1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
2
|
Li C, Zhao X, Liu W, Wen L, Deng Y, Shi W, Zhou N, Song R, Hu E, Guo Q, Gailike B. Biological Characteristics of the Cytochrome P 450 Family and the Mechanism of Terpinolene Metabolism in Hyalomma asiaticum (Acari: Ixodidae). Int J Mol Sci 2024; 25:11467. [PMID: 39519019 PMCID: PMC11546871 DOI: 10.3390/ijms252111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The CYP450 enzyme is a superfamily enzyme ubiquitously found in nearly all organisms, playing a vital role in the metabolism of both endogenous and exogenous compounds, and in biosynthesis. Unfortunately, an understanding of its classification, functions, expression characteristics, and other biological traits in Hyalomma asiaticum, a vector for Crimean-Congo Hemorrhagic Fever, as well as of the genes implicated in its natural product metabolism, is lacking. Towards this end, this study has identified 120 H. asiaticum CYP450 genes via transcriptome data in the face of a joint genome threat from terpinolene. The proteins these genes encode are of higher molecular weight, devoid of a signal peptide, and composed of unstable hydrophobic proteins principally containing 1-3 variable transmembrane regions. Phylogenetic evolution classifies these H. asiaticum CYP450 genes into four subfamilies. These genes all encompass complete CYP450 conserved domains, and five specific conserved motifs, albeit with different expression levels. GO and KEGG annotation findings suggest a widespread distribution of these CYP450 genes in many physiological systems, predominantly facilitating lipid metabolism, terpenoid compound metabolism, and polyketone compound metabolism, as well as cofactor and vitamin metabolism at a cellular level. Molecular docking results reveal a hydrophobic interaction between the ARG-103, ARG-104, LEU-106, PHE-109, and ILE-119 amino acid residues in CYP3A8, which is primarily expressed in the fat body, and terpinolene, with a notably up-regulated expression, with affinity = -5.6 kcal/mol. The conservation of these five key amino acid residues varies across 12 tick species, implying differences in terpinolene metabolism efficacy among various tick species. This study thereby fills an existing knowledge gap regarding the biological characteristics of H. asiaticum CYP450 genes and paves the way for further research into the functions of these particular genes.
Collapse
Affiliation(s)
- Caishan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Xueqing Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
| | - Licui Wen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Yuqian Deng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Wenyu Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Na Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Ruiqi Song
- School of Medicine, Shihezi University, Shihezi 832003, China;
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
- Veterinary Medicine Postdoctoral Research Station of Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Bayinchahan Gailike
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (C.L.); (X.Z.); (L.W.); (Y.D.); (W.S.); (N.Z.); (E.H.)
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| |
Collapse
|
3
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Goldberg JK, Allan CW, Copetti D, Matzkin LM, Bronstein J. A pooled-sample draft genome assembly provides insights into host plant-specific transcriptional responses of a Solanaceae-specializing pest, Tupiocoris notatus (Hemiptera: Miridae). Ecol Evol 2024; 14:e10979. [PMID: 38476697 PMCID: PMC10928254 DOI: 10.1002/ece3.10979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 03/14/2024] Open
Abstract
The assembly of genomes from pooled samples of genetically heterogenous samples of conspecifics remains challenging. In this study, we show that high-quality genome assemblies can be produced from samples of multiple wild-caught individuals. We sequenced DNA extracted from a pooled sample of conspecific herbivorous insects (Hemiptera: Miridae: Tupiocoris notatus) acquired from a greenhouse infestation in Tucson, Arizona (in the range of 30-100 individuals; 0.5 mL tissue by volume) using PacBio highly accurate long reads (HiFi). The initial assembly contained multiple haplotigs (>85% BUSCOs duplicated), but duplicate contigs could be easily purged to reveal a highly complete assembly (95.6% BUSCO, 4.4% duplicated) that is highly contiguous by short-read assembly standards (N 50 = 675 kb; Largest contig = 4.3 Mb). We then used our assembly as the basis for a genome-guided differential expression study of host plant-specific transcriptional responses. We found thousands of genes (N = 4982) to be differentially expressed between our new data from individuals feeding on Datura wrightii (Solanaceae) and existing RNA-seq data from Nicotiana attenuata (Solanaceae)-fed individuals. We identified many of these genes as previously documented detoxification genes such as glutathione-S-transferases, cytochrome P450s, and UDP-glucosyltransferases. Together our results show that long-read sequencing of pooled samples can provide a cost-effective genome assembly option for small insects and can provide insights into the genetic mechanisms underlying interactions between plants and herbivorous pests.
Collapse
Affiliation(s)
- Jay K. Goldberg
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Department of Cellular and Developmental BiologyJohn Innes CentreNorwichNorfolkUK
| | - Carson W. Allan
- Department of EntomologyUniversity of ArizonaTucsonArizonaUSA
| | - Dario Copetti
- Arizona Genomics InstituteUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| | - Luciano M. Matzkin
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Department of EntomologyUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| | - Judith Bronstein
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
- Department of EntomologyUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
6
|
Lin Y, Huang Y, Liu J, Liu L, Cai X, Lin J, Shu B. Characterization of the physiological, histopathological, and gene expression alterations in Spodoptera frugiperda larval midguts affected by toosendanin exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105537. [PMID: 37666609 DOI: 10.1016/j.pestbp.2023.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a polyphagous pest worldwide and feeds on many grain and cash crops, which threatens the safety of agriculture and forestry production. Toosendanin (TSN) is a commercial insecticidal active ingredient used to manage various pests in the field and showed adverse effects against S. frugiperda, while the effects of TSN on the larval midguts are not yet known. In this study, the effects of 10 and 20 mg/kg TSN exposures on the larval midguts were analyzed. The structural changes of the larval midgut induced by TSN treatments were also determined by hematoxylin-eosin staining. Besides, TSN treatments also changed the enzyme activities of three digestive enzymes (α-amylase, lipase, and trypsin) and two detoxification enzymes (CarE and GST). A total of 2868 differentially expressed genes (DEGs) were identified by RNA-Seq in the larval midguts with 20 mg/kg TSN treatment, and the DEGs responsible for food digestion and detoxification were further examined. Our findings revealed the preliminary modes of action of TSN on the larval midguts of S. frugiperda, which provide a preliminary rationale for controlling S. frugiperda with TSN in the field.
