1
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
2
|
Rezaei F, Bolhassani A, Sadat SM, Arashkia A, Fotouhi F, Milani A, Pordanjani PM. Development of novel HPV therapeutic vaccine constructs based on engineered exosomes and tumor cell lysates. Life Sci 2024; 340:122456. [PMID: 38266814 DOI: 10.1016/j.lfs.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | |
Collapse
|
3
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
4
|
Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog 2023; 185:106440. [PMID: 37931826 DOI: 10.1016/j.micpath.2023.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical nanoparticles released from gram-negative bacteria. OMVs were originally classified into native 'nOMVs' (produced naturally from budding of bacteria) and non-native (produced by mechanical means). nOMVs and detergent (dOMVs) are isolated from cell supernatant without any detergent cell disruption techniques and through detergent extraction, respectively. Growth stages and conditions e.g. different stress factors, including temperature, nutrition deficiency, and exposure to hazardous chemical agents can affect the yield of OMVs production and OMVs content. Because of the presence of bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins and the vesicle structure, OMVs have been developed in many biomedical applications. OMVs due to their size can be phagocytized by APCs, enter lymph vessels, transport antigens efficiently, and induce both T and B cells immune responses. Non-engineered OMVs have been frequently used as vaccines against different bacterial and viral infections, and various cancers. OMVs can also be used in combination with different antigens as an attractive vaccine adjuvant. Indeed, foreign antigens from target microorganisms can be trapped in the lumen of nonpathogenic vesicles or can be displayed on the surface through bacterial membrane protein to increase the immunogenicity of the antigens. In this review, different factors affecting OMV production including time of cultivation, growth media, stress conditions and genetic manipulations to enhance vesiculation will be described. Furthermore, recent advances in various biological applications of OMVs such as vaccine, drug delivery, cancer therapy, and enzyme carrier are discussed. Generally, the application of OMVs as vaccine carrier in three categories (i.e., non-engineered OMVs, OMVs as an adjuvant, recombinant OMVs (rOMVs)), as delivery system for small interfering RNA and therapeutic agents, and as enzymes carrier will be discussed.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Li L, Wang C, Li Q, Guan Y, Zhang X, Kong F, Feng Z, Lu Y, Wang D, Wang N. Exosomes as a modulator of immune resistance in human cancers. Cytokine Growth Factor Rev 2023; 73:135-149. [PMID: 37543438 DOI: 10.1016/j.cytogfr.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Tréton G, Sayer C, Schürz M, Jaritsch M, Müller A, Matea CT, Stanojlovic V, Melo-Benirschke H, Be C, Krembel C, Rodde S, Haffke M, Hintermann S, Marzinzik A, Ripoche S, Blöchl C, Hollerweger J, Auer D, Cabrele C, Huber CG, Hintersteiner M, Wagner T, Lingel A, Meisner-Kober N. Quantitative and functional characterisation of extracellular vesicles after passive loading with hydrophobic or cholesterol-tagged small molecules. J Control Release 2023; 361:694-716. [PMID: 37567507 DOI: 10.1016/j.jconrel.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.
Collapse
Affiliation(s)
- Gwenola Tréton
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Claudia Sayer
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Melanie Schürz
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Maria Jaritsch
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anna Müller
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Cristian-Tudor Matea
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Heloisa Melo-Benirschke
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Celine Be
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Caroline Krembel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Matthias Haffke
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Samuel Hintermann
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Marzinzik
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sébastien Ripoche
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Constantin Blöchl
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Julia Hollerweger
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Chiara Cabrele
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christian G Huber
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Trixie Wagner
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for Biomedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| | - Nicole Meisner-Kober
- University of Salzburg, Department of Biosciences and Medical Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
7
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
9
|
Lei F, Li P, Chen T, Wang Q, Wang C, Liu Y, Deng Y, Zhang Z, Xu M, Tian J, Ren W, Li C. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Xu Q, Chen Y, Jin Y, Wang Z, Dong H, Kaufmann AM, Albers AE, Qian X. Advanced Nanomedicine for High-Risk HPV-Driven Head and Neck Cancer. Viruses 2022; 14:v14122824. [PMID: 36560828 PMCID: PMC9788019 DOI: 10.3390/v14122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of high-risk Human Papillomavirus (HR-HPV)-driven head and neck squamous cell carcinoma (HNSCC) is on the rise globally. HR-HPV-driven HNSCC displays molecular and clinical characteristics distinct from HPV-uninvolved cases. Therapeutic strategies for HR-HPV-driven HNSCC are under investigation. HR-HPVs encode the oncogenes E6 and E7, which are essential in tumorigenesis. Meanwhile, involvement of E6 and E7 provides attractive targets for developing new therapeutic regimen. Here we will review some of the recent advancements observed in preclinical studies and clinical trials on HR-HPV-driven HNSCC, focusing on nanotechnology related methods. Materials science innovation leads to great improvement for cancer therapeutics including HNSCC. This article discusses HPV-E6 or -E7- based vaccines, based on plasmid, messenger RNA or peptide, at their current stage of development and testing as well as how nanoparticles can be designed to target and access cancer cells and activate certain immunology pathways besides serving as a delivery vehicle. Nanotechnology was also used for chemotherapy and photothermal treatment. Short interference RNA targeting E6/E7 showed some potential in animal models. Gene editing by CRISPR-CAS9 combined with other treatments has also been assessed. These advancements have the potential to improve the outcome in HR-HPV-driven HNSCC, however breakthroughs are still to be awaited with nanomedicine playing an important role.
