-phased genome for Melaleuca quinquenervia shows allelic diversity of NLR-type resistance genes. Gigascience 2022; 12:giad102. [PMID: 38096477 PMCID: PMC10720953 DOI: 10.1093/gigascience/giad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Melaleuca quinquenervia (broad-leaved paperbark) is a coastal wetland tree species that serves as a foundation species in eastern Australia, Indonesia, Papua New Guinea, and New Caledonia. While extensively cultivated for its ornamental value, it has also become invasive in regions like Florida, USA. Long-lived trees face diverse pest and pathogen pressures, and plant stress responses rely on immune receptors encoded by the nucleotide-binding leucine-rich repeat (NLR) gene family. However, the comprehensive annotation of NLR encoding genes has been challenging due to their clustering arrangement on chromosomes and highly repetitive domain structure; expansion of the NLR gene family is driven largely by tandem duplication. Additionally, the allelic diversity of the NLR gene family remains largely unexplored in outcrossing tree species, as many genomes are presented in their haploid, collapsed state. RESULTS We assembled a chromosome-level pseudo-phased genome for M. quinquenervia and described the allelic diversity of plant NLRs using the novel FindPlantNLRs pipeline. Analysis reveals variation in the number of NLR genes on each haplotype, distinct clustering patterns, and differences in the types and numbers of novel integrated domains. CONCLUSIONS The high-quality M. quinquenervia genome assembly establishes a new framework for functional and evolutionary studies of this significant tree species. Our findings suggest that maintaining allelic diversity within the NLR gene family is crucial for enabling responses to environmental stress, particularly in long-lived plants.
Collapse
Affiliation(s)
- Stephanie H Chen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
| | - Alyssa M Martino
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Zhenyan Luo
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Tamene Tolessa
- Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
- School of Environment and Rural Science, University of New England, Armidale NSW 2351, Australia
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Botanic Gardens of Sydney, Sydney NSW 2000, Australia
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Kensington NSW 2052, Australia
| | - Peri A Tobias
- School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington NSW 2052, Australia
- Minderoo OceanOmics Centre at UWA, UWA Oceans Institute, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
19
|
Ferguson S, McLay T, Andrew RL, Bruhl JJ, Schwessinger B, Borevitz J, Jones A. Species-specific basecallers improve actual accuracy of nanopore sequencing in plants. PLANT METHODS 2022; 18:137. [PMID: 36517904 PMCID: PMC9749173 DOI: 10.1186/s13007-022-00971-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Long-read sequencing platforms offered by Oxford Nanopore Technologies (ONT) allow native DNA containing epigenetic modifications to be directly sequenced, but can be limited by lower per-base accuracies. A key step post-sequencing is basecalling, the process of converting raw electrical signals produced by the sequencing device into nucleotide sequences. This is challenging as current basecallers are primarily based on mixtures of model species for training. Here we utilise both ONT PromethION and higher accuracy PacBio Sequel II HiFi sequencing on two plants, Phebalium stellatum and Xanthorrhoea johnsonii, to train species-specific basecaller models with the aim of improving per-base accuracy. We investigate sequencing accuracies achieved by ONT basecallers and assess accuracy gains by training single-species and species-specific basecaller models. We also evaluate accuracy gains from ONT's improved flowcells (R10.4, FLO-PRO112) and sequencing kits (SQK-LSK112). For the truth dataset for both model training and accuracy assessment, we developed highly accurate, contiguous diploid reference genomes with PacBio Sequel II HiFi reads. RESULTS Basecalling with ONT Guppy 5 and 6 super-accurate gave almost identical results, attaining read accuracies of 91.96% and 94.15%. Guppy's plant-specific model gave highly mixed results, attaining read accuracies of 91.47% and 96.18%. Species-specific basecalling models improved read accuracy, attaining 93.24% and 95.16% read accuracies. R10.4 sequencing kits also improve sequencing accuracy, attaining read accuracies of 95.46% (super-accurate) and 96.87% (species-specific). CONCLUSIONS The use of a single mixed-species basecaller model, such as ONT Guppy super-accurate, may be reducing the accuracy of nanopore sequencing, due to conflicting genome biology within the training dataset and study species. Training of single-species and genome-specific basecaller models improves read accuracy. Studies that aim to do large-scale long-read genotyping would primarily benefit from training their own basecalling models. Such studies could use sequencing accuracy gains and improving bioinformatics tools to improve study outcomes.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Todd McLay
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, South Yarra, Victoria, 3004, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Jeremy J Bruhl
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
20
|
Muñoz-Barrera A, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Lorenzo-Salazar JM, González-Montelongo R, García-Olivares V, Flores C. From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life (Basel) 2022; 12:1939. [PMID: 36431075 PMCID: PMC9695713 DOI: 10.3390/life12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
