1
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
2
|
Sengupta PP, Bavishi C. Harnessing Artificial Intelligence for Intravascular Imaging: Is it Percutaneous Coronary Intervention Ready? JACC. ADVANCES 2023; 2:100565. [PMID: 38939504 PMCID: PMC11198631 DOI: 10.1016/j.jacadv.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Partho P. Sengupta
- Division of Cardiovascular Diseases and Hypertension, Robert Wood Johnson University Hospital, and Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Chirag Bavishi
- Division of Cardiovascular Medicine, University of Missouri at Columbia and MU School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
3
|
Collins GC, Rojas SS, Bercu ZL, Desai JP, Lindsey BD. Supervised segmentation for guiding peripheral revascularization with forward-viewing, robotically steered ultrasound guidewire. Med Phys 2023; 50:3459-3474. [PMID: 36906877 PMCID: PMC10272103 DOI: 10.1002/mp.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/19/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Approximately 500 000 patients present with critical limb ischemia (CLI) each year in the U.S., requiring revascularization to avoid amputation. While peripheral arteries can be revascularized via minimally invasive procedures, 25% of cases with chronic total occlusions are unsuccessful due to inability to route the guidewire beyond the proximal occlusion. Improvements to guidewire navigation would lead to limb salvage in a greater number of patients. PURPOSE Integrating ultrasound imaging into the guidewire could enable direct visualization of routes for guidewire advancement. In order to navigate a robotically-steerable guidewire with integrated imaging beyond a chronic occlusion proximal to the symptomatic lesion for revascularization, acquired ultrasound images must be segmented to visualize the path for guidewire advancement. METHODS The first approach for automated segmentation of viable paths through occlusions in peripheral arteries is demonstrated in simulations and experimentally-acquired data with a forward-viewing, robotically-steered guidewire imaging system. B-mode ultrasound images formed via synthetic aperture focusing (SAF) were segmented using a supervised approach (U-net architecture). A total of 2500 simulated images were used to train the classifier to distinguish the vessel wall and occlusion from viable paths for guidewire advancement. First, the size of the synthetic aperture resulting in the highest classification performance was determined in simulations (90 test images) and compared with traditional classifiers (global thresholding, local adaptive thresholding, and hierarchical classification). Next, classification performance as a function of the diameter of the remaining lumen (0.5 to 1.5 mm) in the partially-occluded artery was tested using both simulated (60 test images at each of 7 diameters) and experimental data sets. Experimental test data sets were acquired in four 3D-printed phantoms from human anatomy and six ex vivo porcine arteries. Accuracy of classifying the path through the artery was evaluated using microcomputed tomography of phantoms and ex vivo arteries as a ground truth for comparison. RESULTS An aperture size of 3.8 mm resulted in the best-performing classification based on sensitivity and Jaccard index, with a significant increase in Jaccard index (p < 0.05) as aperture diameter increased. In comparing the performance of the supervised classifier and traditional classification strategies with simulated test data, sensitivity and F1 score for U-net were 0.95 ± 0.02 and 0.96 ± 0.01, respectively, compared to 0.83 ± 0.03 and 0.41 ± 0.13 for the best-performing conventional approach, hierarchical classification. In simulated test images, sensitivity (p < 0.05) and Jaccard index both increased with increasing artery diameter (p < 0.05). Classification of images acquired in artery phantoms with remaining lumen diameters ≥ 0.75 mm resulted in accuracies > 90%, while mean accuracy decreased to 82% when artery diameter decreased to 0.5 mm. For testing in ex vivo arteries, average binary accuracy, F1 score, Jaccard index, and sensitivity each exceeded 0.9. CONCLUSIONS Segmentation of ultrasound images of partially-occluded peripheral arteries acquired with a forward-viewing, robotically-steered guidewire system was demonstrated for the first-time using representation learning. This could represent a fast, accurate approach for guiding peripheral revascularization.
