1
|
Wang L, Kim J, Kang H, Park HJ, Lee MJ, Hong SH, Seo CW, Madera R, Li Y, Craig A, Retallick J, Matias-Ferreyra F, Sohn EJ, Shi J. Development and evaluation of two rapid lateral flow assays for on-site detection of African swine fever virus. Front Microbiol 2024; 15:1429808. [PMID: 39268541 PMCID: PMC11390401 DOI: 10.3389/fmicb.2024.1429808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction African swine fever (ASF) is a lethal and highly contagious transboundary animal disease with the potential for rapid international spread. In the absence of a widely available and definitively proven vaccine, rapid and early detection is critical for ASF control. The quick and user-friendly lateral flow assay (LFA) can easily be performed by following simple instructions and is ideal for on-site use. This study describes the development and validation of two LFAs for the rapid detection of ASF virus (ASFV) in pig serum. Methods The highly immunogenic antigens (p30 and p72) of ASFV Georgia 2007/1 (genotype II) were expressed in plants (Nicotiana benthamiana) and were used to immunize BALB/c mice to generate specific monoclonal antibodies (mAbs) against the p30 and p72 proteins. mAbs with the strongest binding ability to each protein were used to develop p30_LFA and p72_LFA for detecting the respective ASFV antigens. The assays were first evaluated using a spike-in test by adding the purified p30 or p72 protein to a serum sample from a healthy donor pig. Further validation of the tests was carried out using serum samples derived from experimentally infected domestic pigs, field domestic pigs, and feral pigs, and the results were compared with those of ASFV real-time PCR. Results p30_LFA and p72_LFA showed no cross-reaction with common swine viruses and delivered visual results in 15 min. When testing with serially diluted proteins in swine serum samples, analytical sensitivity reached 10 ng/test for p30_LFA and 20 ng/test for p72_LFA. Using real-time PCR as a reference, both assays demonstrated high sensitivity (84.21% for p30_LFA and 100% for p72_LFA) with experimentally ASFV-infected pig sera. Specificity was 100% for both LFAs using a panel of PBS-inoculated domestic pig sera. Excellent specificity was also shown for field domestic pig sera (100% for p30_LFA and 93% for p72_LFA) and feral pig sera (100% for both LFAs). Conclusion The results obtained in this study suggest that p30_LFA and p72_LFA hold promise as rapid, sensitive, user-friendly, and field-deployable tools for ASF control, particularly in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juhun Kim
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Hong-Je Park
- MEDEXX Co., Ltd., Seongnam-si, Republic of Korea
| | - Min-Jong Lee
- MEDEXX Co., Ltd., Seongnam-si, Republic of Korea
| | | | | | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Aidan Craig
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang-si, Republic of Korea
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
2
|
Hu H, Liu L, Wei XY, Duan JJ, Deng JY, Pei DS. Revolutionizing aquatic eco-environmental monitoring: Utilizing the RPA-Cas-FQ detection platform for zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172414. [PMID: 38631624 DOI: 10.1016/j.scitotenv.2024.172414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.
Collapse
Affiliation(s)
- Huan Hu
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Li Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xing-Yi Wei
- Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jin-Jing Duan
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Chhipa AS, Radadiya E, Patel S. CRISPR-Cas based diagnostic tools: Bringing diagnosis out of labs. Diagn Microbiol Infect Dis 2024; 109:116252. [PMID: 38479094 DOI: 10.1016/j.diagmicrobio.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/30/2024]
Abstract
Timely detection is important for the effective management of infectious diseases. Reverse Transcription Polymerase Chain Reaction (RT-PCR) stands as the prime nucleic acid based test that is employed for the detection of infectious diseases. The method ensures sensitivity and specificity. However, RT-PCR is a relatively expensive technique due to the requirement of costly equipment and reagents. Further, it requires skilled personnel and established laboratories that are usually inaccessible in underdeveloped areas. On the other hand, rapid antigen based techniques are cost effective and easily accessible, but are less effective in terms of sensitivity and specificity. CRISPR-Cas systems are advanced diagnostic tools that combine the advantages of both PCR and antigen based detection techniques, and allows the rapid detection with high sensitivity/specificity. The present review aims to discuss the applicability of CRISPR-Cas based diagnostic tools for the infectious disease detection. The review further attempts to highlight the current limitations and future research directions to improve the CRISPR based diagnostic tools for rapid and effective disease detection.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India
| | - Ekta Radadiya
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, India.