Collapse
Affiliation(s)
- Yanzheng Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuting Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiafu Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
7
|
He H, Crabbe MJC, Ren Z. Genome-wide identification and characterization of the chemosensory relative protein genes in Rhus gall aphid Schlechtendalia chinensis. BMC Genomics 2023; 24:222. [PMID: 37118660 PMCID: PMC10142413 DOI: 10.1186/s12864-023-09322-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The Rhus gall aphid Schlechtendalia chinensis specially uses the only species Rhus chinensis and certain moss species (Mniaceae) as its primary host plant and secondary host plants, respectively. Rhus galls are formed on the primary host by the sucking of aphids, and used in traditional medicine as well as other various areas due to their high tannin contents. Chemoreception is critical for insect behaviors such as host searching, location and identification of mates and reproductive behavior. The process of chemoreception is mediated by a series of protein gene families, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs). However, there have been no reports on the analysis of molecular components related to the chemoreception system of S. chinensis at the genome level. RESULTS We examined the genes of eight OBPs, nine CSPs, 24 ORs, 16 GRs, 22 IRs, and five SNMPs in the S. chinensis genome using homological searches, and these chemosensory genes appeared mostly on chromosome 1. Phylogenetic and gene number analysis revealed that the gene families, e.g., ORs, GRs, CSPs and SNMPs in S. chinensis, have experienced major contractions by comparing to Myzus persicae, while the two gene families OBPs and IRs had slight expansion. The current results might be related to the broader host range of M. persicae versus the specialization of S. chinensis on only a host plant. There were 28 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the chemoreceptor gene families by collinear comparison. Ka/Ks ratios (< 1) indicated that the genes of S. chinensis were mainly affected by purification selection during evolution. We also found the lower number and expression level of chemoreception genes in S. chinensis than in other 11 aphid species, such as ORs, GRs and IRs, which play an important role in host search. CONCLUSION Our study firstly identified the genes of the different chemosensory protein gene families in the S. chinensis genome, and analyzed their general features and expression profile, demonstrating the importance of chemoreception in the aphid and providing new information for further functional research.
Collapse
Affiliation(s)
- Hongli He
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - M James C Crabbe
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
8
|
Jeckel AM, Beran F, Züst T, Younkin G, Petschenka G, Pokharel P, Dreisbach D, Ganal-Vonarburg SC, Robert CAM. Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches. Front Physiol 2022; 13:1001032. [PMID: 36237530 PMCID: PMC9552321 DOI: 10.3389/fphys.2022.1001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration. It further emphasizes a workflow that enables not only to study PSM metabolism at different scales, but also to tackle and validate the genetic and biochemical mechanisms involved in PSM resistance by herbivores. This review thus aims at facilitating research on PSM-mediated plant-herbivore interactions.
Collapse
Affiliation(s)
- Adriana Moriguchi Jeckel
- Laboratory of Chemical Ecology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Franziska Beran
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| | - Gordon Younkin
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Georg Petschenka
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Prayan Pokharel
- Department of Applied Entomology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Domenic Dreisbach
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Stephanie Christine Ganal-Vonarburg
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
9
|
He H, Crabbe MJC, Ren Z. Detoxification Gene Families at the Genome-Wide Level of Rhus Gall Aphid Schlechtendalia chinensis. Genes (Basel) 2022; 13:1627. [PMID: 36140795 PMCID: PMC9498883 DOI: 10.3390/genes13091627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The Rhus gall aphid Schlechtendalia chinensis uses the species Rhus chinensis as its primary host plant, on which galls are produced. The galls have medicinal properties and can be used in various situations due to their high tannin content. Detoxification enzymes play significant roles in the insect lifecycle. In this study, we focused on five detoxification gene families, i.e., glutathione-S-transferase (GST), ABC transporter (ABC), Carboxylesterase (CCE), cyto-chrome P450 (CYP), and UDP-glycosyltransferase (UDP), and manually annotated 144 detoxification genes of S. chinensis using genome-wide techniques. The detoxification genes appeared mostly on chromosome 1, where a total of two pair genes were identified to show tandem duplications. There were 38 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the detoxification gene families by collinear comparison. Ka/Ks ratios showed that detoxification genes of S. chinensis were mainly affected by purification selection during evolution. The gene expression numbers of P450s and ABCs by transcriptome sequencing data were greater, while gene expression of CCEs was the highest, suggesting they might be important in the detoxification process. Our study has firstly identified the genes of the different detoxification gene families in the S. chinensis genome, and then analyzed their general features and expression, demonstrating the importance of the detoxification genes in the aphid and providing new information for further research.
Collapse
Affiliation(s)
- Hongli He
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - M. James C. Crabbe
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Wolfson College, Oxford University, Oxford OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|