1
|
Scorza S, Brunetti V, Scarpellino G, Certini M, Gerbino A, Moccia F. Targeting the Ca 2+ signaling toolkit as an alternative strategy to mitigate SARS-CoV-2-induced cardiovascular adverse events. Vascul Pharmacol 2024; 158:107458. [PMID: 39701403 DOI: 10.1016/j.vph.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ signaling events are essential for maintaining cardiovascular health, regulating critical functions in both endothelial and cardiac cells. SARS-CoV-2 infection impinges this delicate balance, leading to severe cardiovascular complications. SARS-CoV-2 binds to the ACE2 receptor on endothelial and cardiomyocyte surfaces, triggering abnormal increases in intracellular Ca2+ levels that promote endothelial dysfunction, inflammation, and hypercoagulation. In endothelial cells, this dysregulation activates a pro-inflammatory state and compromises vascular integrity. In cardiomyocytes, SARS-CoV-2-induced Ca2+ imbalances contribute to arrhythmias and heart failure by promoting abnormal Ca2+ cycling and energy metabolism disruptions. Additionally, the cytokine storm associated with COVID-19 amplifies these effects by further altering Ca2+ handling, enhancing inflammatory responses, and promoting thrombosis. Targeting Ca2+ channels, particularly endolysosomal two-pore channels, represents a promising therapeutic approach to counteract SARS-CoV-2's effects on Ca2+ dynamics. Several FDA-approved drugs that modulate Ca2+ signaling could be repurposed to prevent viral entry and mitigate cardiovascular damage. Understanding these Ca2+-related mechanisms offers valuable insights for developing treatments to reduce cardiovascular risk in COVID-19 and potentially future viral infections impacting the cardiovascular system.
Collapse
Affiliation(s)
- Simona Scorza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| |
Collapse
|
2
|
Ashok D, Liu T, Criscione J, Prakash M, Kim B, Chow J, Craney M, Papanicolaou KN, Sidor A, Brian Foster D, Pekosz A, Villano J, Kim DH, O'Rourke B. Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574280. [PMID: 38260287 PMCID: PMC10802485 DOI: 10.1101/2024.01.05.574280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.
Collapse
|
3
|
Jones EAV. Mechanism of COVID-19-Induced Cardiac Damage from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep 2023; 20:451-460. [PMID: 37526812 PMCID: PMC10589152 DOI: 10.1007/s11897-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW Though patient studies have been important for understanding the disease, research done in animals and cell culture complement our knowledge from patient data and provide insight into the mechanism of the disease. Understanding how COVID causes damage to the heart is essential to understanding possible long-term consequences. RECENT FINDINGS COVID-19 is primarily a disease that attacks the lungs; however, it is known to have important consequences in many other tissues including the heart. Though myocarditis does occur in some patients, for most cases of cardiac damage, the injury arises from scarring either due to myocardial infarction or micro-infarction. The main focus is on how COVID affects blood flow through the coronaries. We review how endothelial activation leads to a hypercoagulative state in COVID-19. We also emphasize the effects that the cytokine storm can directly have on the regulation of coronary blood flow. Since the main two cell types that can be infected in the heart are pericytes and cardiomyocytes, we further describe the known effects on pericyte function and how that can further lead to microinfarcts within the heart. Though many of these effects are systemic, this review focuses on the consequences on cardiac tissue of this dysregulation and the role that it has in the formation of myocardial scarring.
Collapse
Affiliation(s)
- Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, 3000, KU, Leuven, Belgium.