21
|
Srinivas M, O’Sullivan O, Cotter PD, van Sinderen D, Kenny JG. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022; 11:3297. [PMID: 37431045 PMCID: PMC9601669 DOI: 10.3390/foods11203297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities present within fermented foods are diverse and dynamic, producing a variety of metabolites responsible for the fermentation processes, imparting characteristic organoleptic qualities and health-promoting traits, and maintaining microbiological safety of fermented foods. In this context, it is crucial to study these microbial communities to characterise fermented foods and the production processes involved. High Throughput Sequencing (HTS)-based methods such as metagenomics enable microbial community studies through amplicon and shotgun sequencing approaches. As the field constantly develops, sequencing technologies are becoming more accessible, affordable and accurate with a further shift from short read to long read sequencing being observed. Metagenomics is enjoying wide-spread application in fermented food studies and in recent years is also being employed in concert with synthetic biology techniques to help tackle problems with the large amounts of waste generated in the food sector. This review presents an introduction to current sequencing technologies and the benefits of their application in fermented foods.
Collapse
Affiliation(s)
- Meghana Srinivas
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - Orla O’Sullivan
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- School of Microbiology, University College Cork, T12 CY82 Cork, Ireland
| | - John G. Kenny
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
22
|
Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Establishing MinION Sequencing and Genome Assembly Procedures for the Analysis of the Rooibos ( Aspalathus linearis) Genome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2156. [PMID: 36015459 PMCID: PMC9416007 DOI: 10.3390/plants11162156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
While plant genome analysis is gaining speed worldwide, few plant genomes have been sequenced and analyzed on the African continent. Yet, this information holds the potential to transform diverse industries as it unlocks medicinally and industrially relevant biosynthesis pathways for bioprospecting. Considering that South Africa is home to the highly diverse Cape Floristic Region, local establishment of methods for plant genome analysis is essential. Long-read sequencing is becoming standard procedure for plant genome research, as these reads can span repetitive regions of the DNA, substantially facilitating reassembly of a contiguous genome. With the MinION, Oxford Nanopore offers a cost-efficient sequencing method to generate long reads; however, DNA purification protocols must be adapted for each plant species to generate ultra-pure DNA, essential for these analyses. Here, we describe a cost-effective procedure for the extraction and purification of plant DNA and evaluate diverse genome assembly approaches for the reconstruction of the genome of rooibos (Aspalathus linearis), an endemic South African medicinal plant widely used for tea production. We discuss the pros and cons of nine tested assembly programs, specifically Redbean and NextDenovo, which generated the most contiguous assemblies, and Flye, which produced an assembly closest to the predicted genome size.
Collapse
Affiliation(s)
- Yamkela Mgwatyu
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Stephanie Cornelissen
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Peter van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Allison Stander
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mary Ranketse
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Uljana Hesse
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
23
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
24
|
Phillips AL, Ferguson S, Watson-Haigh NS, Jones AW, Borevitz JO, Burton RA, Atwell BJ. The first long-read nuclear genome assembly of Oryza australiensis, a wild rice from northern Australia. Sci Rep 2022; 12:10823. [PMID: 35752642 PMCID: PMC9233661 DOI: 10.1038/s41598-022-14893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Oryza australiensis is a wild rice native to monsoonal northern Australia. The International Oryza Map Alignment Project emphasises its significance as the sole representative of the EE genome clade. Assembly of the O. australiensis genome has previously been challenging due to its high Long Terminal Repeat (LTR) retrotransposon (RT) content. Oxford Nanopore long reads were combined with Illumina short reads to generate a high-quality ~ 858 Mbp genome assembly within 850 contigs with 46× long read coverage. Reference-guided scaffolding increased genome contiguity, placing 88.2% of contigs into 12 pseudomolecules. After alignment to the Oryza sativa cv. Nipponbare genome, we observed several structural variations. PacBio Iso-Seq data were generated for five distinct tissues to improve the functional annotation of 34,587 protein-coding genes and 42,329 transcripts. We also report SNV numbers for three additional O. australiensis genotypes based on Illumina re-sequencing. Although genetic similarity reflected geographical separation, the density of SNVs also correlated with our previous report on variations in salinity tolerance. This genome re-confirms the genetic remoteness of the O. australiensis lineage within the O. officinalis genome complex. Assembly of a high-quality genome for O. australiensis provides an important resource for the discovery of critical genes involved in development and stress tolerance.