| |
Collapse
|
4
|
Manessis G, Frant M, Podgórska K, Gal-Cisoń A, Łyjak M, Urbaniak K, Woźniakowski G, Denes L, Balka G, Nannucci L, Griol A, Peransi S, Basdagianni Z, Mourouzis C, Giusti A, Bossis I. Label-Free Detection of African Swine Fever and Classical Swine Fever in the Point-of-Care Setting Using Photonic Integrated Circuits Integrated in a Microfluidic Device. Pathogens 2024; 13:415. [PMID: 38787267 PMCID: PMC11124021 DOI: 10.3390/pathogens13050415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Swine viral diseases have the capacity to cause significant losses and affect the sector's sustainability, a situation further exacerbated by the lack of antiviral drugs and the limited availability of effective vaccines. In this context, a novel point-of-care (POC) diagnostic device incorporating photonic integrated circuits (PICs), microfluidics and information, and communication technology into a single platform was developed for the field diagnosis of African swine fever (ASF) and classical swine fever (CSF). The device targets viral particles and has been validated using oral fluid and serum samples. Sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device, and PCR was the reference method employed. Its sensitivities were 80.97% and 79%, specificities were 88.46% and 79.07%, and DOR values were 32.25 and 14.21 for ASF and CSF, respectively. The proposed POC device and PIC sensors can be employed for the pen-side detection of ASF and CSF, thus introducing novel technological advancements in the field of animal diagnostics. The need for proper validation studies of POC devices is highlighted to optimize animal biosecurity.
Collapse
Affiliation(s)
- Georgios Manessis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Maciej Frant
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Anna Gal-Cisoń
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Magdalena Łyjak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Kinga Urbaniak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (M.F.); (K.P.); (A.G.-C.); (M.Ł.); (K.U.)
| | - Grzegorz Woźniakowski
- Department of Infectious, Invasive Diseases and Veterinary Administration, Faculty of Biological and Veterinary Sciences, Nicolas Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland;
| | - Lilla Denes
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Istvan Str. 2, 1078 Budapest, Hungary; (L.D.); (G.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Str 2., 1078 Budapest, Hungary
| | - Lapo Nannucci
- Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e Forestali, Università Degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Amadeu Griol
- Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n Building 8F, 46022 Valencia, Spain;
| | - Sergio Peransi
- DAS Photonics SL, Camino de Vera, s/n, Building 8F 2nd-Floor, 46022 Valencia, Spain;
| | - Zoitsa Basdagianni
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| | - Christos Mourouzis
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Alessandro Giusti
- Cyprus Research and Innovation Centre Ltd. (CyRIC), 28th Octovriou Ave 72, Off. 301, Engomi, 2414 Nicosia, Cyprus; (C.M.); (A.G.)
| | - Ioannis Bossis
- Laboratory of Animal Husbandry, Department of Animal Production, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (Z.B.)
| |
Collapse
|
5
|
Muzykina L, Barrado-Gil L, Gonzalez-Bulnes A, Crespo-Piazuelo D, Cerón JJ, Alonso C, Montoya M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses 2024; 16:505. [PMID: 38675848 PMCID: PMC11054272 DOI: 10.3390/v16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.