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands.
| |
Collapse
|
4
|
Hohendanner F, Prabhu A, Wilck N, Stangl V, Pieske B, Stangl K, Althoff TF. G q-Mediated Arrhythmogenic Signaling Promotes Atrial Fibrillation. Biomedicines 2023; 11:biomedicines11020526. [PMID: 36831062 PMCID: PMC9953645 DOI: 10.3390/biomedicines11020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is promoted by various stimuli like angiotensin II, endothelin-1, epinephrine/norepinephrine, vagal activation, or mechanical stress, all of which activate receptors coupled to G-proteins of the Gαq/Gα11-family (Gq). Besides pro-fibrotic and pro-inflammatory effects, Gq-mediated signaling induces inositol trisphosphate receptor (IP3R)-mediated intracellular Ca2+ mobilization related to delayed after-depolarisations and AF. However, direct evidence of arrhythmogenic Gq-mediated signaling is absent. METHODS AND RESULTS To define the role of Gq in AF, transgenic mice with tamoxifen-inducible, cardiomyocyte-specific Gαq/Gα11-deficiency (Gq-KO) were created and exposed to intracardiac electrophysiological studies. Baseline electrophysiological properties, including heart rate, sinus node recovery time, and atrial as well as AV nodal effective refractory periods, were comparable in Gq-KO and control mice. However, inducibility and mean duration of AF episodes were significantly reduced in Gq-KO mice-both before and after vagal stimulation. To explore underlying mechanisms, left atrial cardiomyocytes were isolated from Gq-KO and control mice and electrically stimulated to study Ca2+-mobilization during excitation-contraction coupling using confocal microscopy. Spontaneous arrhythmogenic Ca2+ waves and sarcoplasmic reticulum content-corrected Ca2+ sparks were less frequent in Gq-KO mice. Interestingly, nuclear but not cytosolic Ca2+ transient amplitudes were significantly decreased in Gq-KO mice. CONCLUSION Gq-signaling promotes arrhythmogenic atrial Ca2+-release and AF in mice. Targeting this pathway, ideally using Gq-selective, biased receptor ligands, may be a promising approach for the treatment and prevention of AF. Importantly, the atrial-specific expression of the Gq-effector IP3R confers atrial selectivity mitigating the risk of life-threatening ventricular pro-arrhythmic effects.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ashok Prabhu
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a Cooperation of Charité–Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125 Berlin, Germany
- Department of Nephrology and Medical Intensive Care Medicine, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Verena Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Karl Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Till F. Althoff
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Arrhythmia Section, Cardiovascular Institute (ICCV), Hospital Clínic, Universitat de Barcelona, C/Villarroel N° 170, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275551; Fax: +34-93-4513045
| |
Collapse
|
5
|
Clemens DJ, Ye D, Zhou W, Kim CSJ, Pease DR, Navaratnarajah CK, Barkhymer A, Tester DJ, Nelson TJ, Cattaneo R, Schneider JW, Ackerman MJ. SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to increased arrhythmic risk in COVID-19. PLoS One 2023; 18:e0282151. [PMID: 36888581 PMCID: PMC9994677 DOI: 10.1371/journal.pone.0282151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND SARS-CoV-2-mediated COVID-19 may cause sudden cardiac death (SCD). Factors contributing to this increased risk of potentially fatal arrhythmias include thrombosis, exaggerated immune response, and treatment with QT-prolonging drugs. However, the intrinsic arrhythmic potential of direct SARS-CoV-2 infection of the heart remains unknown. OBJECTIVE To assess the cellular and electrophysiological effects of direct SARS-CoV-2 infection of the heart using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS hiPSC-CMs were transfected with recombinant SARS-CoV-2 spike protein (CoV-2 S) or CoV-2 S fused to a modified Emerald fluorescence protein (CoV-2 S-mEm). Cell morphology was visualized using immunofluorescence microscopy. Action potential duration (APD) and cellular arrhythmias were measured by whole cell patch-clamp. Calcium handling was assessed using the Fluo-4 Ca2+ indicator. RESULTS Transfection of hiPSC-CMs with CoV-2 S-mEm produced multinucleated giant cells (syncytia) displaying increased cellular capacitance (75±7 pF, n = 10 vs. 26±3 pF, n = 10; P<0.0001) consistent with increased cell size. The APD90 was prolonged significantly from 419±26 ms (n = 10) in untransfected hiPSC-CMs to 590±67 ms (n = 10; P<0.05) in CoV-2 S-mEm-transfected hiPSC-CMs. CoV-2 S-induced syncytia displayed delayed afterdepolarizations, erratic beating frequency, and calcium handling abnormalities including calcium sparks, large "tsunami"-like waves, and increased calcium transient amplitude. After furin protease inhibitor treatment or mutating the CoV-2 S furin cleavage site, cell-cell fusion was no longer evident and Ca2+ handling returned to normal. CONCLUSION The SARS-CoV-2 spike protein can directly perturb both the cardiomyocyte's repolarization reserve and intracellular calcium handling that may confer the intrinsic, mechanistic substrate for the increased risk of SCD observed during this COVID-19 pandemic.