Collapse
Affiliation(s)
- Aaron L Phillips
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Scott Ferguson
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Nathan S Watson-Haigh
- South Australian Genomics Centre, University of Adelaide, Adelaide, SA, Australia
- Australian Genome Research Facility, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Ashley W Jones
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence in Plant Energy Biology, Canberra, ACT, Australia
| | - Rachel A Burton
- Department of Food Science, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy Biology, Adelaide, SA, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Lin Y, Dai Y, Liu Y, Ren Z, Guo H, Li Z, Li J, Wang K, Yang L, Zhang S, Liu H, Jia L, Ni M, Li P, Song H. Rapid PCR-Based Nanopore Adaptive Sequencing Improves Sensitivity and Timeliness of Viral Clinical Detection and Genome Surveillance. Front Microbiol 2022; 13:929241. [PMID: 35783376 PMCID: PMC9244360 DOI: 10.3389/fmicb.2022.929241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nanopore sequencing has been widely used for the real-time detection and surveillance of pathogens with portable MinION. Nanopore adaptive sequencing can enrich on-target sequences without additional pretreatment. In this study, the performance of adaptive sequencing was evaluated for viral genome enrichment of clinical respiratory samples. Ligation-based nanopore adaptive sequencing (LNAS) and rapid PCR-based nanopore adaptive sequencing (RPNAS) workflows were performed to assess the effects of enrichment on nasopharyngeal swab samples from human adenovirus (HAdV) outbreaks. RPNAS was further applied for the enrichment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from nasopharyngeal swab samples to evaluate sensitivity and timeliness. The RPNAS increased both the relative abundance (7.87-12.86-fold) and data yield (1.27-2.15-fold) of HAdV samples, whereas the LNAS increased only the relative abundance but had no obvious enrichment on the data yield. Compared with standard nanopore sequencing, RPNAS detected the SARS-CoV-2 reads from two low-abundance samples, increased the coverage of SARS-CoV-2 by 36.68-98.92%, and reduced the time to achieve the same coverage. Our study highlights the utility of RPNAS for virus enrichment directly from clinical samples, with more on-target data and a shorter sequencing time to recover viral genomes. These findings promise to improve the sensitivity and timeliness of rapid identification and genomic surveillance of infectious diseases.
Collapse
Affiliation(s)
- Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yan Dai
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Yuqi Liu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhuli Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Zhenzhong Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shuang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ming Ni
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
26
|
Pucker B, Irisarri I, de Vries J, Xu B. Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. QUANTITATIVE PLANT BIOLOGY 2022; 3:e5. [PMID: 37077982 PMCID: PMC10095996 DOI: 10.1017/qpb.2021.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Third-generation long-read sequencing is transforming plant genomics. Oxford Nanopore Technologies and Pacific Biosciences are offering competing long-read sequencing technologies and enable plant scientists to investigate even large and complex plant genomes. Sequencing projects can be conducted by single research groups and sequences of smaller plant genomes can be completed within days. This also resulted in an increased investigation of genomes from multiple species in large scale to address fundamental questions associated with the origin and evolution of land plants. Increased accessibility of sequencing devices and user-friendly software allows more researchers to get involved in genomics. Current challenges are accurately resolving diploid or polyploid genome sequences and better accounting for the intra-specific diversity by switching from the use of single reference genome sequences to a pangenome graph.
Collapse
Affiliation(s)
- Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
- Author for correspondence: Boas Pucker E-mail:
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen, Germany
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|