Collapse
Affiliation(s)
- Larysa Muzykina
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Lucía Barrado-Gil
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - Antonio Gonzalez-Bulnes
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Daniel Crespo-Piazuelo
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Jose Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), University of Murcia, 30100 Murcia, Spain;
| | - Covadonga Alonso
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - María Montoya
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Lim JW, Vu TTH, Le VP, Yeom M, Song D, Jeong DG, Park SK. Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses 2023; 15:2169. [PMID: 38005846 PMCID: PMC10674204 DOI: 10.3390/v15112169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever (ASF) is one of the most lethal infectious diseases affecting domestic pigs and wild boars of all ages. Over a span of 100 years, ASF has continued to spread over continents and adversely affects the global pig industry. To date, no vaccine or treatment has been approved. The complex genome structure and diverse variants facilitate the immune evasion of the ASF virus (ASFV). Recently, advanced technologies have been used to design various potential vaccine candidates and effective diagnostic tools. This review updates vaccine platforms that are currently being used worldwide, with a focus on genetically modified live attenuated vaccines, including an understanding of their potential efficacy and limitations of safety and stability. Furthermore, advanced ASFV detection technologies are presented that discuss and incorporate the challenges that remain to be addressed for conventional detection methods. We also highlight a nano-bio-based system that enhances sensitivity and specificity. A combination of prophylactic vaccines and point-of-care diagnostics can help effectively control the spread of ASFV.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Thi Thu Hang Vu
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam;
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
7
|
Zhang K, Sun Z, Shi K, Yang D, Bian Z, Li Y, Gou H, Jiang Z, Yang N, Chu P, Zhai S, Wei Z, Li C. RPA-CRISPR/Cas12a-Based Detection of Haemophilus parasuis. Animals (Basel) 2023; 13:3317. [PMID: 37958075 PMCID: PMC10648042 DOI: 10.3390/ani13213317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Haemophilus parasuis (H. parasuis, HPS) is a prominent pathogenic bacterium in pig production. Its infection leads to widespread fibrinous inflammation in various pig tissues and organs, often in conjunction with various respiratory virus infections, and leads to substantial economic losses in the pig industry. Therefore, the rapid diagnosis of this pathogen is of utmost importance. In this study, we used recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR) technology to establish a convenient detection and analysis system for H. parasuis that is fast to detect, easy to implement, and accurate to analyze, known as RPA-CRISPR/Cas12a analysis. The process from sample to results can be completed within 1 h with high sensitivity (0.163 pg/μL of DNA template, p < 0.05), which is 104 -fold higher than the common PCR method. The specificity test results show that the RPA-CRISPR/Cas12a analysis of H. parasuis did not react with other common pig pathogens, including Streptococcus suis type II and IX, Actinobacillus pleuropneumoniae, Escherichia coli, Salmonella, Streptococcus suis, and Staphylococcus aureus (p < 0.0001). The RPA-CRISPR/Cas12a assay was applied to 15 serotypes of H. parasuis clinical samples through crude extraction of nucleic acid by boiling method, and all of the samples were successfully identified. It greatly reduces the time and cost of nucleic acid extraction. Moreover, the method allows results to be visualized with blue light. The accurate and convenient detection method could be incorporated into a portable format as point-of-care (POC) diagnostics detection for H. parasuis at the field level.
Collapse
Affiliation(s)
- Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Zeyi Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Keda Shi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Zhibiao Bian
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Nanling Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Shaolun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; (K.Z.); (Z.S.); (K.S.); (D.Y.); (Z.B.); (Y.L.); (H.G.); (Z.J.); (N.Y.); (P.C.); (S.Z.)
| |
Collapse
|
8
|
Flores-Contreras EA, Carrasco-González JA, Linhares DCL, Corzo CA, Campos-Villalobos JI, Henao-Díaz A, Melchor-Martínez EM, Iqbal HMN, González-González RB, Parra-Saldívar R, González-González E. Emergent Molecular Techniques Applied to the Detection of Porcine Viruses. Vet Sci 2023; 10:609. [PMID: 37888561 PMCID: PMC10610968 DOI: 10.3390/vetsci10100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest. The main viruses that affect the swine industry are described in this review, including African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine circovirus (PCV), which have been effectively detected by different molecular tools in recent times. Here, we describe the rationale of molecular techniques such as multiplex PCR, isothermal methods (LAMP, NASBA, RPA, and PSR) and novel methods such as CRISPR-Cas and microfluidics platforms. Successful molecular diagnostic developments are presented by highlighting their most important findings. Finally, we describe the barriers that hinder the large-scale development of affordable, accessible, rapid, and easy-to-use molecular diagnostic tests. The evolution of diagnostic techniques is critical to prevent the spread of viruses and the development of viral reservoirs in the swine industry that impact the possible development of future pandemics and the world economy.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | | | - Daniel C. L. Linhares
- Veterinary Diagnostic and Production Animal Medicine Department, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Cesar A. Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55455, USA;
| | | | | | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Everardo González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo Leon, Mexico; (E.A.F.-C.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
9
|
Chen Q, Tu F, Chen X, Yu Y, Gu Y, Wang Y, Liu Z. Visual isothermal amplification detection of ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas-12a. Anal Biochem 2023:115235. [PMID: 37422063 DOI: 10.1016/j.ab.2023.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
African swine fever virus (ASFV) is a kind of DNA virus and can infect both domestic pigs and wild boars with fatality up to 100%. The contaminated meat products mainly led to the worldwide transmission of ASFV. The outbreak of ASF greatly affects the supply stability of meat products as well as the development of the global pig industry. In this study, a visual isothermal amplification detection assay for ASFV based on trimeric G-quadruplex cis-cleavage activity of Cas12a was developed. The introduction of Cas12a could discriminate the specific amplification from the non-specific amplification and improve the sensitivity. The detection limit was as low as 0.23 copies/μL. This assay had good potential in the detection of ASFV and would be helpful for the stability of meat production and supply.