Collapse
Affiliation(s)
- Daniel J. Clemens
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
| | - Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, United States of America
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, United States of America
| | - C. S. John Kim
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, United States of America
| | - David R. Pease
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | | | - Alison Barkhymer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - David J. Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, United States of America
| | - Timothy J. Nelson
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States of America
- Wanek Family Program for HLHS-Stem Cell Pipeline, Mayo Clinic, Rochester, MN, United States of America
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay W. Schneider
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J. Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, United States of America
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, United States of America
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
6
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
7
|
MacDonnell S, Megna J, Ruan Q, Zhu O, Halasz G, Jasewicz D, Powers K, E H, del Pilar Molina-Portela M, Jin X, Zhang D, Torello J, Feric NT, Graziano MP, Shekhar A, Dunn ME, Glass D, Morton L. Activin A directly impairs human cardiomyocyte contractile function indicating a potential role in heart failure development. Front Cardiovasc Med 2022; 9:1038114. [PMID: 36440002 PMCID: PMC9685658 DOI: 10.3389/fcvm.2022.1038114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 09/27/2023] Open
Abstract
Activin A has been linked to cardiac dysfunction in aging and disease, with elevated circulating levels found in patients with hypertension, atherosclerosis, and heart failure. Here, we investigated whether Activin A directly impairs cardiomyocyte (CM) contractile function and kinetics utilizing cell, tissue, and animal models. Hydrodynamic gene delivery-mediated overexpression of Activin A in wild-type mice was sufficient to impair cardiac function, and resulted in increased cardiac stress markers (N-terminal pro-atrial natriuretic peptide) and cardiac atrophy. In human-induced pluripotent stem cell-derived (hiPSC) CMs, Activin A caused increased phosphorylation of SMAD2/3 and significantly upregulated SERPINE1 and FSTL3 (markers of SMAD2/3 activation and activin signaling, respectively). Activin A signaling in hiPSC-CMs resulted in impaired contractility, prolonged relaxation kinetics, and spontaneous beating in a dose-dependent manner. To identify the cardiac cellular source of Activin A, inflammatory cytokines were applied to human cardiac fibroblasts. Interleukin -1β induced a strong upregulation of Activin A. Mechanistically, we observed that Activin A-treated hiPSC-CMs exhibited impaired diastolic calcium handling with reduced expression of calcium regulatory genes (SERCA2, RYR2, CACNB2). Importantly, when Activin A was inhibited with an anti-Activin A antibody, maladaptive calcium handling and CM contractile dysfunction were abrogated. Therefore, inflammatory cytokines may play a key role by acting on cardiac fibroblasts, causing local upregulation of Activin A that directly acts on CMs to impair contractility. These findings demonstrate that Activin A acts directly on CMs, which may contribute to the cardiac dysfunction seen in aging populations and in patients with heart failure.
Collapse
Affiliation(s)
| | - Jake Megna
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Qin Ruan
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Olivia Zhu
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Dan Jasewicz
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Kristi Powers
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Hock E
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | | | - Ximei Jin
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Dongqin Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | | | - Nicole T. Feric
- TARA Biosystems Inc., Alexandria Center for Life Sciences, New York, NY, United States
| | - Michael P. Graziano
- TARA Biosystems Inc., Alexandria Center for Life Sciences, New York, NY, United States
| | | | | | - David Glass
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Lori Morton
- Regeneron Pharmaceuticals, Tarrytown, NY, United States
| |
Collapse
|
8
|
Bors LA, Orsolits B, Ahmed NM, Cho H, Merkely B, Földes G. SARS-CoV-2 infection in cardiovascular disease: Unmet need of stem cell models. Physiol Int 2022. [PMID: 36057101 DOI: 10.1556/2060.2022.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 02/18/2024]
Abstract
This review aims to summarise new approaches in SARS-CoV-2-related research in cardiology. We provide a head-to-head comparison of models, such as animal research and human pluripotent stem cells, to investigate the pathomechanisms of COVID-19 and find an efficient therapy. In vivo methods were useful for studying systemic processes of the disease; however, due to differences in animal and human biology, the clinical translation of the results remains a complex task. In vitro stem cell research makes cellular events more observable and effective for finding new drugs and therapies for COVID-19, including the use of stem cells. Furthermore, multicellular 3D organoids even make it possible to observe the effects of drugs to treat SARS-CoV-2 infection in human organ models.