Collapse
Affiliation(s)
- Qiang Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ye Chen
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Yuan Jin
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Haoru Dong
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Wenzhou Medical University, Wenzhou 325000, China
| | - Andreas M. Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Andreas E. Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, 14197 Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou 310022, China
- Correspondence:
| |
Collapse
|
11
|
EV-out or EV-in: Tackling cell-to-cell communication within the tumor microenvironment to enhance anti-tumor efficacy using extracellular vesicle-based therapeutic strategies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
13
|
Advances in Exosomes as Diagnostic and Therapeutic Biomarkers for Gynaecological Malignancies. Cancers (Basel) 2022; 14:cancers14194743. [PMID: 36230667 PMCID: PMC9563301 DOI: 10.3390/cancers14194743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The three major gynaecological cancers are ovarian cancer, endometrial cancer, and cervical cancer, which endanger women’s health worldwide. Significant progress has been made in the study of exosomes, which have been proven to be an important form of intercellular communication, as well as an important carrier for the uptake, transport, and release of cargo. Exosomes may also be promising diagnostic or prognostic markers for gynaecologic malignancies, which may improve the level of treatment of gynaecologic malignancies. This article reviews the latest research progress and systematic knowledge of exosomes in gynaecological malignant tumours in recent years, in order to provide a new perspective for the treatment of gynaecological tumours and promote the clinical application of exosomes in gynaecological malignancies. Abstract Background: Exosomes are extracellular vesicles that can be released by practically all types of cells. They have a diameter of 30–150 nm. Exosomes control the exchange of materials and information between cells. This function is based on its special cargo-carrying and transporting functions, which can load a variety of useful components and guarantee their preservation. Recently, exosomes have been confirmed to play a significant role in the pathogenesis, diagnosis, treatment, and prognosis of gynaecological malignancies. Particularly, participation in liquid biopsy was studied extensively in gynaecological cancer, which holds the advantages of noninvasiveness and individualization. Literature Review: This article reviews the latest research progress of exosomes in gynaecological malignancies and discusses the involvement of humoral and cell-derived exosomes in the pathogenesis, progression, metastasis, drug resistance and treatment of ovarian cancer, cervical cancer, and endometrial cancer. Advances in the clinical application of exosomes in diagnostic technology, drug delivery, and overcoming tumour resistance are also presented. Conclusion: Exosomes are potentially diagnostic and prognostic biomarkers in gynaecological malignancies, and also provide new directions for the treatment of gynaecological tumours, showing great clinical potential.
Collapse
|
14
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
15
|
Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J Colloid Interface Sci 2022; 620:419-430. [DOI: 10.1016/j.jcis.2022.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
16
|
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy 2022; 14:639-654. [PMID: 35481358 DOI: 10.2217/imt-2022-0036] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole tumor cell-based vaccines include all potential antigen-rich cell lysates to target a specific type of tumor without the need to find the best antigen candidate in protein- or peptide-based vaccines. Preparation of whole tumor cell lysates inducing cell death and inactivating immunosuppressive cytokine secretion from the tumor cells is highly enviable. Generally, modified whole tumor cells, tumor cell-derived exosomes, autologous tumor cell-derived ribonucleic acid, and personalized mutanome-derived tumor antigen are promising immunotherapeutic approaches. Autologous dendritic cells loaded with tumor-associated antigens also induce the generation of immunological memory and antitumor response as an effective method for the treatment of cancer. The present review briefly describes tumor cell-based vaccines as a promising strategy for eradication of cancer cells.
Collapse
Affiliation(s)
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | | |
Collapse
|