Collapse
Affiliation(s)
- Qiming Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fangming Tu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaodi Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang Yu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yimeng Gu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yikai Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Penrith ML, van Heerden J, Pfeiffer DU, Oļševskis E, Depner K, Chenais E. Innovative Research Offers New Hope for Managing African Swine Fever Better in Resource-Limited Smallholder Farming Settings: A Timely Update. Pathogens 2023; 12:355. [PMID: 36839627 PMCID: PMC9963711 DOI: 10.3390/pathogens12020355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics, and Public Health Group, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Edvīns Oļševskis
- Food and Veterinary Service, LV-1050 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment, “BIOR“, LV-1076 Riga, Latvia
| | - Klaus Depner
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden
| |
Collapse
|
11
|
Novel sensitive isothermal-based diagnostic technique for the detection of African swine fever virus. Arch Virol 2023; 168:79. [PMID: 36740635 DOI: 10.1007/s00705-023-05702-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/07/2022] [Indexed: 02/07/2023]
Abstract
A rapid, simple, and sensitive diagnostic technique for the detection of African swine fever virus (ASFV) nucleic acid was developed for testing clinical samples in the field or resource-constrained settings. In the current study, the saltatory rolling-circle amplification (SRCA) technique was used for the first time to detect ASFV. The technique was developed using World Organization for Animal Health (WOAH)-approved primers targeting the p72 gene of the ASFV genome. The assay can be performed within 90 minutes at an isothermal temperature of 58°C without a requirement for sophisticated instrumentation. The results can be interpreted by examination with the naked eye with the aid of SYBR Green dye. This assay exhibited 100% specificity, producing amplicons only from ASFV-positive samples, and there was no cross-reactivity with other pathogenic viruses and bacteria of pigs that were tested. The lower limits of detection of SRCA, endpoint PCR, and real-time PCR assays were 48.4 copies/µL, 4.84 × 103 copies/µL, and 4.84 × 103 copies/µL, respectively. Thus, the newly developed SRCA assay was found to be 100 times more sensitive than endpoint and real-time PCR assays. Clinical tissue samples obtained from ASFV-infected domestic pigs and other clinical samples collected during 2020-22 from animals with suspected ASFV infection were tested using the SRCA assay, and a 100% accuracy rate, negative predictive value, and positive predictive value were demonstrated. The results indicate that the SRCA assay is a simple yet sensitive method for the detection of ASFV that may improve the diagnostic capacity of field laboratories, especially during outbreaks. This novel diagnostic technique is completely compliant with the World Health Organization's "ASSURED" criteria advocated for disease diagnosis, as it is affordable, specific, sensitive, user-friendly, rapid and robust, equipment-free, and deliverable. Therefore, this SRCA assay may be preferable to other complex molecular techniques for diagnosing African swine fever.
Collapse
|
12
|
Wang Y, Li R, Zhang Y, Zhang W, Hu S, Li Z. Visual and label-free ASFV and PCV2 detection by CRISPR-Cas12a combined with G-quadruplex. Front Vet Sci 2022; 9:1036744. [PMID: 36524221 PMCID: PMC9745048 DOI: 10.3389/fvets.2022.1036744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) and postweaning multisystemic wasting syndrome (PMWS) are acute infectious diseases caused by the African swine fever virus (ASFV) and porcine circovirus type 2 (PCV2). At present, there are no effective vaccines for the prevention of ASFV. PMWS, which is harmful to the domestic and even the world pig industry, is difficult to cure and has a high mortality. So, developing simple, inexpensive, and accurate analytical methods to detect and effectively diagnose ASFV and PCV2 can be conducive to avoid ASFV and PCV2 infection. CRISPR has become a potentially rapid diagnostic tool due to recent discoveries of the trans-cleavage properties of CRISPR type V effectors. Herein, we report the visual detection based on CRISPR-Cas12a (cpf1), which is more convenient than fluorescence detection. Through in vitro cleavage target DNA activation, Cas12a can trans-cleavage ssDNA G-quadruplex. TMB/H2O2 and Hemin cannot be catalyzed by cleavaged G-DNA to produce green color products. This protocol is useful for the detection of ASFV and PCV2 with high sensitivity. This method can enable the development of visual and label-free ASFV and PCV2 detection and can be carried out in the field without relying on instruments or power. This method can complete nucleic acid detection at 37 °C without using other instruments or energy. Our research has expanded the application of Cas12a and laid the foundation for the field's rapid detection of viral nucleic acid in future.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Rong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
13
|
Wang J, Davidson JL, Kaur S, Dextre AA, Ranjbaran M, Kamel MS, Athalye SM, Verma MS. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. BIOSENSORS 2022; 12:bios12121094. [PMID: 36551061 PMCID: PMC9776365 DOI: 10.3390/bios12121094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Paper-based biosensors are microfluidic analytical devices used for the detection of biochemical substances. The unique properties of paper-based biosensors, including low cost, portability, disposability, and ease of use, make them an excellent tool for point-of-care testing. Among all analyte detection methods, nucleic acid-based pathogen detection offers versatility due to the ease of nucleic acid synthesis. In a point-of-care testing context, the combination of nucleic acid detection and a paper-based platform allows for accurate detection. This review offers an overview of contemporary paper-based biosensors for detecting nucleic acids from pathogens. The methods and limitations of implementing an integrated portable paper-based platform are discussed. The review concludes with potential directions for future research in the development of paper-based biosensors.