Collapse
Affiliation(s)
- Graham C. Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
| | - Stephan Strassle Rojas
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30309
| | - Zachary L. Bercu
- Interventional Radiology, Emory University School of Medicine, Atlanta, GA, USA, 30308
| | - Jaydev P. Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
| | - Brooks D. Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30309
| |
Collapse
|
4
|
Arora P, Singh P, Girdhar A, Vijayvergiya R. Calcification Detection in Intravascular Ultrasound (IVUS) Images Using Transfer Learning Based MultiSVM model. ULTRASONIC IMAGING 2023; 45:136-150. [PMID: 37052393 DOI: 10.1177/01617346231164574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide. Calcification detection is considered an important factor in cardiovascular diseases. Currently, medical practitioners visually inspect the presence of calcification using intravascular ultrasound (IVUS) images. The study aims to detect the extent of calcification as belonging to class I, II as mild calcification, and class III, IV as dense calcification from IVUS images acquired at 40 MHz. To detect calcification, the features were extracted using improved AlexNet architecture and then were fed into machine learning classifiers. The experiments were carried out using 14 real IVUS pullbacks of 10 patients. Experimental results show that the combination of traditional machine learning with deep learning approaches significantly improves accuracy. The results show that support vector machines outperform all other classifiers. The proposed model is compared with two other pre-trained models GoogLeNet (98.8%), SqueezeNet (99.2%), and exhibits considerable improvement in classification accuracy (99.8%). In the future other models such as Vision Transformers could be explored with additional feature selection methods such as ReliefF, PSO, ACO, etc. to improve the overall accuracy of diagnosis.
Collapse
Affiliation(s)
- Priyanka Arora
- IKG Punjab Technical University, Punjab, India
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Parminder Singh
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Arora P, Singh P, Girdhar A, Vijayvergiya R, Chaudhary P. CADNet: an advanced architecture for automatic detection of coronary artery calcification and shadow border in intravascular ultrasound (IVUS) images. Phys Eng Sci Med 2023; 46:773-786. [PMID: 37039978 PMCID: PMC10088744 DOI: 10.1007/s13246-023-01250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Intravascular Ultrasound (IVUS) is a medical imaging modality widely used for the detection and treatment of coronary heart disease. The detection of vascular structures is extremely important for accurate treatment procedures. Manual detection of lumen and calcification is very time-consuming and requires technical experience. Ultrasound imaging suffers from the generation of artifacts which obstructs the clear delineation among structures. Considering, the need, to provide special attention to crucial areas, convolutional block attention modules (CBAM) is integrated into an encoder-decoder-based U-Net architecture along with Atrous Spatial Pyramid Pooling (ASPP) to detect vessel components: lumen, calcification and shadow borders. The attention modules prove effective in dealing with areas of special attention by assigning additional weights to crucial channels and preserving spatial features. The IVUS data of 12 patients undergoing the treatment is taken for this study. The novelty of the model design is such that it is able to detect the lumen area in the presence/absence of calcification and bifurcation artifacts too. Also, the model efficiently detects the calcification area even in case of severely complex lesions with shadows behind them. The main contribution of the work is that IVUS images of varying degrees of calcification till 360° are also considered in this work, which is usually neglected in previous studies. The experimental results of 1097 IVUS images of 12 patients resulted in meanIoU (0.7894 ± 0.011), Dice Coefficient (0.8763 ± 0.070), precision (0.8768 ± 0.069) and recall (0.8774 ± 0.071) of the proposed model CADNet which show the model's effectiveness relative to other state-of-the art methods.
Collapse
Affiliation(s)
- Priyanka Arora
- IKG Punjab Technical University, Punjab, India.
- Department of Computer Science & Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.
| | - Parminder Singh
- Department of Computer Science & Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prince Chaudhary
- Business Development Manager, Therapy Awareness Group (TAG), Boston Scientific India Private Limited, Gurgaon, India
| |
Collapse
|
6
|
Meng L, Jiang M, Zhang C, Zhang J. Deep learning segmentation, classification, and risk prediction of complex vascular lesions on intravascular ultrasound images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Arora P, Singh P, Girdhar A, Vijayvergiya R. A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images. Cardiovasc Eng Technol 2023; 14:264-295. [PMID: 36650320 DOI: 10.1007/s13239-023-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.
Collapse
Affiliation(s)
- Priyanka Arora
- Research Scholar, IKG Punjab Technical University, Punjab, India. .,Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.
| | - Parminder Singh
- Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Akshay Girdhar
- Department of Information Technology, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Rajesh Vijayvergiya
- Department of Cardiology, Advanced Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|