Collapse
Affiliation(s)
- Luca Anna Bors
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Barbara Orsolits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Hyunsoo Cho
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Földes
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Wei L, Xia S, Li Y, Qi Y, Wang Y, Zhang D, Hua Y, Luo S. Application of hiPSC as a Drug Tester Via Mimicking a Personalized Mini Heart. Front Genet 2022; 13:891159. [PMID: 35495144 PMCID: PMC9046785 DOI: 10.3389/fgene.2022.891159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Human induced pluripotent stem cells (hIPSC) have been used to produce almost all types of human cells currently, which makes them into several potential applications with replicated patient-specific genotype. Furthermore, hIPSC derived cardiomyocytes assembled engineering heart tissue can be established to achieve multiple functional evaluations by tissue engineering technology. This short review summarized the current advanced applications based on the hIPSC derived heart tissue in molecular mechanisms elucidating and high throughput drug screening.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yue Wang
- Department of Cardiovascular Surgery, Pediatric Heart Center, West China Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| | - Shuhua Luo
- Department of Cardiovascular Surgery, Pediatric Heart Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Donghui Zhang, ; Yimin Hua, ; Shuhua Luo,
| |
Collapse
|
10
|
Abstract
Coronavirus disease 2019 (COVID-19) has encompassed the globe since it was first observed just under 2 years ago. Although the disease is predominantly a respiratory illness, there have been observed complications throughout the various organ systems. Namely, cardiovascular complications, and, more specifically, arrhythmic complications have been described throughout the pandemic in patients with COVID-19. Management of atrial arrhythmias, ventricular arrhythmias, and bradyarrhythmias in patients with COVID-19 infection has been largely guided by our prior experience in the management of these arrhythmias in similar patient populations without infection. However, this review aims to highlight the specific considerations as they pertain to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the various arrhythmic manifestations observed with this disease.
Collapse
Affiliation(s)
| | | | - Elaine Y. Wan
- Address reprint requests and correspondence: Dr Elaine Wan, MD, FACC, FAHA, FHRS, Esther Aboodi Associate Professor of Medicine, 622 W 168th St, PH 3-Center, New York, NY 10032.
| |
Collapse
|
11
|
Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now. Cells 2021; 10:cells10113112. [PMID: 34831333 PMCID: PMC8623147 DOI: 10.3390/cells10113112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Personalized regenerative medicine and biomedical research have been galvanized and revolutionized by human pluripotent stem cells in combination with recent advances in genomics, artificial intelligence, and genome engineering. More recently, we have witnessed the unprecedented breakthrough life-saving translation of mRNA-based vaccines for COVID-19 to contain the global pandemic and the investment in billions of US dollars in space exploration projects and the blooming space-tourism industry fueled by the latest reusable space vessels. Now, it is time to examine where the translation of pluripotent stem cell research stands currently, which has been touted for more than the last two decades to cure and treat millions of patients with severe debilitating degenerative diseases and tissue injuries. This review attempts to highlight the accomplishments of pluripotent stem cell research together with cutting-edge genomics and genome editing tools and, also, the promises that have still not been transformed into clinical applications, with cardiovascular research as a case example. This review also brings to our attention the scientific and socioeconomic challenges that need to be effectively addressed to see the full potential of pluripotent stem cells at the clinical bedside.
Collapse
|