Collapse
Affiliation(s)
- Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andres A. Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shreya Milind Athalye
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
14
|
Wang Z, Wei H, Bu S, Li X, Zhou H, Zhang W, Wan J. Ultrasensitive, rapid, and highly specific detection of microRNAs based on PER-CRISPR/CAS. Bioorg Med Chem Lett 2022; 74:128949. [PMID: 35998847 DOI: 10.1016/j.bmcl.2022.128949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Abnormal microRNA (miRNA) expression levels are confirmed as diagnostic biomarkers of the emergence and development of diseases. In this study, we developed a fluorescence biosensor for detecting miRNAs based on double amplification reactions with the primer exchange reaction (PER) and CRISPR/Cas12a. In the absence of target miRNA-21, PER hairpins remained locked by the protector strands and the primers did not extend. In the presence of target miRNA-21, the miRNA-21 bound to the guard sequence and exposed primer binding sites. Also, the closed PER hairpin was unlocked to specifically extend primers into single-stranded DNA (ssDNA) of unequal lengths. These ssDNAs of unequal lengths could activate the cleavage of a reporter by Cas12a, leading to an increase in detectable fluorescence signals. A large number of short nucleic acid fragments were amplified by PER-CRISPR multiple cycle cleavage fluorescent probes. Based on PER-combined CRISPR/Cas12a established dual signal amplification method was characterized by a low limit of detection of 10fM. The fluorescent biosensor for miRNA detection had the advantages of low detection cost, simple operation, and mobility, providing a very promising platform for the point-of-care testing of miRNA-21.
Collapse
Affiliation(s)
- Ze Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongguo Wei
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Shengjun Bu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongyu Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wenhui Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jiayu Wan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
15
|
Cao G, Xiong Y, Nie F, Chen X, Peng L, Li Y, Yang M, Huo D, Hou C. Non-nucleic acid extraction and ultra-sensitive detection of African swine fever virus via CRISPR/Cas12a. Appl Microbiol Biotechnol 2022; 106:4695-4704. [PMID: 35715648 DOI: 10.1007/s00253-022-11999-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022]
Abstract
Early diagnosis of the African swine fever virus (ASFV) is the main preventive measure for ASFV. Here, we developed a fluorescent biosensor and lateral flow assay (LFA) strip based on direct PCR combined with CRISPR/Cas12a system for ASF. Direct PCR can simultaneously split samples and efficiently amplify without sacrificing sensitivity, which eliminated the steps of nucleic acid extraction. Furthermore, by the CRISPR/Cas12a, the biosensor addressed false positives caused by non-specific amplification and had high sensitivity with the actual limit of detection (LOD) of 7.6×10-4 ng·μL-1 (4 copies·μL-1). In addition, the strategy was built on the lateral flow assay (LFA) strip to achieve visual and portable detection for point-of-care testing. Moreover, the biosensor by a fluorometer and LFA strip showed a high accuracy to rival qPCR in actual sample detection. Therefore, the biosensor is an ultra-sensitive and specific tool that can replace traditional methods. KEY POINTS: • No nucleic acid extraction, direct PCR-simplified steps, and reduced time and cost • CRISPR/Cas12a solved the false positives caused by nonspecific amplification • The combination of the LFA strip and biosensor is more convenient for POC detection.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400044, People's Republic of China
| | - Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Lan Peng
- Chongqing Medical and Pharmaceutical College Basic Department, Chongqing, 401331, People's Republic of China
| | - Yingguo Li
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Diagnosis and Testing Laboratory of Lumpy Skin Disease, Chongqing Customs Technology Center, Chongqing, 400044, People's Republic of China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
16
|
Zhuang L, Yang J, Song C, Sun L, Zhao B, Shen Q, Ren X, Shi H, Zhang Y, Zhu M. Accurate, rapid and highly sensitive detection of African swine fever virus via graphene oxide-based accelerated strand exchange amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2072-2082. [PMID: 35546107 DOI: 10.1039/d2ay00610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
African swine fever is an acute, severe and highly contagious infectious disease caused by African swine fever virus (ASFV), posing a huge threat to the global swine industry. Rapid and accurate diagnostic methods are of great significance for the effective prevention and control of ASFV transmission. In this work, we established and evaluated a graphene oxide-based accelerated strand exchange amplification (GO-ASEA) method for rapid, highly sensitive, and quantitative detection of ASFV. The use of GO provided a novel solution reference for improving the specificity of strand exchange amplification and solving the potential false positive problem caused by primer dimers. The detection limit of the GO-ASEA assay was 5.8 × 10-1 copies per μL of ASFV (equal to 2.9 copies per reaction) or 5.8 × 100 copies per μL of ASFV in spiked swine nasal swabs. The selectivity of the GO-ASEA assay was supported by the ASFV DNA reference material and another seven porcine-derived viruses with similar clinical symptoms. The GO-ASEA assay took only about 29 minutes and was validated with 6 inactivated specimens and 52 swine nasal swabs, showing excellent clinical applicability. The novel assay is an accurate and practical method for rapid, highly sensitive detection of ASFV, and can potentially serve as a robust tool in epidemic prevention and point-of-care diagnosis.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Xiyan Ren
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Hongjing Shi
- Yangzhou Jianong Animal Husbandry Technology Co., Ltd, Yangzhou 225251, P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
17
|
Onyilagha C, Nguyen K, Luka PD, Hussaini U, Adedeji A, Odoom T, Ambagala A. Evaluation of a Lateral Flow Assay for Rapid Detection of African Swine Fever Virus in Multiple Sample Types. Pathogens 2022; 11:pathogens11020138. [PMID: 35215082 PMCID: PMC8877915 DOI: 10.3390/pathogens11020138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Antibody-based lateral flow assay (LFA) is a quick and inexpensive tool used to detect pathogens in field samples, especially in hard-to-reach remote areas that may have limited access to central laboratories during an outbreak or surveillance. In this study, we investigated the ability of a commercially available LFA, PenCheck®, to detect African swine fever virus (ASFV) in clinical samples derived from pigs infected with highly virulent ASFV strains. The assay was specific and positively identified the majority of pigs showing high fever during the early stages (between 3 and 5 days) of infection. PenCheck® LFA also detected ASFV in serum and tissue samples collected from pigs that succumbed to experimental ASFV infection and whole blood, plasma, and tissue samples from the field. The limit of detection of the assay was ASFV titer 107.80 TCID50/mL, corresponding to ASFV real-time PCR values below 23 Ct. Although the sensitivity of the assay is less than that of the laboratory-based real-time PCR assays, the results obtained with the PenCheck® LFA in this study suggest that it can be used as a herd-level, field-deployable, and easy-to-use diagnostic tool to identify ASF-affected farms when access to portable molecular assays or central laboratories is not possible.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (K.N.)
| | - Kelvin Nguyen
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (K.N.)
| | - Pam D. Luka
- Virology Division, National Veterinary Research Institute, P.M.B 01, Vom 930001, Plateau, Nigeria; (P.D.L.); (U.H.); (A.A.)
| | - Ularamu Hussaini
- Virology Division, National Veterinary Research Institute, P.M.B 01, Vom 930001, Plateau, Nigeria; (P.D.L.); (U.H.); (A.A.)
| | - Adeyinka Adedeji
- Virology Division, National Veterinary Research Institute, P.M.B 01, Vom 930001, Plateau, Nigeria; (P.D.L.); (U.H.); (A.A.)
| | - Theophilus Odoom
- Accra Laboratory, Veterinary Services Directorate, Accra P.O. Box M161, Ghana;
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (K.N.)
- Department of Comparative Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Correspondence: ; Tel.: +1-204-789-2013
| |
Collapse
|